Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 13 (2017), 030, 32 pages      arXiv:1606.08352
Contribution to the Special Issue on Modular Forms and String Theory in honor of Noriko Yui

GKZ Hypergeometric Series for the Hesse Pencil, Chain Integrals and Orbifold Singularities

Jie Zhou
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

Received October 01, 2016, in final form May 14, 2017; Published online May 20, 2017

The GKZ system for the Hesse pencil of elliptic curves has more solutions than the period integrals. In this work we give different realizations and interpretations of the extra solution, in terms of oscillating integral, Eichler integral, chain integral on the elliptic curve, limit of a period of a certain compact Calabi-Yau threefold geometry, etc. We also highlight the role played by the orbifold singularity on the moduli space and its relation to the GKZ system.

Key words: GKZ system; chain integral; orbifold singularity; Hesse pencil.

pdf (613 kb)   tex (162 kb)


  1. Alim M., Scheidegger E., Topological strings on elliptic fibrations, Commun. Number Theory Phys. 8 (2014), 729-800, arXiv:1205.1784.
  2. Artebani M., Dolgachev I., The Hesse pencil of plane cubic curves, Enseign. Math. 55 (2009), 235-273, math.AG/0611590.
  3. Avram A.C., Derrick E., Jančić D., On semi-periods, Nuclear Phys. B 471 (1996), 293-308, hep-th/9511152.
  4. Batyrev V.V., Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic Geom. 3 (1994), 493-535, alg-geom/9310003.
  5. Berndt B.C., Bhargava S., Garvan F.G., Ramanujan's theories of elliptic functions to alternative bases, Trans. Amer. Math. Soc. 347 (1995), 4163-4244.
  6. Bloch S., Huang A., Lian B.H., Srinivas V., Yau S.-T., On the holonomic rank problem, J. Differential Geom. 97 (2014), 11-35, arXiv:1302.4481.
  7. Bloch S., Vanhove P., The elliptic dilogarithm for the sunset graph, J. Number Theory 148 (2015), 328-364, arXiv:1309.5865.
  8. Candelas P., de la Ossa X., Font A., Katz S., Morrison D.R., Mirror symmetry for two-parameter models. I, Nuclear Phys. B 416 (1994), 481-538, hep-th/9308083.
  9. Candelas P., de la Ossa X., Rodriguez-Villegas F., Calabi-Yau manifolds over finite fields. I, hep-th/0012233.
  10. Candelas P., de la Ossa X., Rodriguez-Villegas F., Calabi-Yau manifolds over finite fields. II, in Calabi-Yau Varieties and Mirror Symmetry (Toronto, ON, 2001), Fields Inst. Commun., Vol. 38, Amer. Math. Soc., Providence, RI, 2003, 121-157, hep-th/0402133.
  11. Carlson J., Müller-Stach S., Peters C., Period mappings and period domains, Cambridge Studies in Advanced Mathematics, Vol. 85, Cambridge University Press, Cambridge, 2003.
  12. Chiang T.-M., Klemm A., Yau S.-T., Zaslow E., Local mirror symmetry: calculations and interpretations, Adv. Theor. Math. Phys. 3 (1999), 495-565, hep-th/9903053.
  13. Cox D.A., Katz S., Mirror symmetry and algebraic geometry, Mathematical Surveys and Monographs, Vol. 68, Amer. Math. Soc., Providence, RI, 1999.
  14. Dolgachev I., Lectures on modular forms. Fall 1997/98, available at
  15. Duke W., Imamoglu O., The zeros of the Weierstrass $\wp$-function and hypergeometric series, Math. Ann. 340 (2008), 897-905.
  16. Eichler M., Zagier D., On the zeros of the Weierstrass $\wp$-function, Math. Ann. 258 (1982), 399-407.
  17. Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental functions, Vol. I, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981.
  18. Galkin S., Golyshev V., Iritani H., Gamma classes and quantum cohomology of Fano manifolds: gamma conjectures, Duke Math. J. 165 (2016), 2005-2077, arXiv:1404.6407.
  19. Gel'fand I.M., Kapranov M.M., Zelevinsky A.V., Hypergeometric functions and toral manifolds, Funct. Anal. Appl. 23 (1989), 94-106.
