Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 12 (2016), 041, 16 pages      arXiv:1510.09028
Contribution to the Special Issue on Analytical Mechanics and Differential Geometry in honour of Sergio Benenti

Are Orthogonal Separable Coordinates Really Classified?

Konrad Schöbel
Mathematisches Institut, Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, 07737 Jena, Germany

Received October 30, 2015, in final form March 15, 2016; Published online April 26, 2016

We prove that the set of orthogonal separable coordinates on an arbitrary (pseudo-)Riemannian manifold carries a natural structure of a projective variety, equipped with an action of the isometry group. This leads us to propose a new, algebraic geometric approach to the classification of orthogonal separable coordinates by studying the structure of this variety. We give an example where this approach reveals unexpected structure in the well known classification and pose a number of problems arising naturally in this context.

Key words: separation of variables; Stäckel systems; Deligne-Mumford moduli spaces; Stasheff polytopes; operads.

pdf (1126 kb)   tex (714 kb)


  1. Benenti S., Orthogonal separable dynamical systems, in Differential Geometry and its Applications (Opava, 1992), Math. Publ., Vol. 1, Editors O. Kowalsky, D. Krupka, Silesian University Opava, Opava, 1993, 163-184.
  2. Borel A., Linear algebraic groups, Graduate Texts in Mathematics, Vol. 126, Springer, New York, 1991.
  3. Boyer C.P., Kalnins E.G., Winternitz P., Separation of variables for the Hamilton-Jacobi equation on complex projective spaces, SIAM J. Math. Anal. 16 (1985), 93-109.
  4. Davis M., Januszkiewicz T., Scott R., Nonpositive curvature of blow-ups, Selecta Math. (N.S.) 4 (1998), 491-547.
  5. Deligne P., Mumford D., The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75-109.
  6. Devadoss S.L., Tessellations of moduli spaces and the mosaic operad, in Homotopy Invariant Algebraic Structures (Baltimore, MD, 1998), Contemp. Math., Vol. 239, Amer. Math. Soc., Providence, RI, 1999, 91-114, math.AG/9807010.
  7. Devadoss S.L., Read R.C., Cellular structures determined by polygons and trees, Ann. Comb. 5 (2001), 71-98, math.CO/0008145.
  8. Eisenhart L.P., Separable systems of Stäckel, Ann. of Math. 35 (1934), 284-305.
  9. Harris J., Algebraic geometry, Graduate Texts in Mathematics, Vol. 133, Springer-Verlag, New York, 1992.
  10. Harris J., Morrison I., Moduli of curves, Graduate Texts in Mathematics, Vol. 187, Springer-Verlag, New York, 1998.
  11. Horwood J.T., McLenaghan R.G., Smirnov R.G., Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space, Comm. Math. Phys. 259 (2005), 670-709, math-ph/0605023.
  12. Izmest'ev A.A., Pogosyan G.S., Sissakian A.N., Winternitz P., Contractions of Lie algebras and separation of variables. The $n$-dimensional sphere, J. Math. Phys. 40 (1999), 1549-1573.
  13. Kalnins E.G., Separation of variables for Riemannian spaces of constant curvature, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 28, Longman Scientific & Technical, Harlow, John Wiley & Sons, Inc., New York, 1986.
  14. Kalnins E.G., Miller Jr. W., Conformal Killing tensors and variable separation for Hamilton-Jacobi equations, SIAM J. Math. Anal. 14 (1983), 126-137.
  15. Kalnins E.G., Miller Jr. W., Separation of variables on $n$-dimensional Riemannian manifolds. I. The $n$-sphere $S_n$ and Euclidean $n$-space ${\bf R}^n$, J. Math. Phys. 27 (1986), 1721-1736.
  16. Kalnins E.G., Miller Jr. W., Reid G.J., Separation of variables for complex Riemannian spaces of constant curvature. I. Orthogonal separable coordinates for ${\rm S}_{n{\bf C}}$ and ${\rm E}_{n{\bf C}}$, Proc. Roy. Soc. London Ser. A 394 (1984), 183-206.
  17. Kapranov M.M., The permutoassociahedron, Mac Lane's coherence theorem and asymptotic zones for the KZ equation, J. Pure Appl. Algebra 85 (1993), 119-142.
  18. Knudsen F.F., The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983), 161-199.
  19. Knudsen F.F., The projectivity of the moduli space of stable curves. III. The line bundles on $M_{g,n}$, and a proof of the projectivity of $\overline M_{g,n}$ in characteristic $0$, Math. Scand. 52 (1983), 200-212.
  20. Kress J., Schöbel K., An algebraic geometric classification of superintegrable systems on the Euclidean plane, arXiv:1602.07890.
  21. Müller-Hoissen F., Pallo J.M., Stasheff J. (Editors), Associahedra, Tamari lattices and related structures. Tamari memorial Festschrift, Progress in Mathematical Physics, Vol. 299, Birkhäuser/Springer, Basel, 2012.
  22. Mumford D., Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Vol. 34, Springer-Verlag, Berlin - New York, 1965.
  23. Neumann C., De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur, J. Reine Angew. Math. 56 (1859), 46-63.
  24. Nijenhuis A., $X_{n-1}$-forming sets of eigenvectors, Indag. Math. 54 (1951), 200-212.
  25. Olevskiǐ M.N., Triorthogonal systems in spaces of constant curvature in which the equation $\Delta_2u+\lambda u=0$ allows a complete separation of variables, Mat. Sb. 27 (1950), 379-426.
  26. Robertson H.P., Bemerkung über separierbare Systeme in der Wellenmechanik, Math. Ann. 98 (1928), 749-752.
  27. Schöbel K., Algebraic integrability conditions for Killing tensors on constant sectional curvature manifolds, J. Geom. Phys. 62 (2012), 1013-1037, arXiv:1004.2872.
  28. Schöbel K., The variety of integrable Killing tensors on the 3-sphere, SIGMA 10 (2014), 080, 48 pages, arXiv:1205.6227.
  29. Schöbel K., An algebraic geometric approach to separation of variables, Springer Spektrum, Wiesbaden, 2015.
  30. Schöbel K., Veselov A.P., Separation coordinates, moduli spaces and Stasheff polytopes, Comm. Math. Phys. 337 (2015), 1255-1274, arXiv:1307.6132.
  31. Stäckel P., Die Integration der Hamilton-Jacobischen Differentialgleichung mittelst Separation der Variablen, habilitationsschrift, Universität Halle, 1891.
  32. Stasheff J.D., Homotopy associativity of $H$-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275-292.
  33. Stasheff J.D., Homotopy associativity of $H$-spaces. II, Trans. Amer. Math. Soc. 108 (1963), 293-312.
  34. Vilenkin N.Ja., Special functions and group representation theory, Nauka, Moscow, 1965.
  35. Vilenkin N.Ja., Klimyk A.U., Representation of Lie groups and special functions. Vol. 2. Class I representations, special functions, and integral transforms, Mathematics and its Applications (Soviet Series), Vol. 74, Kluwer Academic Publishers Group, Dordrecht, 1993.
  36. Wolf T., Structural equations for Killing tensors of arbitrary rank, Comput. Phys. Comm. 115 (1998), 316-329.

Previous article  Next article   Contents of Volume 12 (2016)