Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 12 (2016), 023, 18 pages      arXiv:1511.00234
Contribution to the Special Issue on Analytical Mechanics and Differential Geometry in honour of Sergio Benenti

Haantjes Structures for the Jacobi-Calogero Model and the Benenti Systems

Giorgio Tondo a and Piergiulio Tempesta bc
a) Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, piaz.le Europa 1, I-34127 Trieste, Italy
b) Departamento de Física Teórica II, Facultad de Físicas, Universidad Complutense, 28040 - Madrid, Spain
c) Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), C/ Nicolás Cabrera, No 13-15, 28049 Madrid, Spain

Received November 03, 2015, in final form February 22, 2016; Published online March 03, 2016

In the context of the theory of symplectic-Haantjes manifolds, we construct the Haantjes structures of generalized Stäckel systems and, as a particular case, of the quasi-bi-Hamiltonian systems. As an application, we recover the Haantjes manifolds for the rational Calogero model with three particles and for the Benenti systems.

Key words: Haantjes tensor; symplectic-Haantjes manifolds; Stäckel systems; quasi-bi-Hamiltonian systems; Benenti systems.

pdf (463 kb)   tex (25 kb)


  1. Arnold V.I., Kozlov V.V., Neishtadt A.I., Mathematical aspects of classical and celestial mechanics, Springer-Verlag, Berlin, 1997.
  2. Benenti S., Separability structures on Riemannian manifolds, in Differential Geometrical Methods in Mathematical Physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), Lecture Notes in Math., Vol. 836, Springer, Berlin, 1980, 512-538.
  3. Benenti S., Inertia tensors and Stäckel systems in the Euclidean spaces, Rend. Sem. Mat. Univ. Politec. Torino 50 (1992), 315-341.
  4. Benenti S., Orthogonal separable dynamical systems, in Differential Geometry and its Applications (Opava, 1992), Math. Publ., Vol. 1, Silesian Univ. Opava, Opava, 1993, 163-184.
  5. Benenti S., Chanu C., Rastelli G., The super-separability of the three-body inverse-square Calogero system, J. Math. Phys. 41 (2000), 4654-4678.
  6. Benenti S., Chanu C., Rastelli G., Remarks on the connection between the additive separation of the Hamilton-Jacobi equation and the multiplicative separation of the Schrödinger equation. I. The completeness and Robertson conditions, J. Math. Phys. 43 (2002), 5183-5222.
  7. Błaszak M., Multi-Hamiltonian theory of dynamical systems, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1998.
  8. Bogoyavlenskij O.I., Necessary conditions for existence of non-degenerate Hamiltonian structures, Comm. Math. Phys. 182 (1996), 253-289.
  9. Bogoyavlenskij O.I., General algebraic identities for the Nijenhuis and Haantjes tensors, Izv. Math. 68 (2004), 71-84.
  10. Calogero F., Solution of a three-body problem in one dimension, J. Math. Phys. 10 (1969), 2191-2196.
  11. Calogero F., Calogero-Moser system, Scholarpedia 3 (2008), 7216.
  12. Calogero F., Isochronous systems, Oxford University Press, Oxford, 2008.
  13. Falqui G., Magri F., Tondo G., Reduction of bi-Hamiltonian systems and the separation of variables: an example from the Boussinesq hierarchy, Theoret. Math. Phys. 122 (2000), 176-192, solv-int/9906009.
  14. Falqui G., Pedroni M., Separation of variables for bi-Hamiltonian systems, Math. Phys. Anal. Geom. 6 (2003), 139-179, nlin.SI/0204029.
  15. Ferapontov E.V., Marshall D.G., Differential-geometric approach to the integrability of hydrodynamic chains: the Haantjes tensor, Math. Ann. 339 (2007), 61-99, nlin.SI/0505013.
  16. Frölicher A., Nijenhuis A., Theory of vector-valued differential forms. I. Derivations of the graded ring of differential forms, Indag. Math. 59 (1956), 338-359.
  17. Fuhrmann P.A., A polynomial approach to linear algebra, Universitext, Springer-Verlag, New York, 1996.
  18. Haantjes J., On $X_m$-forming sets of eigenvectors, Indag. Math. 58 (1955), 158-162.
