Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 13 (2017), 052, 28 pages      math.AG/0510455

A Combinatorial Study on Quiver Varieties

Shigeyuki Fujii a and Satoshi Minabe b
a) Accenture Strategy, 107-8672 Tokyo, Japan
b) Department of Mathematics, Tokyo Denki University, 120-8551 Tokyo, Japan

Received January 13, 2017, in final form June 30, 2017; Published online July 06, 2017

This is an expository paper which has two parts. In the first part, we study quiver varieties of affine $A$-type from a combinatorial point of view. We present a combinatorial method for obtaining a closed formula for the generating function of Poincaré polynomials of quiver varieties in rank 1 cases. Our main tools are cores and quotients of Young diagrams. In the second part, we give a brief survey of instanton counting in physics, where quiver varieties appear as moduli spaces of instantons, focusing on its combinatorial aspects.

Key words: Young diagram; core; quotient; quiver variety; instanton.

pdf (611 kb)   tex (51 kb)


  1. Atiyah M.F., Bott R., The moment map and equivariant cohomology, Topology 23 (1984), 1-28.
  2. Awata H., Kanno H., Instanton counting, Macdonald function and the moduli space of D-branes, J. High Energy Phys. 2005 (2005), no. 5, 039, 26 pages, hep-th/0502061.
  3. Braverman A., Instanton counting via affine Lie algebras. I. Equivariant $J$-functions of (affine) flag manifolds and Whittaker vectors, in Algebraic Structures and Moduli Spaces, CRM Proc. Lecture Notes, Vol. 38, Amer. Math. Soc., Providence, RI, 2004, 113-132, math.AG/0401409.
  4. Braverman A., Etingof P., Instanton counting via affine Lie algebras. II. From Whittaker vectors to the Seiberg-Witten prepotential, in Studies in Lie Theory, Progr. Math., Vol. 243, Birkhäuser Boston, Boston, MA, 2006, 61-78, math.AG/0409441.
  5. Bruzzo U., Fucito F., Morales J.F., Tanzini A., Multi-instanton calculus and equivariant cohomology, J. High Energy Phys. 2003 (2003), no. 5, 054, 24 pages, hep-th/0211108.
  6. Cirafici M., Szabo R.J., Curve counting, instantons and McKay correspondences, J. Geom. Phys. 72 (2013), 54-109, arXiv:1209.1486.
  7. Eguchi T., Kanno H., Topological strings and Nekrasov's formulas, J. High Energy Phys. 2003 (2003), no. 12, 006, 30 pages, hep-th/0310235.
  8. Ellingsrud G., Strømme S.A., On the homology of the Hilbert scheme of points in the plane, Invent. Math. 87 (1987), 343-352.
  9. Flume R., Poghossian R., An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Internat. J. Modern Phys. A 18 (2003), 2541-2563, hep-th/0208176.
  10. Fucito F., Morales J.F., Poghossian R., Multi-instanton calculus on ALE spaces, Nuclear Phys. B 703 (2004), 518-536, hep-th/0406243.
  11. Fulton W., Introduction to toric varieties, Annals of Mathematics Studies, Vol. 131, Princeton University Press, Princeton, NJ, 1993.
  12. Göttsche L., The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990), 193-207.
  13. Grojnowski I., Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996), 275-291, alg-geom/9506020.
  14. Gyenge A., Hilbert schemes of points on some classes of surface singularities, Ph.D. Thesis, Eötvös Loránd University, 2016, arXiv:1609.09476.
  15. Gyenge Á., Enumeration of diagonally colored Young diagrams, Monatsh. Math. 183 (2017), 143-157, arXiv:1510.02677.
  16. Gyenge Á., Némethi A., Szendröi B., Euler characteristics of Hilbert schemes of points on simple surface singularities, arXiv:1512.06848.
  17. Haiman M., $t,q$-Catalan numbers and the Hilbert scheme, Discrete Math. 193 (1998), 201-224.
  18. Haiman M., Combinatorics, symmetric functions, and Hilbert schemes, in Current Developments in Mathematics, 2002, Int. Press, Somerville, MA, 2003, 39-111.
  19. Iqbal A., Kashani-Poor A.-K., Instanton counting and Chern-Simons theory, Adv. Theor. Math. Phys. 7 (2003), 457-497, hep-th/0212279.
  20. Ito Y., Special McKay correspondence, in Geometry of Toric Varieties, Sémin. Congr., Vol. 6, Soc. Math. France, Paris, 2002, 213-225, math.AG/0111314.
  21. Ito Y., Nakamura I., Hilbert schemes and simple singularities, in New Trends in Algebraic Geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser., Vol. 264, Cambridge University Press, Cambridge, 1999, 151-233.
  22. James G., Kerber A., The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, Vol. 16, Addison-Wesley Publishing Co., Reading, Mass., 1981.
  23. Jinzenji M., Sasaki T., An approach to ${\mathcal N}=4$ ADE gauge theory on $K3$, J. High Energy Phys. 2002 (2002), no. 9, 002, 30 pages, hep-th/0203179.
  24. Kronheimer P.B., The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989), 665-683.
  25. Kronheimer P.B., Nakajima H., Yang-Mills instantons on ALE gravitational instantons, Math. Ann. 288 (1990), 263-307.
  26. Kuznetsov A., Quiver varieties and Hilbert schemes, Mosc. Math. J. 7 (2007), 673-697, math.AG/0111092.
