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Abstract. We develop the inverse scattering transform method for the Novikov equation
ut − utxx + 4u2ux = 3uuxuxx + u2uxxx considered on the line x ∈ (−∞,∞) in the case
of non-zero constant background. The approach is based on the analysis of an associated
Riemann–Hilbert (RH) problem, which in this case is a 3×3 matrix problem. The structure
of this RH problem shares many common features with the case of the Degasperis–Procesi
(DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D.,
Nonlinearity 26 (2013), 2081–2107, arXiv:1107.5995]) and thus the Novikov equation can be
viewed as a “modified DP equation”, in analogy with the relationship between the Korteweg–
de Vries (KdV) equation and the modified Korteweg–de Vries (mKdV) equation. We present
parametric formulas giving the solution of the Cauchy problem for the Novikov equation in
terms of the solution of the RH problem and discuss the possibilities to use the developed
formalism for further studying of the Novikov equation.
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1 Introduction

1.1. In this paper we present an inverse scattering approach, based on an appropriate Riemann–
Hilbert problem formulation, for the initial value problem for the Novikov equation [29, 37, 39]

ut − utxx + 4u2ux = 3uuxuxx + u2uxxx, −∞ < x < +∞, t > 0, (1.1)

u(x, 0) = u0(x), −∞ < x < +∞,

where u0(x) is assumed to decay to a non-zero constant:

u0(x)→ κ > 0, x→ ±∞.
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The solution u(x, t) is also assumed to decay to κ for all t > 0:

u(x, t)→ κ, x→ ±∞.

Introducing the momentum variable

m := u− uxx,

the Novikov equation (1.1) can be written as

mt + (mxu+ 3mux)u = 0 (1.2)

or, equivalently,(
m

2
3
)
t
+
(
u2m

2
3
)
x

= 0. (1.3)

1.2. The Novikov equation (1.1) was obtained in the search for a classification of integrable
generalized Camassa–Holm equations of the form(

1− ∂2
x

)
ut = F (u, ux, uxx, uxxx, . . . ), u = u(x, t), ∂x = ∂/∂x

possessing infinite hierarchies of higher symmetries [39] (see also [37]). Equation (1.1) listed by
Novikov in [39, equation (31)] attracted further considerable attention in the literature, first of
all, as an example of nonlinear equation admitting, like the Camassa–Holm (CH) [13, 14] and
the Degasperis–Procesi (DP) [22, 23] equations, peaked solutions (peakons), but having cubic
(rather than quadratic) nonlinear terms. Another integrable Camassa–Holm type equation with
cubic nonlinearities was discovered by Fokas [25] and Qiao [41, 42].

Hone, Lundmark, and Szmigielski [28] obtained explicit formulas for multipeakon solutions
of (1.1). Some smooth and nonsmooth soliton solutions were presented by Pan and Yi in [40].
For studies concerned with blow-up phenomenon and the Cauchy problem for (1.1) we refer the
reader to [16, 17, 26, 27, 30, 32, 38, 43, 44].

1.3. In [39] Novikov presented a scalar Lax pair for (1.1), which involves the third order
derivative with respect to x. Hone and Wang [29] proposed a 3 × 3 matrix Lax pair for (1.1),
which allowed presenting explicit formulas for peakon solutions [28, 29] on zero background.
Recently, Matsuno [36] presented parametric representations of smooth multisoliton solutions
(as well as singular solitons with single cusp and double peaks) of (1.1) on a constant (non-
zero) background, using a Hirota-type, purely algebraic procedure. He also demonstrated that
a smooth soliton converges to a peakon in the limit where the constant background tends to 0
while the velocity of the soliton is fixed. Furthermore, he performed the asymptotic analysis of
pure multisoliton solutions and noticed that the formulas for the phase shifts of the solitons as
well as their peakon limits coincide with those for the Degasperis–Procesi (DP) equation [34, 35]

ut − utxx + 4uux = 3uxuxx + uuxxx, (1.4)

which, in terms of m reads(
m

1
3
)
t
+
(
um

1
3
)
x

= 0. (1.5)

Comparing with the Degasperis–Procesi equation, it is natural to view (at least formally) the
Novikov equation as a “modified DP equation”, in analogy with the relationship between the
Korteweg–de Vries (KdV) equation

ut + 6uux + uxxx = 0
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and the modified Korteweg–de Vries (mKdV) equation

ut + 6u2ux + uxxx = 0.

The subsequent analysis presented in the paper supports this point of view. Indeed, as we will
show below, the implementation of the inverse scattering transform method involves a Riemann–
Hilbert problem of the same structure as in the case of the DP equation (recall that this is true
when comparing the KdV and the mKdV equations).

1.4. Recall that for the DP equation, the transformation u(x, t) 7→ ũ(x − κt, t) + κ re-
duces (1.4) and (1.5) to

ũt − ũtxx + 3κũx + 4ũũx = 3ũxũxx + ũũxxx (1.6)

and (
m̃

1
3
)
t
+
(
ũm̃

1
3
)
x

= 0,

respectively. Here m̃ := ũ− ũxx + κ and thus ũ→ 0 as x→ ±∞ provided u→ κ as x→ ±∞.
Therefore, the study of the Cauchy problem for the DP equation in the form (1.4) in the case
of non-zero constant background is equivalent to the study of the Cauchy problem on zero
background for the DP equation in the form (1.6), i.e., for the DP equation with non-zero linear
dispersion term. For the latter problem, the Riemann–Hilbert approach, which is a variant of
the inverse scattering transform method, has been applied in [10], which allows obtaining a
useful representation of the solution in a form suitable for the analysis of its long time behavior.
Notice that the further transformation ũ 7→ ˜̃u : ũ(x, t) = κ ˜̃u(x,κt), which preserves the zero
background, allows reducing the study of (1.6) with any κ > 0 to the case of (1.6) with κ = 1.

Similar arguments for the Novikov equation lead to the following: The transformations
u(x, t) = ũ(x − κ2t, t) + κ and u(x, t) = κ ˜̃u(x − κ2t,κ2t) + κ reduce the Cauchy problem
for (1.1) (or (1.3)) on a non-zero constant background u → κ as x → ±∞ to the Cauchy
problem on zero background (ũ→ 0 and ˜̃u→ 0 as x→ ±∞) for the equations(

m̃
2
3
)
t
+
((
ũ2 + 2κũ

)
m̃

2
3
)
x

= 0, (1.7)

and (
˜̃m

2
3
)
t
+
((

˜̃u2 + 2˜̃u
)

˜̃m
2
3
)
x

= 0, (1.8)

respectively. Here m̃ := ũ− ũxx + κ and ˜̃m = ˜̃u− ˜̃uxx + 1.

1.5. Henceforth, we consider the Cauchy problem for equation (1.8) on zero background,
which, to simplify notations, will be written as(

m̂2/3
)
t
+
((
u2 + 2u

)
m̂2/3

)
x

= 0, −∞ < x <∞, t > 0, (1.9a)

m̂ ≡ m+ 1 = u− uxx + 1, (1.9b)

u(x, 0) = u0(x), −∞ < x <∞, (1.9c)

where u0(x) is sufficiently smooth and decays fast as x→ ±∞. Moreover, we assume that u0(x)
satisfies the sign condition

u0(x)− (u0)xx(x) + 1 > 0. (1.9d)

Then there exists [32] a unique global solution u(x, t) of (1.9), such that u(x, t)→ 0 as x→ ±∞
for all t.
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Notice that the Novikov equation (1.9a), being written in terms of u only, contains linear as
well as quadratic dispersion terms:

ut − utxx + 4u2ux + 8uux + 3ux = 3uuxuxx + u2uxxx + 3uxuxx + 2uuxxx.