  20. Gel'fand I.M., Kapranov M.M., Zelevinsky A.V., Generalized Euler integrals and $A$-hypergeometric functions, Adv. Math. 84 (1990), 255-271.
  21. Gel'fand I.M., Kapranov M.M., Zelevinsky A.V., Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008.
  22. Golyshev V.V., Zagir D., Proof of the gamma conjecture for Fano 3-folds with a Picard lattice of rank one, Izv. Math. 80 (2016), 24-49.
  23. Hori K., Vafa C., Mirror symmetry, hep-th/0002222.
  24. Hosono S., Central charges, symplectic forms, and hypergeometric series in local mirror symmetry, in Mirror Symmetry. V, AMS/IP Stud. Adv. Math., Vol. 38, Amer. Math. Soc., Providence, RI, 2006, 405-439, hep-th/0404043.
  25. Hosono S., Klemm A., Theisen S., Yau S.-T., Mirror symmetry, mirror map and applications to Calabi-Yau hypersurfaces, Comm. Math. Phys. 167 (1995), 301-350, hep-th/9308122.
  26. Huang A., Lian B.H., Yau S.-T., Zhu X., Chain integral solutions to tautological systems, Math. Res. Lett. 23 (2016), 1721-1736, arXiv:1508.00406.
  27. Huang A., Lian B.H., Zhu X., Period integrals and the Riemann-Hilbert correspondence, J. Differential Geom. 104 (2016), 325-369, arXiv:1303.2560.
  28. Klemm A., Manschot J., Wotschke T., Quantum geometry of elliptic Calabi-Yau manifolds, Commun. Number Theory Phys. 6 (2012), 849-917, arXiv:1205.1795.
  29. Lau S.-C., Zhou J., Modularity of open Gromov-Witten potentials of elliptic orbifolds, Commun. Number Theory Phys. 9 (2015), 345-386, arXiv:1412.1499.
  30. Lerche W., Special geometry and mirror symmetry for open string backgrounds with $N = 1$ supersymmetry, hep-th/0312326.
  31. Lerche W., Mayr P., On $N=1$ mirror symmetry for open type II strings, hep-th/0111113.
  32. Lerche W., Mayr P., Warner N., Holomorphic $N=1$ special geometry of open - closed type II strings, hep-th/0207259.
  33. Lerche W., Mayr P., Warner N., $N=1$ special geometry, mixed Hodge variations and toric geometry, hep-th/0208039.
  34. Li S., Lian B.H., Yau S.-T., Picard-Fuchs equations for relative periods and Abel-Jacobi map for Calabi-Yau hypersurfaces, Amer. J. Math. 134 (2012), 1345-1384, arXiv:0910.4215.
  35. Libgober A., Chern classes and the periods of mirrors, Math. Res. Lett. 6 (1999), 141-149, math.AG/9803119.
  36. Maier R.S., On rationally parametrized modular equations, J. Ramanujan Math. Soc. 24 (2009), 1-73, math.NT/0611041.
  37. Mayr P., ${\mathcal N}=1$ mirror symmetry and open/closed string duality, Adv. Theor. Math. Phys. 5 (2001), 213-242, hep-th/0108229.
  38. Mohri K., Exceptional string: instanton expansions and Seiberg-Witten curve, Rev. Math. Phys. 14 (2002), 913-975.
  39. Olver F.W.J., Lozier D.W., Boisvert R.F., Clark C.W. (Editors), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC, Cambridge University Press, Cambridge, 2010, available at
  40. Shen Y., Zhou J., LG/CY correspondence for elliptic orbifold curves via modularity, arXiv:1603.02660.
  41. Stienstra J., Mahler measure variations, Eisenstein series and instanton expansions, in Mirror symmetry. V, AMS/IP Stud. Adv. Math., Vol. 38, Amer. Math. Soc., Providence, RI, 2006, 139-150, math.NT/0502193.
  42. Strominger A., Special geometry, Comm. Math. Phys. 133 (1990), 163-180.
  43. Witten E., Phases of $N=2$ theories in two dimensions, Nuclear Phys. B 403 (1993), 159-222, hep-th/9301042.
  44. Zhou J., Differential rings from special Kähler geometry, arXiv:1310.3555.
  45. Zhou J., Arithmetic properties of moduli spaces and topological string partition functions of some Calabi-Yau threefolds, Ph.D. Thesis, Harvard University, 2014.
  46. Zhou J., Mirror symmetry for plane cubics revisited, arXiv:1605.07877.

Previous article  Next article   Contents of Volume 13 (2017)