  27. Li W.-P., Qin Z., Wang W., Hilbert schemes, integrable hierarchies, and Gromov-Witten theory, Int. Math. Res. Not. 2004 (2004), 2085-2104.
  28. Li W.-P., Qin Z., Wang W., The cohomology rings of Hilbert schemes via Jack polynomials, in Algebraic Structures and Moduli Spaces, CRM Proc. Lecture Notes, Vol. 38, Amer. Math. Soc., Providence, RI, 2004, 249-258, math.AG/0411255.
  29. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.
  30. Maeda T., Nakatsu T., Noma Y., Tamakoshi T., Gravitational quantum foam and supersymmetric gauge theories, Nuclear Phys. B 735 (2006), 96-126, hep-th/0505083.
  31. Maeda T., Nakatsu T., Takasaki K., Tamakoshi T., Five-dimensional supersymmetric Yang-Mills theories and random plane partitions, J. High Energy Phys. 2005 (2005), no. 3, 056, 28 pages, hep-th/0412327.
  32. Maeda T., Nakatsu T., Takasaki K., Tamakoshi T., Free fermion and Seiberg-Witten differential in random plane partitions, Nuclear Phys. B 715 (2005), 275-303, hep-th/0412329.
  33. Matsuura S., Ohta K., Localization on the D-brane, two-dimensional gauge theory and matrix models, Phys. Rev. D 73 (2006), 046006, 20 pages, hep-th/0504176.
  34. Nakajima H., Homology of moduli spaces of instantons on ALE spaces. I, J. Differential Geom. 40 (1994), 105-127.
  35. Nakajima H., Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416.
  36. Nakajima H., Resolutions of moduli spaces of ideal instantons on ${\bf R}^4$, in Topology, Geometry and Field Theory, World Sci. Publ., River Edge, NJ, 1994, 129-136.
  37. Nakajima H., Quiver varieties and Kac-Moody algebras, Duke Math. J. 91 (1998), 515-560.
  38. Nakajima H., Lectures on Hilbert schemes of points on surfaces, University Lecture Series, Vol. 18, Amer. Math. Soc., Providence, RI, 1999.
  39. Nakajima H., Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), 145-238, math.QA/9912158.
  40. Nakajima H., $T$-analogue of the $q$-characters of finite dimensional representations of quantum affine algebras, in Physics and Combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, 196-219, math.QA/0009231.
  41. Nakajima H., Geometric construction of representations of affine algebras, in Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 423-438, math.QA/0212401.
  42. Nakajima H., Reflection functors for quiver varieties and Weyl group actions, Math. Ann. 327 (2003), 671-721.
  43. Nakajima H., Yoshioka K., Lectures on instanton counting, in Algebraic Structures and Moduli Spaces, CRM Proc. Lecture Notes, Vol. 38, Amer. Math. Soc., Providence, RI, 2004, 31-101, math.AG/0311058.
  44. Nakajima H., Yoshioka K., Instanton counting on blowup. I. 4-dimensional pure gauge theory, Invent. Math. 162 (2005), 313-355, math.AG/0306198.
  45. Nakajima H., Yoshioka K., Instanton counting on blowup. II. $K$-theoretic partition function, Transform. Groups 10 (2005), 489-519, math.AG/0505553.
  46. Nekrasov N.A., Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003), 831-864, hep-th/0206161.
  47. Nekrasov N.A., Okounkov A., Seiberg-Witten theory and random partitions, in The Unity of Mathematics, Progr. Math., Vol. 244, Birkhäuser Boston, Boston, MA, 2006, 525-596, hep-th/0306238.
  48. Oda T., Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 15, Springer-Verlag, Berlin, 1988.
  49. Olsson J.B., Combinatorics and representations of finite groups, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen, Vol. 20, Universität Essen, Fachbereich Mathematik, Essen, 1993.
  50. Qin Z., Wang W., Hilbert schemes of points on the minimal resolution and soliton equations, in Lie Algebras, Vertex Operator Algebras and their Applications, Contemp. Math., Vol. 442, Amer. Math. Soc., Providence, RI, 2007, 435-462, math.AG/0404540.
  51. Sasaki T., Hecke operator and $S$-duality of ${\mathcal N}=4$ super Yang-Mills for $ADE$ gauge group on $K3$, J. High Energy Phys. 2003 (2003), no. 7, 024, 19 pages, hep-th/0303121.
  52. Stanley R.P., Enumerative combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1999.
  53. Szabo R.J., ${\mathcal N}=2$ gauge theories, instanton moduli spaces and geometric representation theory, J. Geom. Phys. 109 (2016), 83-121, arXiv:1507.00685.
  54. Tachikawa Y., Five-dimensional Chern-Simons terms and Nekrasov's instanton counting, J. High Energy Phys. 2004 (2004), no. 2, 050, 13 pages, hep-th/0401184.
  55. Vafa C., Witten E., A strong coupling test of $S$-duality, Nuclear Phys. B 431 (1994), 3-77, hep-th/9408074.
  56. Varagnolo M., Vasserot E., On the $K$-theory of the cyclic quiver variety, Int. Math. Res. Not. 1999 (1999), 1005-1028, math.AG/9902091.
  57. Wang W., Hilbert schemes, wreath products, and the McKay correspondence, math.AG/9912104.
  58. Zhou J., Curve counting and instanton counting, math.AG/0311237.

Previous article  Next article   Contents of Volume 13 (2017)