1.6. The analysis of Camassa–Holm-type equations by using the inverse scattering approach
was initiated in [18, 21, 31, 33] for the Camassa–Holm equation itself:

ut − utxx + 3uux = 2uxuxx + uuxxx.

A version of the inverse scattering method for the CH equation based on a Riemann–Hilbert (RH)
factorization problem was proposed in [5, 8] (another RH formulation of the inverse scattering
transform is presented in [19]). The RH approach has proved its efficiency in the study of
the long-time behavior of solutions of both initial value problems [2, 3, 7] and initial boundary
value problems [9] for the CH equation. In [4, 10] it has been adapted to the study of the
Degasperis–Procesi equation.

In the present paper we develop the RH approach to the Novikov equation in the form (1.9a)
on zero background, following the main ideas developed in [8, 10]. To the best of our knowledge,
no equations of the Camassa–Holm type with cubic nonlinearity have been treated before by
the inverse scattering method in the form of a RH problem.

A major difference between the implementations of the RH method to the CH equation, on
one hand, and to the DP as well as Novikov equation, on the other hand, is that in the latter
cases, the spatial equations of the associated Lax pairs are of the third order, which implies
that when rewriting them in matrix form, one has to deal with 3 × 3 matrix-valued equations,
while in the case of the CH equation, they have a 2 × 2 matrix structure, as in the cases of
the most known integrable equations (KdV, mKdV, nonlinear Schrödinger, sine-Gordon, etc.).
Hence, the construction and analysis of the associated RH problem become considerably more
complicated.

In our approach, we propose (Section 3) an associated RH problem and give (Theorem 4.1)
a representation of the solution u(x, t) of the initial value problem (1.9) in terms of the solution
of this RH problem evaluated at a distinguished point of the plane of the spectral parame-
ter. Remarkably, the formulas for u(x, t) obtained in this way have the same structure as the
parametric formulas obtained in [36] for pure multisoliton solutions.

2 Lax pairs and eigenfunctions

Assumptions. Recall that we assume that the initial function u0(x) in (1.9c) is sufficiently
smooth with fast decay at ±∞ and satisfies the sign condition (1.9d).

Then, similarly to the case of the CH equation (see, e.g., [18]), the solution m̂(x, t) of (1.9)
satisfies the sign condition m̂(x, t) > 0 for all x ∈ R and all t > 0.

2.1 Lax pairs

2.1.1 A first Lax pair

The Lax pair found by Hone and Wang [29] for the Novikov equation in the form (1.1) (or (1.2))
reads

∂x

ψ1

ψ2

ψ3

 =

0 zm 1
0 0 zm
1 0 0

ψ1

ψ2

ψ3

 , m := u− uxx, (2.1a)
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∂t

ψ1

ψ2

ψ3

 =

−uux
ux
z − u2mz u2

x
u
z − 1

z2
−ux

z − u2mz

−u2 u
z uux


ψ1

ψ2

ψ3

 , (2.1b)

where z is the spectral parameter.

2.1.2 A modified Lax pair

For the Novikov equation in the form (1.9a), the Lax pair (2.1) has to be appropriately modified.
While for the Camassa–Holm and Degasperis–Procesi equations the corresponding modification
(when passing from the equation with zero linear dispersive term to that with a non-zero one)
consists simply in replacing m by m̂ = m+ 1, the modification for the Novikov equation turns
out to be more involved.

Lemma 2.1. The Novikov equation (1.9a) admits as Lax pair the system

Φx = UΦ, Φt = V Φ, (2.2a)

where Φ ≡ Φ(x, t; z) and

U(x, t; z) =

0 zm̂ 1
0 0 zm̂
1 0 0

 , (2.2b)

V (x, t; z) =

−(u+ 1)ux + 1
3z2

ux
z − (u2 + 2u)m̂z u2

x + 1
u+1
z − 2

3z2
−ux

z − (u2 + 2u)m̂z

−u2 − 2u u+1
z (u+ 1)ux + 1

3z2

 . (2.2c)

Remark 2.2. The freedom in adding to V a constant (independent of (x, t)) term c · I, where I
is the 3×3 identity matrix, has been used in (2.2c) in order to make V traceless, which provides
that the determinant of a matrix solution to the equation Φt = V Φ is independent of t. The
same property holds for the equation Φx = UΦ whose coefficient U is obviously traceless.

The coefficient matrices U and V in (2.2) have singularities (in the extended complex z-plane)
at z = 0 and at z =∞. In order to control the behavior of solutions to (2.2) as functions of the
spectral parameter z (which is crucial for the Riemann–Hilbert method), we follow a strategy
similar to that adopted for the CH equation [5, 8] and the DP equation [10].

2.1.3 A Lax pair appropriate for large z

In order to control the large z behavior of the solutions of (2.2), we will transform this Lax pair
as follows (cf. [1]):

Lemma 2.3. The Lax pair (2.2) can be transformed into a new Lax pair

Φ̂x −QxΦ̂ = Û Φ̂, Φ̂t −QtΦ̂ = V̂ Φ̂, (2.3)

whose coefficients Q(x, t; z), Û(x, t; z), and V̂ (x, t; z) have the following properties:

(i) Q is diagonal;

(ii) Û = O(1) and V̂ = O(1) as z →∞, whereas Qx is growing;

(iii) the diagonal parts of Û and V̂ decay as z →∞;

(iv) Û → 0 and V̂ → 0 as x→ ±∞.
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Proof. As in the case of the DP equation [10], we perform this transformation into two steps:

• We transform (2.2) into a system where the leading terms are represented as products of
(x, t)-independent (matrix-valued) and (x, t)-dependent (scalar) factors.

• We diagonalize the (x, t)-independent factors.

First step. Introducing Φ̃ ≡ Φ̃(x, t; z) by

Φ̃ = D−1Φ,

where D(x, t) = diag
{
q(x, t), 1, q−1(x, t)

}
and (m̂ is as in (1.9b))

q = q(x, t) := m̂1/3(x, t), (2.4)

transforms (2.2) into the new Lax pair

Φ̃x = Ũ Φ̃, Φ̃t = Ṽ Φ̃, (2.5a)

where

Ũ(x, t; z) = q2(x, t)

0 z 1
0 0 z
1 0 0

+

− qx
q 0 1

q2
− q2

0 0 0
0 0 qx

q


≡ q2(x, t)U∞(z) + Ũ (1)(x, t) (2.5b)

Ṽ (x, t; z) = −
(
u2 + 2u

)
q2

0 z 1
0 0 z
1 0 0

+


1

3z2
0 1

1
z − 2

3z2
0

0 1
z

1
3z2


+

(u2 + 2u) qxq 0 (u2 + 2u)q2 + u2x+1
q2
− 1

0 0 0
0 0 −(u2 + 2u) qxq


+

1

z

 0 ux
q 0

(u+ 1)q − 1 0 −ux
q

0 (u+ 1)q − 1 0


≡ −

(
u2(x, t) + 2u(x, t)

