Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 13 (2017), 002, 30 pages      arXiv:1606.07739

Symmetries of the Space of Linear Symplectic Connections

Daniel J.F. Fox
Departamento de Matemáticas del Área Industrial, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain

Received June 30, 2016, in final form January 07, 2017; Published online January 10, 2017

There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen-Gutt moment map, the Ricci tensor, and a translational term. The critical points of a functional constructed from it interpolate between the equations for preferred symplectic connections and the equations for critical symplectic connections. The commutative algebra of formal sums of symmetric tensors on a symplectic manifold carries a pair of compatible Poisson structures, one induced from the canonical Poisson bracket on the space of functions on the cotangent bundle polynomial in the fibers, and the other induced from the algebraic fiberwise Schouten bracket on the symmetric algebra of each fiber of the cotangent bundle. These structures are shown to be compatible, and the required Lie algebras are constructed as central extensions of their linear combinations restricted to formal sums of symmetric tensors whose first order term is a multiple of the differential of its zeroth order term.

Key words: symplectic connection; compatible Lie brackets; Hamiltonian action; symmetric tensors.

pdf (613 kb)   tex (42 kb)


  1. Atiyah M.F., Bott R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615.
  2. Bieliavsky P., Cahen M., Gutt S., Rawnsley J., Schwachhöfer L., Symplectic connections, Int. J. Geom. Methods Mod. Phys. 3 (2006), 375-420, math.SG/0511194.
  3. Bolsinov A.V., Compatible Poisson brackets on Lie algebras and the completeness of families of functions in involution, Math. USSR Izv. 38 (1992), 69-90.
  4. Bolsinov A.V., Borisov A.V., Compatible Poisson brackets on Lie algebras, Math. Notes 72 (2002), 10-30.
  5. Bourgeois F., Cahen M., Can one define a preferred symplectic connection?, Rep. Math. Phys. 43 (1999), 35-42.
  6. Bourgeois F., Cahen M., A variational principle for symplectic connections, J. Geom. Phys. 30 (1999), 233-265.
  7. Cahen M., Gutt S., Moment map for the space of symplectic connections, in Liber Amicorum Delanghe, Editors F. Brackx, H. De Schepper, Gent Academia Press, 2005, 27-36.
  8. Fedosov B., Deformation quantization and index theory, Mathematical Topics, Vol. 9, Akademie Verlag, Berlin, 1996.
  9. Fedosov B., The Atiyah-Bott-Patodi method in deformation quantization, Comm. Math. Phys. 209 (2000), 691-728.
  10. Fox D.J.F., Critical symplectic connections on surfaces, arXiv:1410.1468.
  11. Golubchik I.Z., Sokolov V.V., Compatible Lie brackets and integrable equations of the principal chiral field model type, Funct. Anal. Appl. 36 (2002), 172-181.
  12. Guillemin V., The integrability problem for $G$-structures, Trans. Amer. Math. Soc. 116 (1965), 544-560.
  13. Gutt S., Remarks on symplectic connections, Lett. Math. Phys. 78 (2006), 307-328.
  14. Kobayashi S., Transformation groups in differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 70, Springer-Verlag, Berlin - Heidelberg, 1995.
  15. Kostant B., The Weyl algebra and the structure of all Lie superalgebras of Riemannian type, Transform. Groups 6 (2001), 215-226, math.RT/0106171.
  16. McDuff D., Salamon D., Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.
  17. Penrose R., Rindler W., Spinors and space-time, Vol. 1. Two-spinor calculus and relativistic fields, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1984.
  18. Sternberg S., Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.
  19. Tamarkin D.E., Topological invariants of connections on symplectic manifolds, Funct. Anal. Appl. 29 (1995), 258-267.
  20. Wald R.M., General relativity, University of Chicago Press, Chicago, IL, 1984.

Previous article  Next article   Contents of Volume 13 (2017)