Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 13 (2017), 035, 26 pages      arXiv:1702.01227

Liouville Correspondences between Integrable Hierarchies

Jing Kang a, Xiaochuan Liu a, Peter J. Olver b and Changzheng Qu c
a) Center for Nonlinear Studies and School of Mathematics, Northwest University, Xi'an 710069, P.R. China
b) School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
c) Center for Nonlinear Studies and Department of Mathematics, Ningbo University, Ningbo 315211, P.R. China

Received February 07, 2017, in final form May 22, 2017; Published online May 28, 2017

In this paper, we study explicit correspondences between the integrable Novikov and Sawada-Kotera hierarchies, and between the Degasperis-Procesi and Kaup-Kupershmidt hierarchies. We show how a pair of Liouville transformations between the isospectral problems of the Novikov and Sawada-Kotera equations, and the isospectral problems of the Degasperis-Procesi and Kaup-Kupershmidt equations relate the corresponding hierarchies, in both positive and negative directions, as well as their associated conservation laws. Combining these results with the Miura transformation relating the Sawada-Kotera and Kaup-Kupershmidt equations, we further construct an implicit relationship which associates the Novikov and Degasperis-Procesi equations.

Key words: Liouville transformation; Miura transformation; bi-Hamiltonian structure; conservation law; Novikov equation; Degasperis-Procesi equation; Sawada-Kotera equation; Kaup-Kupershmidt equation.

pdf (461 kb)   tex (31 kb)