)
q2(x, t)U∞(z) + V∞(z) + Ṽ (1)(x, t) +

1

z
Ṽ (2)(x, t). (2.5c)

Second step. The commutator of U∞ and V∞ vanishes identically, i.e., [U∞, V∞] ≡ 0, which
allows simultaneous diagonalization of U∞ and V∞. Indeed, we have (for z 6= 0)

P−1(z)U∞(z)P (z) = Λ(z), P−1(z)V∞(z)P (z) = A(z),

where

Λ(z) =

λ1(z) 0 0
0 λ2(z) 0
0 0 λ3(z)

 , (2.6a)

A(z) =
1

3z2
I + Λ−1(z) ≡

A1(z) 0 0
0 A2(z) 0
0 0 A3(z)

 , (2.6b)

P (z) =

λ2
1(z) λ2

2(z) λ2
3(z)

z z z
λ1(z) λ2(z) λ3(z)

 , (2.6c)



A Riemann–Hilbert Approach for the Novikov Equation 7

P−1(z) =

(3λ2
1(z)− 1)−1 0 0

0 (3λ2
2(z)− 1)−1 0

0 0 (3λ2
3(z)− 1)−1


1 z

λ1(z) λ1(z)

1 z
λ2(z) λ2(z)

1 z
λ3(z) λ3(z)

 . (2.6d)

Here λ1(z), λ2(z), and λ3(z) are the solutions of the algebraic equation

λ3 − λ = z2,

enumerated in such a way that λj(z) ∼ ωjz2/3 as z →∞, where ω = e
2iπ
3 .

Now, introducing Φ̂ ≡ Φ̂(x, t; z) by

Φ̂ = P−1Φ̃

transforms the Lax pair (2.5) into the new Lax pair:

Φ̂x − q2Λ(z)Φ̂ = Û Φ̂, (2.7a)

Φ̂t +
((
u2 + 2u

)
q2Λ(z)−A(z)

)
Φ̂ = V̂ Φ̂, (2.7b)

where

Û(x, t; z) = P−1(z)Ũ (1)(x, t)P (z), (2.7c)

V̂ (x, t; z) = P−1(z)

(
Ṽ (1)(x, t) +

1

z
Ṽ (2)(x, t)

)
P (z). (2.7d)

Here Û(x, t; z) = O(1) and V̂ (x, t; z) = O(1) as z → ∞ due to the fact that Ũ (1) and Ṽ (1) are
upper triangular matrices. Moreover, the fact that Ũ (1) and Ṽ (1) are traceless implies that the
diagonal entries of Û(x, t; z) and V̂ (x, t; z) are O(z−2/3) as z →∞.

Indeed, we can write Û = Û (1)Û (2), where

Û (1) =


1

3λ21−1
0 0

0 1
3λ22−1

0

0 0 1
3λ23−1

 , (2.8a)

Û (2) =

 c2λ1 c1(λ1λ2 − λ2
2) + c2λ2 c1(λ1λ3 − λ2

3) + c2λ3

c1(λ1λ2 − λ2
1) + c2λ1 c2λ2 c1(λ1λ3 − λ2

3) + c2λ3

c1(λ1λ3 − λ2
1) + c2λ1 c1(λ2λ3 − λ2

2) + c2λ2 c2λ3

 (2.8b)

with c1 = qx/q and c2 = q−2 − q2. Notice that Û(x, t; z) has a finite limit at z = 0.
We can also write V̂ = Û (1)

(
V̂ (1) + V̂ (2)Λ

)
where V̂ (1) has the form of Û (2) with c1 and c2

replaced by c3 = −(u2 + 2u) qxq and c4 = (u2 + 2u)q2 + u2x+1
q2
− 1, respectively, and

V̂ (2) =



2c6

c5

(
1
λ2
− 1

λ1

)
+ c6

(
λ1
λ2

+ λ2
λ1

) c5

(
1
λ3
− 1

λ1

)
+ c6

(
λ1
λ3

+ λ3
λ1

)
c5

(
1
λ1
− 1

λ2

)
+ c6

(
λ1
λ2

+ λ2
λ1

) 2c6

c5

(
1
λ3
− 1

λ2

)
+ c6

(
λ2
λ3

+ λ3
λ2

)
c5

(
1
λ1
− 1

λ3

)
+ c6

(
λ1
λ3

+ λ3
λ1

) c5

(
1
λ2
− 1

λ3

)
+ c6

(
λ2
λ3

+ λ3
λ2

) 2c6


(2.8c)

with c5 = ux
q , c6 = (u+ 1)q − 1.
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Finally, in order to write (2.7) in the desired form (2.3) it suffices to find a solution of the
system

Qx = q2Λ(z), (2.9a)

Qt = −
((
u2 + 2u

)
q2
)

Λ(z) +A(z). (2.9b)

We first notice that both equations are consistent. This follows directly from the equation

(q2)t +
((
u2 + 2u

)
q2
)
x

= 0, (2.10)

which is just another form of the Novikov equation (1.9a). We actually find that a solution
Q(x, t; z) of the system (2.9) is given by the 3× 3 diagonal function

Q(x, t; z) = y(x, t)Λ(z) + tA(z) (2.11)

with

y(x, t) := x−
∫ ∞
x

(q2(ξ, t)− 1)dξ. (2.12)

This solution Q(x, t; z) is normalized in such a way that

Q(x, t; z) ∼ xΛ(z) + tA(z) as x→ +∞. �

2.2 Eigenfunctions

2.2.1 Fredholm integral equations

Introducing the 3× 3 matrix-valued function M ≡M(x, t; z) by

M = Φ̂e−Q

reduces the Lax pair (2.3) to the system

Mx − [Qx,M ] = ÛM, Mt − [Qt,M ] = V̂ M. (2.13)

Assume that the coefficients in (2.13), which are expressed in terms of u(x, t), are given. Then
particular solutions of (2.13) having well-controlled properties as functions of the spectral pa-
rameter z can be constructed as solutions of the Fredholm integral equation (cf. [1])

M(x, t; z) = I

+

∫ (x,t)

(x∗,t∗)
eQ(x,t;z)−Q(ξ,τ ;z)

(
ÛM(ξ, τ ; z)dξ + V̂ M(ξ, τ ; z)dτ

)
e−Q(x,t;z)+Q(ξ,τ ;z), (2.14)

where the initial points of integration (x∗, t∗) can be chosen differently for different matrix
entries of the equation. Q being diagonal, (2.14) must be seen as the collection of scalar integral
equations (1 ≤ j, l ≤ 3)

Mjl(x, t; z) = Ijl

+

∫ (x,t)

(x∗jl,t
∗
jl)

eQjj(x,t;z)−Qjj(ξ,τ ;z)
(
(ÛM)jl(ξ, τ ; z)dξ + (V̂ M)jl(ξ, τ ; z)dτ

)
e−Qll(x,t;z)+Qll(ξ,τ ;z).

Notice that choosing the (x∗jl, t
∗
jl) appropriately allows obtaining eigenfunctions which are piece-

wise analytic w.r.t. the spectral parameter z and thus can be used in the construction of
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•

x ξ

t

τ

0

•

x ξ

t

τ

0

Figure 1. Paths of integration. Left: (x∗, t∗) = (−∞, t). Right: (x∗, t∗) = (+∞, t).

