Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 11 (2015), 041, 27 pages      arXiv:1412.2359

Cyclic Homology and Quantum Orbits

Tomasz Maszczyk and Serkan Sütlü
Institute of Mathematics, University of Warsaw, Warsaw, Poland

Received December 07, 2014, in final form May 12, 2015; Published online May 30, 2015

A natural isomorphism between the cyclic object computing the relative cyclic homology of a homogeneous quotient-coalgebra-Galois extension, and the cyclic object computing the cyclic homology of a Galois coalgebra with SAYD coefficients is presented. The isomorphism can be viewed as the cyclic-homological counterpart of the Takeuchi-Galois correspondence between the left coideal subalgebras and the quotient right module coalgebras of a Hopf algebra. A spectral sequence generalizing the classical computation of Hochschild homology of a Hopf algebra to the case of arbitrary homogeneous quotient-coalgebra-Galois extensions is constructed. A Pontryagin type self-duality of the Takeuchi-Galois correspondence is combined with the cyclic duality of Connes in order to obtain dual results on the invariant cyclic homology, with SAYD coefficients, of algebras of invariants in homogeneous quotient-coalgebra-Galois extensions. The relation of this dual result with the Chern character, Frobenius reciprocity, and inertia phenomena in the local Langlands program, the Chen-Ruan-Brylinski-Nistor orbifold cohomology and the Clifford theory is discussed.

Key words: cyclic homology; homogenous quotient-coalgebra-Galois extensions; Takeuchi-Galois correspondence; Pontryagin duality.

pdf (476 kb)   tex (34 kb)


