Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 12 (2016), 014, 18 pages      arXiv:1507.04061

Hom-Big Brackets: Theory and Applications

Liqiang Cai and Yunhe Sheng
Department of Mathematics, Jilin University, Changchun 130012, Jilin, China

Received July 16, 2015, in final form February 02, 2016; Published online February 05, 2016

In this paper, we introduce the notion of hom-big brackets, which is a generalization of Kosmann-Schwarzbach's big brackets. We show that it gives rise to a graded hom-Lie algebra. Thus, it is a useful tool to study hom-structures. In particular, we use it to describe hom-Lie bialgebras and hom-Nijenhuis operators.

Key words: hom-Lie algebras; hom-Nijenhuis-Richardson brackets; hom-big brackets; hom-Lie bialgebras; hom-Nijenhuis operators; hom-$\mathcal O$-operators.

pdf (398 kb)   tex (22 kb)


  1. Ammar F., Ejbehi Z., Makhlouf A., Cohomology and deformations of Hom-algebras, J. Lie Theory 21 (2011), 813-836, arXiv:1005.0456.
  2. Antunes P., Laurent-Gengoux C., Nunes da Costa J.M., Hierarchies and compatibility on Courant algebroids, Pacific J. Math. 261 (2013), 1-32, arXiv:1111.0800.
  3. Azimi M.J., Laurent-Gengoux C., Nunes da Costa J.M., Nijenhuis forms on $L_\infty$-algebras and Poisson geometry, Differential Geom. Appl. 38 (2015), 69-113, arXiv:1308.6119.
  4. Cariñena J.F., Grabowski J., Marmo G., Contractions: Nijenhuis and Saletan tensors for general algebraic structures, J. Phys. A: Math. Gen. 34 (2001), 3769-3789, math.DG/0103103.
  5. Cariñena J.F., Grabowski J., Marmo G., Courant algebroid and Lie bialgebroid contractions, J. Phys. A: Math. Gen. 37 (2004), 5189-5202, math.DG/0402020.
  6. Chen Y., Zhang L., Hom-$\mathcal{O}$-operators and Hom-Yang-Baxter equations, Adv. Math. Phys. 2015 (2015), Art. ID 823756, 11 pages.
  7. Dorfman I., Dirac structures and integrability of nonlinear evolution equations, Nonlinear Science: Theory and Applications, John Wiley & Sons, Ltd., Chichester, 1993.
  8. Drinfel'd V.G., Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations, Soviet Math. Doklady 27 (1983), 68-71.
  9. Grabowski J., Courant-Nijenhuis tensors and generalized geometries, in Groups, Geometry and Physics, Monogr. Real Acad. Ci. Exact. Fí s.-Quí m. Nat. Zaragoza, Vol. 29, Acad. Cienc. Exact. Fí s. Quí m. Nat. Zaragoza, Zaragoza, 2006, 101-112, math.DG/0601761.
  10. Hartwig J.T., Larsson D., Silvestrov S.D., Deformations of Lie algebras using $\sigma$-derivations, J. Algebra 295 (2006), 314-361, math.QA/0408064.
  11. Kosmann-Schwarzbach Y., Jacobian quasi-bialgebras and quasi-Poisson Lie groups, in Mathematical Aspects of Classical Field Theory (Seattle, WA, 1991), Contemp. Math., Vol. 132, Amer. Math. Soc., Providence, RI, 1992, 459-489.
  12. Kosmann-Schwarzbach Y., Quasi, twisted, and all that $\ldots$ in Poisson geometry and Lie algebroid theory, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., Vol. 232, Birkhäuser Boston, Boston, MA, 2005, 363-389, math.SG/0310359.
  13. Kosmann-Schwarzbach Y., Nijenhuis structures on Courant algebroids, Bull. Braz. Math. Soc. (N.S.) 42 (2011), 625-649, arXiv:1102.1410.
  14. Kosmann-Schwarzbach Y., Poisson and symplectic functions in Lie algebroid theory, in Higher Structures in Geometry and Physics, Progr. Math., Vol. 287, Birkhäuser/Springer, New York, 2011, 243-268, arXiv:0711.2043.
  15. Kosmann-Schwarzbach Y., Magri F., Poisson-Nijenhuis structures, Ann. Inst. H. Poincaré Phys. Théor. 53 (1990), 35-81.
  16. Kosmann-Schwarzbach Y., Rubtsov V., Compatible structures on Lie algebroids and Monge-Ampère operators, Acta Appl. Math. 109 (2010), 101-135, arXiv:0812.4838.
  17. Kostant B., Sternberg S., Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras, Ann. Physics 176 (1987), 49-113.
  18. Kravchenko O., Strongly homotopy Lie bialgebras and Lie quasi-bialgebras, Lett. Math. Phys. 81 (2007), 19-40, math.QA/0601301.
  19. Kupershmidt B.A., What a classical $r$-matrix really is, J. Nonlinear Math. Phys. 6 (1999), 448-488, math.QA/9910188.
  20. Larsson D., Silvestrov S.D., Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra 288 (2005), 321-344, math.RA/0408061.
  21. Larsson D., Silvestrov S.D., Quasi-Lie algebras, in Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemp. Math., Vol. 391, Amer. Math. Soc., Providence, RI, 2005, 241-248.
  22. Laurent-Gengoux C., Teles J., Hom-Lie algebroids, J. Geom. Phys. 68 (2013), 69-75, arXiv:1211.2263.
  23. Lecomte P.B.A., Roger C., Modules et cohomologies des bigèbres de Lie, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), 405-410.
  24. Makhlouf A., Silvestrov S.D., Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008), 51-64, math.RA/0609501.
  25. Makhlouf A., Silvestrov S.D., Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22 (2010), 715-739, arXiv:0712.3130.
  26. Nijenhuis A., Richardson Jr. R.W., Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc. 72 (1966), 1-29.
  27. Roytenberg D., Quasi-Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys. 61 (2002), 123-137, math.QA/0112152.
  28. Sheng Y., Representations of hom-Lie algebras, Algebr. Represent. Theory 15 (2012), 1081-1098, arXiv:1005.0140.
  29. Sheng Y., Bai C., A new approach to hom-Lie bialgebras, J. Algebra 399 (2014), 232-250, arXiv:1304.1954.
  30. Sheng Y., Xiong Z., On Hom-Lie algebras, Linear Multilinear Algebra 63 (2015), 2379-2395, arXiv:1411.6839.
  31. Yau D., The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras, J. Phys. A: Math. Theor. 42 (2009), 165202, 12 pages, arXiv:0903.0585.
  32. Yau D., Hom-quantum groups: I. Quasi-triangular Hom-bialgebras, J. Phys. A: Math. Theor. 45 (2012), 065203, 23 pages, arXiv:0906.4128.
  33. Yau D., The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras, Int. Electron. J. Algebra 17 (2015), 11-45, arXiv:0905.1890.

Previous article  Next article   Contents of Volume 12 (2016)