Riemann–Hilbert problems associated with initial value problems [8] as well as initial boundary
value problems [9].

In particular, for the Cauchy problem considered in the present paper, it is reasonable to
choose these points to be (−∞, 0) or (+∞, 0) thus reducing the integration in (2.14) to paths

parallel to the x-axis (see Fig. 1) provided the integrals
∫ (−∞,t)

(−∞,0) and
∫ (∞,t)

(∞,0) vanish:

M(x, t; z) = I +

∫ x

(±)∞
eQ(x,t;z)−Q(ξ,t;z)[ÛM(ξ, t; z)]e−Q(x,t;z)+Q(ξ,t;z)dξ, (2.15)

or, in view of (2.11) and (2.9a),

M(x, t; z) = I +

∫ x

(±)∞
e
−
(∫ ξ
x q

2(ζ,t)dζ
)

Λ(z)
[ÛM(ξ, t; z)]e

( ∫ ξ
x q

2(ζ,t)dζ
)

Λ(z)dξ. (2.16)

Since q2 > 0, the domains (in the complex z-plane), where the exponential factors in (2.15) are
bounded, are determined by the signs of Reλj(z)− Reλl(z), 1 ≤ j 6= l ≤ 3.

2.2.2 A new spectral parameter

As in the case of the Degasperis–Procesi equation (see [10, 20] and also [15]) it is convenient to
introduce a new spectral parameter k such that

z2(k) =
1

3
√

3

(
k3 +

1

k3

)
. (2.17)

We thus have

λj = λj(z(k)) =
1√
3

(
ωjk +

1

ωjk

)
, where ω = e

2iπ
3 . (2.18)

In what follows, we will work in the complex k-plane only. So, by a slight abuse of notation,
we will write λj(k) for λj(z(k)), and similarly for other functions of z(k), e.g., M(x, t; k) for
M(x, t; z(k)) and Λ(k) for Λ(z(k)).

The λj ’s are the same, as functions of k, as in the case of the DP equation, see [10]. Thus,
the contour Σ = {k | Reλj(k) = Reλl(k) for some j 6= l} is also the same; it consists of six rays

lν = R+e
iπ
3

(ν−1) = R+κν , ν = 1, . . . , 6

dividing the k-plane into six sectors

Ων =
{
k
∣∣∣ π

3
(ν − 1) < arg k <

π

3
ν
}
, ν = 1, . . . , 6.
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Figure 2. Rays lν , domains Ων , and points κν , κl in the k-plane.

In order that (2.16) have a (matrix-valued) solution that is analytic, as a function of k ∈
C \ Σ, the initial points of integration ∞jl are specified as follows for each matrix entry (j, l),
1 ≤ j, l ≤ 3:

∞j,l =

{
+∞, if Reλj(k) ≥ Reλl(k),

−∞, if Reλj(k) < Reλl(k).
(2.19)

This means that we consider the system of scalar Fredholm integral equations, 1 ≤ j, l ≤ 3,

Mjl(x, t; k) = Ijl +

∫ x

∞j,l

e−λj(k)
∫ ξ
x q

2(ζ,t)dζ [(ÛM)jl(ξ, t; k)]eλl(k)
∫ ξ
x q

2(ζ,t)dζdξ, (2.20)

where k ∈ C and I denotes the 3× 3 identity matrix.

Remark 2.4. In spite of the fact that some of the coefficients in (2.7) seemingly depend on the
first order of z (for instance, the coefficient 1

zP
−1(z)Ṽ (2)P (z)), which, as a function of k, is not

rational, direct calculations show that Û in (2.20) as well as V̂ depends on k rationally, through
the λj = λj(k)’s, see (2.8) and (2.18).

Proposition 2.5 (analyticity). Let M(x, t; k) be the (unique) solution of the system of integral
equations (2.20), where the limits of integration ∞j,l are chosen according to (2.19). Then

(i) M is piecewise meromorphic with respect to Σ, as function of the spectral parameter k;

(ii) M(x, t; k)→ I as k →∞, where I is the 3× 3 identity matrix;

(iii) for k ∈ C \ Σ, M is bounded as x→ −∞ and M → I as x→ +∞;

(iv) detM ≡ 1.

Proof. The proof follows the same lines as in [1]. Notice that in order to have (ii), it is important
that the diagonal part of Û vanish as k → ∞. Notice also that (iv) follows from the fact that
the coefficient matrices in (2.7) are traceless and from (ii). �

Proposition 2.6 (symmetries). The solution M(x, t; k) of (2.20) satisfies the symmetry rela-
tions:
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(S1) Γ1M(x, t; k̄)Γ1 = M(x, t; k), where Γ1 =
(

0 1 0
1 0 0
0 0 1

)
;

(S2) Γ2M(x, t; k̄ω2)Γ2 = M(x, t; k), where Γ2 =
(

0 0 1
0 1 0
1 0 0

)
;

(S3) Γ3M(x, t; k̄ω)Γ3 = M(x, t; k), where Γ3 =
(

1 0 0
0 0 1
0 1 0

)
;

(S4) M(x, t; 1
k ) = M(x, t; k̄).

Proof. Indeed, the diagonal entries of the matrix Λ(k) = diag(λj(k)) satisfy the following
relations:

λ1(k̄) = λ2(k), λ3(k̄) = λ3(k),

λ2(k̄ω) = λ3(k), λ1(k̄ω) = λ1(k),

λ1(k̄ω2) = λ3(k), λ2(k̄ω2) = λ2(k), λj(1/k) = λj(k̄), j = 1, 2, 3. �

Remark 2.7. From (S1)–(S3) it follows that the values of M at k and at ωk are related by

M(x, t; kω) = C−1M(x, t; k)C, where C =

0 0 1
1 0 0
0 1 0

 .

If λj(k) = λl(k), j 6= l for some value of the spectral parameter k, then P at this value becomes
degenerate (see (2.6d)), which in turn leads to a singularity for Û and, consequently, for Φ̂ andM .

These particular values of the spectral parameter are κν = e
iπ
3

(ν−1), ν = 1, . . . , 6. Taking into
account the symmetries described in Proposition 2.6 leads to the following proposition.

Proposition 2.8 (singularities at κν). The limiting values of M(x, t; k) as k approaches one

of the points κν = e
iπ
3

(ν−1), ν = 1, . . . , 6 have pole singularities with leading terms of a specific
matrix structure.

(i) As k → κ1 = 1,

M(x, t; k) =
1

k − 1

 1 1 1
−1 −1 −1
0 0 0

α(x, t) 0 0
0 α(x, t) 0
0 0 β(x, t)


+ M̃ + O(k − 1), (2.21a)

M−1(x, t; k) =
1

k − 1

 1 1 1
−1 −1 −1
0 0 0

α1(x, t) 0 0
0 α1(x, t) 0
0 0 β1(x, t)


+ M̃ (1) + O(k − 1), (2.21b)

where α = −α, β = −β, α1 = −α1, β1 = −β1. Moreover, (α, β) 6= (0, 0) iff (α1, β1) 6=
(0, 0) and in this case, the entries of M̃(x, t) and M̃ (1)(x, t) satisfy the relations

M̃31 = M̃32, M̃11 + M̃21 = M̃12 + M̃22, (2.22a)

M̃
(1)
31 = M̃

(1)
32 , M̃

(1)
11 + M̃

(1)
21 = M̃

(1)
12 + M̃

(1)
22 . (2.22b)

(ii) As k → κ2 = e
iπ
3 , properties (2.21) hold with k−1 replaced by k−e

iπ
3 . Relations (2.22) also

hold provided we replace the indices 1, 2, 3 of the matrix entries by 2, 3, 1, respectively.