  1. Aubert A.M., Baum P., Plymen R., Solleveld M., Geometric structure in smooth dual and local Langlands conjecture, Jpn. J. Math. 9 (2014), 99-136, arXiv:1211.0180.
  2. Bergman G.M., Hausknecht A.O., Co-groups and co-rings in categories of associative rings, Mathematical Surveys and Monographs, Vol. 45, Amer. Math. Soc., Providence, RI, 1996.
  3. Bichon J., Hochschild homology of Hopf algebras and free Yetter-Drinfeld resolutions of the counit, Compos. Math. 149 (2013), 658-678, arXiv:1204.0687.
  4. Bonechi F., Ciccoli N., Dąbrowski L., Tarlini M., Bijectivity of the canonical map for the non-commutative instanton bundle, J. Geom. Phys. 51 (2004), 71-81, math.QA/0306114.
  5. Bonechi F., Ciccoli N., Tarlini M., Noncommutative instantons on the 4-sphere from quantum groups, Comm. Math. Phys. 226 (2002), 419-432, math.QA/0012236.
  6. Brown K.A., Zhang J.J., Dualising complexes and twisted Hochschild (co)homology for Noetherian Hopf algebras, J. Algebra 320 (2008), 1814-1850, math.RA/0603732.
  7. Brylinski J.L., Nistor V., Cyclic cohomology of étale groupoids, $K$-Theory 8 (1994), 341-365.
  8. Brzeziński T., Quantum homogeneous spaces as quantum quotient spaces, J. Math. Phys. 37 (1996), 2388-2399, q-alg/9509015.
  9. Brzeziński T., Quantum homogeneous spaces and coalgebra bundles, Rep. Math. Phys. 40 (1997), 179-185, q-alg/9704015.
  10. Brzeziński T., Hajac P.M., Coalgebra extensions and algebra coextensions of Galois type, Comm. Algebra 27 (1999), 1347-1367, q-alg/9708010.
  11. Brzeziński T., Hajac P.M., Galois-type extensions and equivariant projectivity, arXiv:0901.0141.
  12. Cartan H., Eilenberg S., Homological algebra, Princeton University Press, Princeton, NJ, 1956.
  13. Chen W., Ruan Y., A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), 1-31, math.AG/0004129.
  14. Collins B., Härtel J., Thom A., Homology of free quantum groups, C. R. Math. Acad. Sci. Paris 347 (2009), 271-276, arXiv:0903.1686.
  15. Connes A., Cohomologie cyclique et foncteurs ${\rm Ext}^n$, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 953-958.
  16. Connes A., Moscovici H., Hopf algebras, cyclic cohomology and the transverse index theorem, Comm. Math. Phys. 198 (1998), 199-246, math.DG/9806109.
  17. Connes A., Moscovici H., Cyclic cohomology and Hopf algebras, Lett. Math. Phys. 48 (1999), 97-108, math.QA/9904154.
  18. Dijkhuizen M.S., Koornwinder T.H., Quantum homogeneous spaces, duality and quantum $2$-spheres, Geom. Dedicata 52 (1994), 291-315.
  19. Eckmann B., Cyclic homology of groups and the Bass conjecture, Comment. Math. Helv. 61 (1986), 193-202.
  20. Feng P., Tsygan B., Hochschild and cyclic homology of quantum groups, Comm. Math. Phys. 140 (1991), 481-521.
  21. Getzler E., Cartan homotopy formulas and the Gauss-Manin connection in cyclic homology, in Quantum Deformations of Algebras and their Representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), Israel Math. Conf. Proc., Vol. 7, Bar-Ilan University, Ramat Gan, 1993, 65-78.
  22. Ginzburg V., Kumar S., Cohomology of quantum groups at roots of unity, Duke Math. J. 69 (1993), 179-198.
  23. Hadfield T., Krähmer U., Twisted homology of quantum ${\rm SL}(2)$, $K$-Theory 34 (2005), 327-360, math.QA/0405249.
  24. Hajac P.M., Khalkhali M., Rangipour B., Sommerhäuser Y., Hopf-cyclic homology and cohomology with coefficients, C. R. Math. Acad. Sci. Paris 338 (2004), 667-672, math.KT/0306288.
  25. Hajac P.M., Khalkhali M., Rangipour B., Sommerhäuser Y., Stable anti-Yetter-Drinfeld modules, C. R. Math. Acad. Sci. Paris 338 (2004), 587-590, math.QA/0405005.
  26. Hochschild G., Kostant B., Rosenberg A., Differential forms on regular affine algebras, Trans. Amer. Math. Soc. 102 (1962), 383-408.
  27. Jara P., Ştefan D., Hopf-cyclic homology and relative cyclic homology of Hopf-Galois extensions, Proc. London Math. Soc. 93 (2006), 138-174.
  28. Kadison L., A relative cyclic cohomology theory useful for computations, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), 569-573.
  29. Kadison L., Cyclic homology of triangular matrix algebras, in Topology Hawaii (Honolulu, HI, 1990), World Sci. Publ., River Edge, NJ, 1992, 137-148.
  30. Kadison L., Hopf subalgebras and tensor powers of generalized permutation modules, J. Pure Appl. Algebra 218 (2014), 367-380, arXiv:1210.3178.
  31. Khalkhali M., Rangipour B., A note on cyclic duality and Hopf algebras, Comm. Algebra 33 (2005), 763-773, math.KT/0310088.
  32. Lu J.H., Moment maps at the quantum level, Comm. Math. Phys. 157 (1993), 389-404.
  33. Maszczyk T., Feynman integral, Chern character and duality, in preparation.
  34. Pahlings H., Plesken W., Group actions on Cartesian powers with applications to representation theory, J. Reine Angew. Math. 380 (1987), 178-195.
  35. Podleś P., Quantum spheres, Lett. Math. Phys. 14 (1987), 193-202.
  36. Schafer J.A., Relative cyclic homology and the Bass conjecture, Comment. Math. Helv. 67 (1992), 214-225.
  37. Schauenburg P., Galois correspondences for Hopf bi-Galois extensions, J. Algebra 201 (1998), 53-70.
  38. Schneider H.J., Some remarks on exact sequences of quantum groups, Comm. Algebra 21 (1993), 3337-3357.
  39. Takeuchi M., A correspondence between Hopf ideals and sub-Hopf algebras, Manuscripta Math. 7 (1972), 251-270.
  40. Van Oystaeyen F., Zhang Y., Galois-type correspondences for Hopf-Galois extensions, $K$-Theory 8 (1994), 257-269.

Previous article  Next article   Contents of Volume 11 (2015)