  19. Ibort A., Magri F., Marmo G., Bihamiltonian structures and Stäckel separability, J. Geom. Phys. 33 (2000), 210-228.
  20. Jacobi C.G.J., Problema trium corporis mutuis attractionibus cubic distantiarium inverse proportionalibus recta linea se moventium, in Gesammelte Werke, Vol. 4, Chelsea, New York, 1969, 533-539.
  21. Magri F., A simple model of the integrable Hamiltonian equation, J. Math. Phys. 19 (1978), 1156-1162.
  22. Magri F., A geometrical approach to the nonlinear solvable equations, in Nonlinear Evolution Equations and Dynamical Systems (Proc. Meeting, Univ. Lecce, Lecce, 1979), Lecture Notes in Phys., Vol. 120, Springer, Berlin-New York, 1980, 233-263.
  23. Magri F., Lenard chains for classical integrable systems, Theoret. and Math. Phys. 137 (2003), 1716-1722.
  24. Magri F., Recursion operators and Frobenius manifolds, SIGMA 8 (2012), 076, 7 pages, arXiv:1210.5320.
  25. Magri F., Haantjes manifolds, J. Phys. Conf. Ser. 482 (2014), 012028, 11 pages.
  26. Magri F., Marsico T., Some developments of the concept of Poisson manifolds in the sense of A. Lichnerowicz, in Gravitation, Electromagnetism and Geometric Structures, Editor G. Ferrarese, Pitagora editrice, Bologna, 1996, 207-222.
  27. Magri F., Morosi C., A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderni del Dipartimento di Matematica, Università di Milano, 1984.
  28. Miller Jr. W., Post S., Winternitz P., Classical and quantum superintegrability with applications, J. Phys. A: Math. Theor. 46 (2013), 423001, 97 pages, arXiv:1309.2694.
  29. Morosi C., Tondo G., Quasi-bi-Hamiltonian systems and separability, J. Phys. A: Math. Gen. 30 (1997), 2799-2806, solv-int/9702006.
  30. Morosi C., Tondo G., On a class of dynamical systems both quasi-bi-Hamiltonian and bi-Hamiltonian, Phys. Lett. A 247 (1998), 59-64, solv-int/9811007.
  31. Morosi C., Tondo G., The quasi-bi-Hamiltonian formulation of the Lagrange top, J. Phys. A: Math. Gen. 35 (2002), 1741-1750, nlin.SI/0201028.
  32. Morosi C., Tondo G., Separation of variables in multi-Hamiltonian systems: an application to the Lagrange top, Theoret. and Math. Phys. 137 (2003), 1550-1560, nlin.SI/0305007.
  33. Nijenhuis A., $X_{n-1}$-forming sets of eigenvectors, Indag. Math. 54 (1951), 200-212.
  34. Nijenhuis A., Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I, Indag. Math. 17 (1955), 390-397.
  35. Nijenhuis A., Jacobi-type identities for bilinear differential concomitants of certain tensor fields. II, Indag. Math. 17 (1955), 398-403.
  36. Pars L.A., A treatise on analytical dynamics, Heinemann Educational Books Ltd., London, 1965.
  37. Perelomov A.M., Integrable systems of classical mechanics and Lie algebras, Birkhäuser Verlag, Basel, 1990.
  38. Tempesta P., Tondo G., Generalized Lenard chains, separation of variables, and superintegrability, Phys. Rev. E 85 (2012), 046602, 11 pages, arXiv:1205.6937.
  39. Tempesta P., Tondo G., Haantjes manifolds of classical integrable systems, arXiv:1405.5118.
  40. Tempesta P., Winternitz P., Harnad J., Miller W., Pogosyan G., Rodriguez M. (Editors), Superintegrability in classical and quantum systems, CRM Proceedings and Lecture Notes, Vol. 37, American Mathematical Society, Providence, RI, 2004.
  41. Tondo G., On the integrability of stationary and restricted flows of the KdV hierarchy, J. Phys. A: Math. Gen. 28 (1995), 5097-5115, solv-int/9507004.
  42. Tondo G., Generalized Lenard chains and multi-separability of the Smorodinsky-Winternitz system, J. Phys. Conf. Ser. 482 (2014), 012042, 10 pages.
  43. Tondo G., Morosi C., Bi-Hamiltonian manifolds, quasi-bi-Hamiltonian systems and separation variables, Rep. Math. Phys. 44 (1999), 255-266, solv-int/9811008.
  44. Tsiganov A.V., On bi-integrable natural Hamiltonian systems on Riemannian manifolds, J. Nonlinear Math. Phys. 18 (2011), 245-268, arXiv:1006.3914.

Previous article  Next article   Contents of Volume 12 (2016)