(iii) M and M−1 have similar leading terms at the other polar singularities κ3, . . . ,κ6 in ac-
cordance with the symmetry conditions stated in Proposition 2.6.



12 A. Boutet de Monvel, D. Shepelsky and L. Zielinski

Proof. (i-1) Let M̌ := P (k)M(x, t; k)P−1(k). By (2.20) this function satisfies the integral
equation

M̌(x, t; k) = I

+

∫ x

(±)∞
P (k)e−Λ(k)

∫ ξ
x q

2(ζ,t)dζP−1(k)[(Ũ (1)M̌)(ξ, t; k)]P (k)eΛ(k)
∫ ξ
x q

2(ζ,t)dζP−1(k)dξ.

We first show that, in spite of the singularity of P−1(k) at k = 1, M̌ is regular at this point.

It suffices to show that P (k)e±Λ(k)
∫ ξ
x q

2(ζ,t)dζP−1(k) is non-singular at k = 1. As k → 1,

λ1(k) = − 1√
3

(
1− i
√

3(k − 1)
)

+ O
(
(k − 1)2

)
and

λ2(k) = − 1√
3

(
1 + i
√

3(k − 1)
)

+ O
(
(k − 1)2

)
,

hence (3λ2
1(k)− 1)−1 = c/(k− 1) + O(1) and (3λ2

2(k)− 1)−1 = −c/(k− 1) + O(1) with c = i
2
√

3
,

whereas λ3(1) = 2/
√

3 and (3λ2
3(1)− 1)−1 = 1/3. Thus, according to (2.6d) we find that

P−1(k) =
c

k − 1

 a1 a2 a3

−a1 −a2 −a3

0 0 0

+ O(1) as k → 1

with a1 = 1, a2 = −
√

2/ 4
√

3, and a3 = −1/
√

3. On the other hand, since λ1(1) = λ2(1)
the first two columns of P (1) are equal (see (2.6c)) and the first two diagonal entries of the

diagonal matrix e±Λ(1)
∫ ξ
x q

2(ζ,t)dζ are the same. Then, the first two columns of the product

P (1)e±Λ(1)
∫ ξ
x q

2(ζ,t)dζ are the same, and P (k)e±Λ(k)
∫ ξ
x q

2(ζ,t)dζP−1(k) is regular at k = 1 since its
polar part vanishes:

c

k − 1
P (1)e±Λ(1)

∫ ξ
x q

2(ζ,t)dζ

 a1 a2 a3

−a1 −a2 −a3

0 0 0

 ≡ 0.

Thus, M̌ is also regular at k = 1.
Since M(x, t; k) = P−1(k)M̌(x, t; k)P (k) where the last two factors are regular at k = 1, the

leading term of M at k = 1 is

1

k − 1

 1 1 1
−1 −1 −1
0 0 0

ca1 0 0
0 ca2 0
0 0 ca3

 M̌(x, t; 1)P (1).

The first two columns of P (1) being equal, it is the same for the product R(x, t) of the last three
factors. For multiplication by the first factor we can replace R by the diagonal matrix whose
diagonal entries are the sums R1j + R2j + R3j . Thus we arrive at (2.21a) with some α(x, t)
and β(x, t). The relations α = −ᾱ and β = −β̄ come from the symmetry (S1) stated in
Proposition 2.6.

(i-2) Similarly, M̌−1 = PM−1P−1 also satisfies an integral equation with non-singular
coefficients:

M̌−1(x, t; k) = I

−
∫ x

(±)∞
P (k)e−Λ(k)

∫ ξ
x q

2(ζ,t)dζP−1(k)[
(
M̌−1Ũ (1)

)
(ξ, t; k)]P (k)eΛ(k)

∫ ξ
x q

2(ζ,t)dζP−1(k)dξ,

which gives (2.21b).
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(i-3) Using the fact that detM ≡ 1, we calculate M−1 starting from (2.21a), then, comparing
the result with (2.21b) we get different expressions of α1 and β1 as linear combinations of α
and β. Thus, α = β = 0 implies α1 = β1 = 0. Moreover, by comparison of these different
expressions of α1 and β1 we get the relations (2.22a) for M̃ provided α or β is 6= 0. Similarly,
starting from M̃−1 instead of M̃ we get the relations (2.22b) for M̃ (1) provided α1 or β1 is 6= 0.

(ii)–(iii) Similar arguments apply at k = κ2, . . . ,κ6. �

3 How the solution u(x, t) can be recovered from eigenfunctions

Starting from a solution u(x, t) of the Novikov equation we have introduced

(a) a 3 × 3 matrix-valued function M(x, t; k), solution of the system of integral equations
(2.20),

(b) a new variable y(x, t) defined by (2.12).

In this section, introducing M̂(y, t; k) := M(x(y, t), t; k) through (a) and (b), we will show that

u(x, t) can be recovered in terms of M̂(y, t; k) evaluated at k = e
iπ
6 .

3.1 A Lax pair appropriate for small z

Coming back to the original Lax pair (2.2), let us introduce another Lax pair, whose solutions

are well-controlled at k = κl := e
iπ
6

+
iπ(l−1)

3 , l = 1, . . . , 6; here {κl}6l=1 are characterized by the
property z(κl) = 0. Define Φ̃(0) ≡ Φ̃(0)(x, t; k) (for k 6= κ1, . . . , κ6) by

Φ̃(0) = P−1(k)Φ.

This reduces the Lax pair (2.2) to the new one

Φ̃(0)
x − Λ(k)Φ̃(0) = Ũ (0)Φ̃(0), (3.1a)

Φ̃
(0)
t −A(k)Φ̃(0) = Ṽ (0)Φ̃(0), (3.1b)

where

Ũ (0)(x, t; k) = P−1(k) (U(x, t; k)− U∞(k))P (k)

= z2(k)m(x, t)


2λ1(k)

(3λ21(k)−1)λ1(k)
λ1(k)+λ2(k)

(3λ21(k)−1)λ1(k)
λ1(k)+λ3(k)

(3λ21(k)−1)λ1(k)

λ2(k)+λ1(k)
(3λ22(k)−1)λ2(k)

2λ2(k)
(3λ22(k)−1)λ2(k)

λ2(k)+λ3(k)
(3λ22(k)−1)λ2(k)

λ3(k)+λ1(k)
(3λ23(k)−1)λ3(k)

λ3(k)+λ2(k)
(3λ23(k)−1)λ3(k)

2λ3(k)
(3λ23(k)−1)λ3(k)

 , (3.1c)

Ṽ (0)(x, t; k) = P−1(k) (V (x, t; k)− V∞(k))P (k)

= P−1(k)


−(u+ 1)ux

ux
z(k) − (u2 + 2u)m̂z(k) u2

x

u
z(k) 0 − ux

z(k) − (u2 + 2u)m̂z(k)

−u2 − 2u u
z(k) (u+ 1)ux

P (k). (3.1d)

Remark 3.1. Notice that Ũ (0)(x, t; k) has a finite limit at k = κl, l = 1, . . . , 6. Indeed,

λj(κl) = 0 for one, and only one, value of j = 1, 2 or 3. For example, for k = κ1 = e
iπ
6 we have

λ2(κ1) = 0 whereas λ1(κ1) = −1 and λ3(κ1) = 1. Moreover, limk→κ1
z2(k)
λ2(k) = λ1(κ1)λ3(κ1) = −1

and thus

lim
k→κ1

Ũ (0)(x, t; k) = m(x, t)

 0 0 0
−1 0 1
0 0 0

 6≡ 0.