  1. Alber M.S., Camassa R., Holm D.D., Marsden J.E., The geometry of peaked solitons and billiard solutions of a class of integrable PDEs, Lett. Math. Phys. 32 (1994), 137-151.
  2. Babalic C.N., Constantinescu R., Gerdjikov V.S., On the soliton solutions of a family of Tzitzeica equations, J. Geom. Symmetry Phys. 37 (2015), 1-24, arXiv:1703.05855.
  3. Beals R., Sattinger D.H., Szmigielski J., Multipeakons and the classical moment problem, Adv. Math. 154 (2000), 229-257, solv-int/9906001.
  4. Camassa R., Holm D.D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661-1664, patt-sol/9305002.
  5. Camassa R., Holm D.D., Hyman J.M., A new integrable shallow water equation, Adv. Appl. Mech. 31 (1994), 1-33.
  6. Cao C., Holm D.D., Titi E.S., Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models, J. Dynam. Differential Equations 16 (2004), 167-178.
  7. Caudrey P.J., Dodd R.K., Gibbon J.D., A new hierarchy of Korteweg-de Vries equations, Proc. Roy. Soc. London Ser. A 351 (1976), 407-422.
  8. Chou K.S., Qu C.Z., Integrable equations arising from motions of plane curves, Phys. D 162 (2002), 9-33.
  9. Coclite G.M., Karlsen K.H., Periodic solutions of the Degasperis-Procesi equation: well-posedness and asymptotics, J. Funct. Anal. 268 (2015), 1053-1077.
  10. Constantin A., Escher J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math. 181 (1998), 229-243.
  11. Constantin A., Gerdjikov V.S., Ivanov R.I., Inverse scattering transform for the Camassa-Holm equation, Inverse Problems 22 (2006), 2197-2207, nlin.SI/0603019.
  12. Constantin A., Ivanov R., Dressing method for the Degasperis-Procesi equation, Stud. Appl. Math. 138 (2017), 205-226, arXiv:1608.02120.
  13. Constantin A., Ivanov R.I., Lenells J., Inverse scattering transform for the Degasperis-Procesi equation, Nonlinearity 23 (2010), 2559-2575, arXiv:1205.4754.
  14. Constantin A., Lannes D., The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal. 192 (2009), 165-186, arXiv:0709.0905.
  15. Constantin A., McKean H.P., A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999), 949-982.
  16. Constantin A., Strauss W.A., Stability of peakons, Comm. Pure Appl. Math. 53 (2000), 603-610.
  17. Degasperis A., Holm D.D., Hone A.N.W., A new integrable equation with peakon solutions, Theoret. and Math. Phys. 133 (2002), 1463-1474, nlin.SI/0205023.
  18. Degasperis A., Procesi M., Asymptotic integrability, in Symmetry and Perturbation Theory (Rome, 1998), World Sci. Publ., River Edge, NJ, 1999, 23-37.
  19. Dorfman I., Dirac structures and integrability of nonlinear evolution equations, Nonlinear Science: Theory and Applications, John Wiley & Sons, Ltd., Chichester, 1993.
  20. Dullin H.R., Gottwald G.A., Holm D.D., Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid Dynam. Res. 33 (2003), 73-95.
  21. Fokas A.S., Fuchssteiner B., Bäcklund transformations for hereditary symmetries, Nonlinear Anal. 5 (1981), 423-432.
  22. Fokas A.S., Olver P.J., Rosenau P., A plethora of integrable bi-Hamiltonian equations, in Algebraic Aspects of Integrable Systems, Progr. Nonlinear Differential Equations Appl., Vol. 26, Birkhäuser Boston, Boston, MA, 1997, 93-101.
  23. Fordy A.P., Gibbons J., Some remarkable nonlinear transformations, Phys. Lett. A 75 (1980), 325 .
  24. Fuchssteiner B., Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Phys. D 95 (1996), 229-243.
  25. Fuchssteiner B., Fokas A.S., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Phys. D 4 (1981), 47-66.
  26. Fuchssteiner B., Oevel W., The bi-Hamiltonian structure of some nonlinear fifth- and seventh-order differential equations and recursion formulas for their symmetries and conserved covaria, J. Math. Phys. 23 (1982), 358-363.
  27. Gerdjikov V.S., On a Kaup-Kupershmidt-type equations and their soliton solutions, Nuovo Cimento C 38 (2015), 161, 19 pages, arXiv:1703.05850.
  28. Gordoa P.R., Pickering A., Nonisospectral scattering problems: a key to integrable hierarchies, J. Math. Phys. 40 (1999), 5749-5786.
  29. Gui G.L., Liu Y., Olver P.J., Qu C.Z., Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys. 319 (2013), 731-759.
  30. Himonas A.A., Holliman C., The Cauchy problem for the Novikov equation, Nonlinearity 25 (2012), 449-479.
  31. Holm D.D., Ivanov R.I., Smooth and peaked solitons of the CH equation, J. Phys. A: Math. Theor. 43 (2010), 434003, 18 pages, arXiv:1003.1338.
  32. Hone A.N.W., Lundmark H., Szmigielski J., Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm type equation, Dyn. Partial Differ. Equ. 6 (2009), 253-289, arXiv:0903.3663.
  33. Hone A.N.W., Wang J.P., Prolongation algebras and Hamiltonian operators for peakon equations, Inverse Problems 19 (2003), 129-145.
  34. Hone A.N.W., Wang J.P., Integrable peakon equations with cubic nonlinearity, J. Phys. A: Math. Theor. 41 (2008), 372002, 10 pages, arXiv:0805.4310.
  35. Johnson R.S., Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech. 455 (2002), 63-82.
  36. Kang J., Liu X.C., Olver P.J., Qu C.Z., Liouville correspondence between the modified KdV hierarchy and its dual integrable hierarchy, J. Nonlinear Sci. 26 (2016), 141-170.
  37. Kaup D.J., On the inverse scattering problem for cubic eigenvalue problems of the class $\psi_{xxx}+6Q\psi_{x}+6R\psi =\lambda \psi $, Stud. Appl. Math. 62 (1980), 189-216.
  38. Kouranbaeva S., The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys. 40 (1999), 857-868, math-ph/9807021.
  39. Kupershmidt B.A., A super Korteweg-de Vries equation: an integrable system, Phys. Lett. A 102 (1984), 213-215.
  40. Lenells J., The correspondence between KdV and Camassa-Holm, Int. Math. Res. Not. 2004 (2004), 3797-3811.
  41. Li Y.A., Olver P.J., Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations 162 (2000), 27-63.
  42. Li Y.Y., Qu C.Z., Shu S.C., Integrable motions of curves in projective geometries, J. Geom. Phys. 60 (2010), 972-985.
  43. Lin Z.W., Liu Y., Stability of peakons for the Degasperis-Procesi equation, Comm. Pure Appl. Math. 62 (2009), 125-146, arXiv:0712.2007.
  44. Liu X.C., Liu Y., Qu C.Z., Orbital stability of the train of peakons for an integrable modified Camassa-Holm equation, Adv. Math. 255 (2014), 1-37.
  45. Liu X.C., Liu Y., Qu C.Z., Stability of peakons for the Novikov equation, J. Math. Pures Appl. 101 (2014), 172-187.
  46. Liu Y., Yin Z., Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys. 267 (2006), 801-820.
  47. Lundmark H., Formation and dynamics of shock waves in the Degasperis-Procesi equation, J. Nonlinear Sci. 17 (2007), 169-198.
  48. Lundmark H., Szmigielski J., Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Problems 19 (2003), 1241-1245, nlin.SI/0503033.
  49. Magri F., A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156-1162.
  50. McKean H.P., The Liouville correspondence between the Korteweg-de Vries and the Camassa-Holm hierarchies, Comm. Pure Appl. Math. 56 (2003), 998-1015.
  51. McKean H.P., Breakdown of the Camassa-Holm equation, Comm. Pure Appl. Math. 57 (2004), 416-418.
  52. Mikhailov A.V., The reduction problem and the inverse scattering method, Phys. D 3 (1981), 73-117.
  53. Milson R., Liouville transformation and exactly solvable Schrödinger equations, Internat. J. Theoret. Phys. 37 (1998), 1735-1752, solv-int/9706007.
  54. Musso E., Motions of curves in the projective plane inducing the Kaup-Kupershmidt hierarchy, SIGMA 8 (2012), 030, 20 pages, arXiv:1205.5329.
  55. Novikov V., Generalizations of the Camassa-Holm equation, J. Phys. A: Math. Theor. 42 (2009), 342002, 14 pages, arXiv:0905.2219.
  56. Olver F.W.J., Asymptotics and special functions, Academic Press, New York - London, 1974.
  57. Olver P.J., Evolution equations possessing infinitely many symmetries, J. Math. Phys. 18 (1977), 1212-1215.
  58. Olver P.J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, Vol. 107, 2nd ed., Springer-Verlag, New York, 1993.
  59. Olver P.J., Invariant submanifold flows, J. Phys. A: Math. Theor. 41 (2008), 344017, 22 pages.
  60. Olver P.J., Rosenau P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E 53 (1996), 1900-1906.
  61. Rogers C., Schief W.K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
  62. Sawada K., Kotera T., A method for finding $N$-soliton solutions of the K.d.V. equation and K.d.V.-like equation, Progr. Theoret. Phys. 51 (1974), 1355-1367.
  63. Tiglay F., The periodic Cauchy problem for Novikov's equation, Int. Math. Res. Not. 2011 (2011), 4633-4648, arXiv:1009.1820.
  64. Valchev T., On generalized Fourier transform for Kaup-Kupershmidt type equations, J. Geom. Symmetry Phys. 19 (2010), 73-86.

Previous article  Next article   Contents of Volume 13 (2017)