Similarly if k → κl, l = 2, . . . , 6.
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We emphasize that this is different from the case of the DP equation, where, on the contrary,
the equality Ũ (0)(x, t;κ1) = 0 holds for all x and t.

3.2 Eigenfunctions

3.2.1 Eigenfunctions appropriate for small z

We introduce M (0) ≡M (0)(x, t; k) by

M (0) = Φ̃(0)e−xΛ−tA,

and determine M (0) as the solution of a system of integral equations similar to the system (2.20)
determining M :

M
(0)
jl (x, t; k) = Ijl +

∫ x

∞j,l

e−λj(k)(ξ−x)[(Ũ (0)M (0))jl(ξ, t; k)]eλl(k)(ξ−x)dξ. (3.2)

In the case of the DP equation, M (0)(x, t; z(k))
∣∣
z=0
≡ I. For the Novikov equation, this is not

true; but, since Ũ (0)(ξ, t;κ1)∆Ũ (0)(x, t;κ1) ≡ 0 for any ξ and x, and any diagonal matrix ∆, the

solution of (3.2) for k = κ1 = e
iπ
6 can be written explicitly:

M
(0)
jl (x, t;κ1) = I +

∫ x

∞jl

e−λj(κ1)(ξ−x)Ũ
(0)
jl (ξ, t;κ1)eλl(κ1)(ξ−x)dξ ≡ Ijl + Ljl(x, t),

where

L(x, t) =

 0 0 0∫∞
x m(ξ, t)ex−ξdξ 0

∫ x
−∞m(ξ, t)eξ−xdξ

0 0 0

 .

Similarly for k = κ2, . . . , κ6. Using that m = u − uxx, we see that the non-zero entries L21

and L23 reduce to

L21 = u+ ux, L23 = u− ux,

and thus M (0)
(
x, t; e

iπ
6

)
can be explicitly expressed in terms of u(x, t):

M (0)
(
x, t; e

iπ
6
)

=

 1 0 0
u+ ux 1 u− ux

0 0 1

 (x, t). (3.3)

3.2.2 Comparison of eigenfunctions

We will get the value of M at k = e
iπ
6 from that of M (0) by using that M and M (0) are related.

We indeed have

M = P−1D−1Φe−yΛ−tA, M (0) = P−1Φ(0)e−xΛ−tA,

where Φ and Φ(0) are solutions of the same system of linear differential equations (2.2). They
are then related by Φ = Φ(0)C where C ≡ C(k) is independent of (x, t). Thus, M and M (0) are
related by

M(x, t; k) = P−1(k)D−1(x, t)P (k)M (0)(x, t; k)exΛ(k)+tA(k)C(k)e−y(x,t)Λ(k)−tA(k).
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Now, since for k 6∈ Σ, M (0) and M are bounded as x→ −∞ and have the same limit as x→ +∞:

M, M (0) −−−−→
x→+∞

I,

it follows that C(k) ≡ I. Finally, we get

M(x, t; k) = P−1(k)D−1(x, t)P (k)M (0)(x, t; k)e(x−y(x,t))Λ(k),

where y is as in (2.12):

y(x, t) = x−
∫ ∞
x

(
q2(ξ, t)− 1

)
dξ.

In particular, at k = κ1 ≡ e
iπ
6 we have

P−1(k)D−1(x, t)P (k)
∣∣
k=e

iπ
6

=

 q−1+q
2 0 q−1−q

2
1− q−1 1 1− q−1

q−1−q
2 0 q−1+q

2


and thus, using (3.3),

M
(
x, t; e

iπ
6
)

=

 q−1+q
2 ey−x 0 q−1−q

2 ex−y

(1− q−1 + u+ ux)ey−x 1 (1− q−1 + u− ux)ex−y

q−1−q
2 ey−x 0 q−1+q

2 ex−y

 . (3.4)

3.3 Recovering u(x, t) from eigenfunctions

Proposition 3.2. Let u(x, t) be the solution of the Cauchy problem (1.9) for the Novikov equa-
tion. Let M̂(y, t; k) := M(x(y, t), t; k) where M(x, t; k) is the solution of the system (2.20) and
y(x, t) is defined by (2.12), both built on u(x, t).

Then we can recover u(x, t) from values of the eigenfunctions M̂jl(y, t; k) at k = e
iπ
6 . We

indeed have the following parametric representation:

u(x, t) = û(y(x, t), t), (3.5a)

where x(y, t) and û(y, t) are given by

x(y, t) = y +
1

2
ln
M̂33

(
y, t; e

iπ
6

)
M̂11

(
y, t; e

iπ
6

) , (3.5b)

û(y, t) =
1

2
N̂1(y, t)

(
M̂33

(
y, t; e

iπ
6

)
M̂11(y, t; e

iπ
6 )

)1/2

+
1

2
N̂3(y, t)

(
M̂33

(
y, t; e

iπ
6

)
M̂11

(
y, t; e

iπ
6

))−1/2

− 1, (3.5c)

where

N̂k(y, t) :=
3∑
j=1

M̂jk

(
y, t; e

iπ
6
)
, k = 1, 2, 3. (3.5d)

Proof. (3.5b) follows from (3.4) and from the definition (2.12) of y(x, t). Further, multiplying
(3.4) by the row vector (1 1 1) from the left and introducing

N(x, t) ≡
(
N1(x, t) N2(x, t) N3(x, t)

)
:=
(
1 1 1

)
M
(
x, t; e

iπ
6
)
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we have

N1(x, t) = (1 + u(x, t) + ux(x, t))ey−x,

N2(x, t) = 1,

N3(x, t) = (1 + u(x, t)− ux(x, t))ex−y

and thus u(x, t) can be obtained in terms of N(x, t) as follows:

u(x, t) =
1

2
N1(x, t)ex−y +

1

2
N3(x, t)ey−x − 1. (3.6)

Now notice that (3.5b) reads

e2(x−y) =
M̂33

(
y, t; e

iπ
6

)
M̂11

(
y, t; e

iπ
6

) . (3.7)

Finally, introducing N̂k as in (3.5d), using (3.7), and writing (3.6) in the variables (y, t) (so that
N(x, t) = N̂(y, t)), we arrive at (3.5c). �

Remark 3.3. From (2.12) and (2.10), another expression for û(y, t) follows:

(û(y, t) + 1)2 = ∂t x(y, t) + 1. (3.8)

Notice that the analogous expression in the case of the DP equation looks differently [10]:

ûDP(y, t) = ∂t x(y, t) + 1.

Remark 3.4. The structure of (3.5) coincides with that for the multisoliton solution in [36]
(see formulas (3.3a) and (3.3b) in [36]), taking into account the relationship between solutions
of the Novikov equation (1.1) on a non-zero constant background and solutions of (1.9a) on the
zero background, presented in the Introduction.

4 Riemann–Hilbert problem

In Section 3 we have shown how we can express the solution u of the Cauchy problem for the
Novikov equation by evaluating certain eigenfunctions – solutions of the Lax pair equations.
Notice they were defined using the solution u itself.

In the framework of the Riemann–Hilbert approach to the Cauchy problem for an integrable
nonlinear equation, one is looking for obtaining these eigenfunctions in terms of the solution
of an appropriate factorization problem, of Riemann–Hilbert type. The factorization problem
is formulated in the complex plane of a spectral parameter k whereas x and t play the role of
parameters, and the data for this problem are uniquely determined, in spectral terms, by the
initial data for the Cauchy problem.

4.1 RH problem satisfied by M̂

Let M(x, t; k) be as in Section 3, solution of the system of integral equations (2.20). The key
observation is that the limiting values M±(x, t; k) (on lν) of M(x, t; k′) as k′ → k from the
positive or negative side of lν , ν = 1, . . . , 6 are related as follows:

M+(x, t; k) = M−(x, t; k)eQ(x,t;k)S0(k)e−Q(x,t;k), k ∈ lν . (4.1)
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We indeed have M± = Φ̂±e−Q where Φ̂± are two solutions of the system of ordinary differential
equations (2.7). They are then related by Φ̂+ = Φ̂−S0 where S0 is a matrix independent of (x, t).
Considering (4.1) at t = 0 we see that S0(k) is completely determined by u(x, 0), i.e., by the
initial data for the Cauchy problem (1.9), via the solution M(x, 0; k) of the system (2.20) whose
coefficients are determined by u(x, 0):

S0(k) = e−Q(x,0;k)M−1
− (x, 0; k)M+(0, 0; k)eQ(x,0;k)

(recall that Q(x, 0; k) =
(
x−

∫∞
x (q2(ξ, 0)− 1)dξ

)
Λ(k) and thus Q(x, 0; k) is also determined

by u(x, 0)).
Moreover, S0(k) has a special matrix structure: for k ∈ l1 ∪ l4 ≡ R,

S0(k) =

 1 0 0
−r(k) 1 0

0 0 1

1 r(k) 0
0 1 0
0 0 1

 , (4.2)

where r(k) ∈ L∞(R) and r(k) = O(k−1) as k → ±∞ (this structure follows from the analysis
of the behavior of M±(x, 0; k) as x → ±∞; for the details, see [10, Section 3.1]), whereas the
expression of S0(k) for the other parts of Σ follows from the symmetries stated in Proposition 2.6.
Thus the jump matrices on all parts of the contour are determined in terms of a single scalar
function, the reflection coefficient r(k).

On the other hand, in order to have explicit exponentials in the r.h.s. of (4.1), one replaces
the pair of parameters (x, t) by (y, t), where y = y(x, t) was introduced in (2.12), see also (2.11).
Following this observation, (4.1) can be rewritten as

M̂+(y, t; k) = M̂−(y, t; k)eyΛ(k)+tA(k)S0(k)e−yΛ(k)−tA(k), k ∈ Σ (4.3)

where Σ = l1 ∪ · · · ∪ l6 and

M(x, t; k) = M̂(y(x, t), t; k). (4.4)

Now (4.3) says that M̂ – as in (4.4) – is solution of a factorization problem:

Factorization problem. Given S0(k), k ∈ Σ, find a piece-wise (w.r.t. Σ) meromorphic (in k),
3 × 3 matrix-valued function M̂(y, t; k) (y and t are parameters), whose limiting values satisfy
the jump condition (4.3).

This condition, being supplemented by conditions at possible poles of M̂(y, t; k), by a normali-
zation condition, and by certain structural conditions, will constitute the RH problem satisfied
by M̂ .

Additional conditions. The dependence on k of the eigenvalues λj(k) in (2.20) is exactly the
same as in the case of the DP equation, which implies that most conditions involved in the RH
problem for the Novikov equation have exactly the same form as for the Degasperis–Procesi
equation, cf. [10].

1. For the residue conditions at poles (if any) kn ∈ C\Σ of M̂(y, t; k), see [10, Section 3.2] and
[11, Section 2.3.5]. Recall the following result ([1]): Generically, there are at most a finite
number of poles kn lying in C \ Σ, each of them being simple, with residue conditions of
a special matrix form. In particular,

Resk=kn M̂(y, t; k) = lim
k→kn

M̂(y, t; k)eyΛ(k)+tA(k)vne−yΛ(k)−tA(k),

where vn is some constant 3×3 matrix with only one non-zero entry at a position depending
on the sector of C \ Σ to which kn belongs.
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2. The normalization condition M̂(y, t;∞) = I is Proposition 2.5(ii).

3. The structural conditions on the polar parts of M̂ at κ1, . . . ,κ6 have exactly the same
form as for the DP equation, cf. [10].

4. On the other hand, the structural conditions at k = κ1, . . . , κ6, see (3.3) and (3.4), are
different from those for the DP equation (cf. (3.12) and (3.13b) in [10]).

Summarizing, we get that the eigenfunctions M̂(y, t; k) – defined as in Section 3 – satisfy the
following Riemann–Hilbert problem:

Main RH problem (for the Novikov equation). Given r(k) ∈ L∞(R) such that r(k) = O(k−1)
as k → ±∞ and {kn, vn}Nn=1, find a piece-wise (w.r.t. Σ = l1 ∪ · · · ∪ l6) meromorphic (in the
complex k-plane), 3× 3 matrix-valued function M̂(y, t; k) satisfying the following conditions:

(1) Jump conditions:

M̂+(y, t; k) = M̂−(y, t; k)S(y, t; k), k ∈ Σ \ {κ1, . . . ,κ6},

where κν := e
iπ
3

(ν−1) and

S(y, t; k) = eyΛ(k)+tA(k)S0(k)e−yΛ(k)−tA(k),

where S0(k) is given in terms of r(k) by (4.2) for k ∈ l1 ∪ l4 and then by the respective
symmetries for the other parts of Σ. Here Λ(k) and A(k) are diagonal 3 × 3 matrices
with diagonal entries λi(k) and Ai(k), respectively, see (2.6a) and (2.6b), where we have
performed the change of parameter z = z(k), see (2.17) and (2.18).

(2) Residue conditions (generic): For some kn ∈ C \ Σ, n = 1, . . . , N ,

Resk=kn M̂(y, t; k) = lim
k→kn

M̂(y, t; k)eyΛ(k)+tA(k)vne−yΛ(k)−tA(k), (4.5)

where vn is some constant 3 × 3 matrix with only one non-zero entry, whose position
depends on the sector of C \ Σ containing kn (dictated by the order of Reλj(k) in the
sector, see [1]). For example, if kn ∈ Ω1, the non-zero entry of vn can be either (vn)12

or (vn)23. Then the positions (as well as the values) of the non-zero entries of vn in the
other sectors of C \ Σ are determined by the symmetries (S1)–(S3) from Proposition 2.6.

(3) Normalization condition:

M̂(y, t; k) = I + o(1) as k →∞.

(4) Boundedness condition: M̂(y, t; k) and M̂−1(y, t; k) are bounded in the closure of each
component of C \ Σ apart from vicinities of k1, . . . , kN and κ1, . . . ,κ6.

(5) Structural conditions at k = κ1, . . . ,κ6, where κν := e
iπ
3

(ν−1):

i) The singular behavior of M̂ and M̂−1 at k = κ1 = 1 is described by the structural
conditions (2.21), (2.22) (where α, β, α1, β1, . . . are not specified).

ii) At k = κ2, . . . ,κ6 we have similar structural conditions on the singularities of M̂
and M̂−1 (see Proposition 2.8, (ii)–(iii)).

(6) Structural conditions at k = κ1, . . . , κ6, where κl := e
iπ
6

+ iπ
3

(l−1):
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i) For k = κ1 = e
iπ
6 ,

M̂
(
y, t; e

iπ
6
)

=

 q̂−1+q̂
2 0 q̂−1−q̂

2
p1 1 p2

q̂−1−q̂
2 0 q̂−1+q̂

2


f 0 0

0 1 0
0 0 f−1

 (4.6)

with some (unspecified) q̂(y, t) > 0, f(y, t) > 0, p1(y, t) ∈ R and p2(y, t) ∈ R
(see (3.4)).

ii) For k = κ2, . . . , κ6, the corresponding structure of M̂(y, t;κl) follows from (4.6) taking
into account the symmetries of Proposition 2.6.

Now we observe that this RH problem can be defined using the initial data of the Cauchy
problem.

Properties (of the main RH problem). Let u0(x) be given satisfying the assumptions made for
the Cauchy problem (1.9).

i) u0(x) defines the main RH problem as follows.

ia) We first define the jump matrix S0(k) by

S0(k) = e−Q(0,0;k)M−1
− (0, 0; k)M+(0, 0; k)eQ(0,0;k),

where M(x, 0; k) and Q(x, 0; k) can be completely determined by u0(x). Notice that
S0(k) has necessarily the structure (4.2) with some r(k).

ib) The kn’s in C \ Σ and the vn’s in (4.5) are determined by u0(x).

ii) This RH problem has a solution.

iii) The solution is unique.

Proof. ia) The expression giving S0(k) derives from (4.1). Further, M(x, 0; k) is the solution
of the system of integral equations (2.20) written for t = 0, and this system is completely
determined by u0(x) through m̂0(x) := u0(x) − u′′0(x) + 1. By (2.4) we indeed have q2(x, 0) =

m̂
2/3
0 (x), and in the definition of Û(x, 0; k) (see (2.7c) and (2.5b)) the term m̂(x, 0) is also m̂0(x).

Similarly for Q(x, 0; k) = y(x, 0)Λ(k) where y(x, 0) is determined by q2(x, 0).
ib) The kn’s are determined by M(x, 0; k) and vn is determined by (4.5) considered at t = 0,

hence also by u0(x).
ii) Under the assumptions made on u0 there exists a solution u(x, t) of the Cauchy prob-

lem (1.9). The main RH problem has then as solution the associated eigenfunction M̂(y, t; k).
iii) The normalization condition supplemented by the structural conditions (4.6) and (2.21),

(2.22) provides uniqueness of the solution (see [6, Proposition 3.2]). �

4.2 Main theorem

Starting directly from the main RH problem we show how its solution gives a representation of
the solution of the Cauchy problem for the Novikov equation.

Theorem 4.1. Let u0(x) satisfy assumptions made for the Cauchy problem (1.9) for the Novikov
equation. Let M̂(y, t; k) be the solution of the associated main RH problem (1)–(6). By eval-

uating M̂ at k = e
iπ
6 we get the parametric representation (3.5) for the solution u(x, t) of the

Cauchy problem (1.9):

u(x, t) = û(y(x, t), t),
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where x(y, t) and û(y, t) are given by

x(y, t) = y +
1

2
ln
M̂33

(
y, t; e

iπ
6

)
M̂11

(
y, t; e

iπ
6

) ,
û(y, t) =

1

2
N̂1(y, t)

(
M̂33

(
y, t; e

iπ
6

)
M̂11

(
y, t; e

iπ
6

))1/2

+
1

2
N̂3(y, t)

(
M̂33

(
y, t; e

iπ
6

)
M̂11

(
y, t; e

iπ
6

))−1/2

− 1,

with N̂k(y, t) :=
3∑
j=1

M̂jk

(
y, t; e

iπ
6

)
, k = 1, 3.

Remark 4.2. The solution of the DP equation is extracted from the solution of the associated
RH problem in a different way (see [10, equation (3.15)]).

4.3 Applications

The representation (3.5) of the solution of the Cauchy problem (1.9) for the Novikov equa-
tion (1.9a) in terms of the solution of the associated main RH problem (1)–(6) (given in
Theorem 4.1) can be used in principle, as for other integrable peakon equations (see, e.g.,
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]), to construct soliton-type solutions and also to analyse the long
time behavior of the solution.

4.3.1 Soliton-type solutions

In the case r(k) ≡ 0, solving the RH problem reduces to solving a system of linear algebraic
equations associated with the residue conditions. Following this way, one can describe not only
smooth classical solutions, but also singular and/or multivalued solutions associated with breaks
of bijectivity in the change of variables x 7→ y (see, e.g., [11, 12]).

4.3.2 Long-time asymptotics

Noticing that the form and the k-dependence of the jump matrix, see (4.3) and (4.2), are the
same as in the case of the DP equation, a reasonable conjecture is that the long-time analysis
for the Novikov equation can be done following the same steps as for the DP equation [10], by
adapting the nonlinear steepest descent method by Deift and Zhou [24].

But there is a problem that prevents from transferring the long-time analysis literally from
the case of the DP equation to the Novikov equation. Indeed, in [4, 10] the long-time analysis was
actually done for a matrix RH problem regular at the points κ1, . . . ,κ6 whereas the original RH
problem, as in the case of the Novikov equation, was singular at these points. This discrepancy
disappeared in [4, 10] after left multiplying by the row vector (1 1 1) and thus passing from
the matrix to a (regular) row vector RH problem and exploiting the uniqueness of the solution of
the latter problem. In turn, the solution of the row vector RH problem evaluated at κ1, . . . , κ6,

and particularly, at k = κ1 = e
iπ
6 , gave, in a simple way, the quantity ex(y,t)−y, from which it

was straightforward to deduce a parametric representation for u(x, t), see (3.5).

Notice that a similar situation takes place for other Camassa–Holm-type equations including
the Camassa–Holm equation itself, see [5, 8]. On the contrary, in the case of the Novikov
equation, the situation is different. Indeed, the solution of the similar row vector RH problem

cannot be directly used to recover ex(y,t)−y since, being evaluated at k = e
iπ
6 , it has the form(

(1 + u+ ux)ey−x 1 (1 + u− ux)ex−y
)
,
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left multiplying (3.4) by the row vector (1 1 1). This issue has forced us to use instead
the solution of the matrix RH problem (3.4) in (3.5). But now there is an (open) problem of
relating the solution of the original (singular) problem to the solution of the limiting (as t→∞)
regular RH problem. In [4, 10], it was the latter problem that was used for obtaining the main
asymptotic term of u(x, t) in an explicit form, with parameters determined by the initial data
in terms of the associated reflection coefficient.

4.3.3 Initial boundary value problem

Eigenfunctions associated with the Lax pair equations (2.13) and (3.1) via integral Fredholm
equations of type (2.14) with an appropriate choice of (x∗, t∗) allows formulating a RH problem
suitable for analyzing initial boundary value (or half-line) problems following the procedure
presented in [4] in the case of the DP equation.
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