Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 11 (2015), 023, 14 pages      arXiv:1503.03959

Non-Schlesinger Isomonodromic Deformations of Fuchsian Systems and Middle Convolution

Yulia Bibilo a and Galina Filipuk b
a) Department of Theory of Information Transmission and Control, Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetny per. 19, Moscow, 127994, Russia
b) Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, Warsaw, 02-097, Poland

Received November 20, 2014, in final form March 04, 2015; Published online March 13, 2015

The paper is devoted to non-Schlesinger isomonodromic deformations for resonant Fuchsian systems. There are very few explicit examples of such deformations in the literature. In this paper we construct a new example of the non-Schlesinger isomonodromic deformation for a resonant Fuchsian system of order 5 by using middle convolution for a resonant Fuchsian system of order 2. Moreover, it is known that middle convolution is an operation that preserves Schlesinger's deformation equations for non-resonant Fuchsian systems. In this paper we show that Bolibruch's non-Schlesinger deformations of resonant Fuchsian systems are, in general, not preserved by middle convolution.

Key words: Middle convolution; isomonodromic deformation; non-Schlesinger isomonodromic deformation.

pdf (351 kb)   tex (22 kb)


  1. Anosov D.V., Concerning the definition of isomonodromic deformation of Fuchsian systems, Ulmer Seminaire über Funktionalysis und Differentialgleichungen (1997), no. 2, 1-12.
  2. Arinkin D., Fourier transform and middle convolution for irregular D-modules, arXiv:0808.0699.
  3. Arnold V.I., Arnold's problems, Springer-Verlag, Berlin, PHASIS, Moscow, 2004.
  4. Bibilo Yu., Inverse monodromy problems for systems with irregular singularities, Ph.D. Thesis, Moscow State University, 2012.
  5. Bibilo Yu., Isomonodromic deformations of systems of linear differential equations with irregular singularities, Sb. Math. 203 (2012), 826-843.
  6. Bolibruch A.A., On isomonodromic deformations of Fuchsian systems, J. Dynam. Control Systems 3 (1997), 589-604.
  7. Bolibrukh A.A., On isomonodromic confluences of Fuchsian singularities, Proc. Steklov Inst. Math. 221 (1998), 117-132.
  8. Bolibruch A.A., Inverse problems for linear differential equations with meromorphic coefficients, in Isomonodromic Deformations and Applications in Physics (Montréal, QC, 2000), CRM Proc. Lecture Notes, Vol. 31, Amer. Math. Soc., Providence, RI, 2002, 3-25.
  9. Bolibrukh A.A., Inverse monodromy problems in the analytic theory of differential equations, MCCME, Moscow, 2009.
  10. Bolibrukh A.A., Differential equations with meromorphic coefficients, Proc. Steklov Inst. Math. 272 (2011), 13-43.
  11. Crawley-Boevey W., Shaw P., Multiplicative preprojective algebras, middle convolution and the Deligne-Simpson problem, Adv. Math. 201 (2006), 180-208, math.RA/0404186.
  12. da Silva Jr. G., Kerr M., Pearlstein G., Arithmetic of degenerating principal variations of Hodge structure: examples arising from mirror symmetry and middle convolution, arXiv:1407.4102.
  13. Dettweiler M., Construction of relative motives with interesting étale realization using the middle convolution, in Mathematisches Institut, Georg-August-Universität Göttingen: Seminars Summer Term 2004, Universitätsdrucke Göttingen, Göttingen, 2004, 1-7.
  14. Dettweiler M., Middle convolution and Galois realizations, in Galois Theory and Modular Forms, Dev. Math., Vol. 11, Kluwer Acad. Publ., Boston, MA, 2004, 143-158.
  15. Dettweiler M., Reiter S., An algorithm of Katz and its application to the inverse Galois problem, J. Symbolic Comput. 30 (2000), 761-798.
  16. Dettweiler M., Reiter S., Middle convolution of Fuchsian systems and the construction of rigid differential systems, J. Algebra 318 (2007), 1-24.
  17. Dettweiler M., Reiter S., Painlevé equations and the middle convolution, Adv. Geom. 7 (2007), 317-330, math.AG/0605384.
  18. Dettweiler M., Sabbah C., Hodge theory of the middle convolution, Publ. Res. Inst. Math. Sci. 49 (2013), 761-800, arXiv:1209.4185.
  19. Filipuk G., On the middle convolution and birational symmetries of the sixth Painlevé equation, Kumamoto J. Math. 19 (2006), 15-23.
  20. Filipuk G.V., A hypergeometric system of the Heun equation and middle convolution, J. Phys. A: Math. Theor. 42 (2009), 175208, 11 pages.
  21. Filipuk G.V., Middle convolution and the hypergeometric equation, J. Phys. A: Math. Theor. 43 (2010), 175204, 10 pages.
  22. Flaschka H., Newell A.C., Monodromy- and spectrum-preserving deformations. I, Comm. Math. Phys. 76 (1980), 65-116.
  23. Fuchs R., Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen, Math. Ann. 63 (1907), 301-321.
  24. Garnier R., Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes, Ann. Sci. École Norm. Sup. 29 (1912), 1-126.
  25. Garnier R., Étude de l'intégrale générale de l'équation VI de M. Painlevé dans le voisinage de ses singularités transcendantes, Ann. Sci. École Norm. Sup. 34 (1917), 239-353.
  26. Haraoka Y., Middle convolution for completely integrable systems with logarithmic singularities along hyperplane arrangements, in Arrangements of Hyperplanes - Sapporo 2009, Adv. Stud. Pure Math., Vol. 62, Math. Soc. Japan, Tokyo, 2012, 109-136.
  27. Haraoka Y., Filipuk G., Middle convolution and deformation for Fuchsian systems, J. Lond. Math. Soc. 76 (2007), 438-450.
  28. Hiroe K., Twisted Euler transform of differential equations with an irregular singular point, arXiv:0912.5124.
  29. Hitchin N., Geometrical aspects of Schlesinger's equation, J. Geom. Phys. 23 (1997), 287-300.
  30. Ilyashenko Y., Yakovenko S., Lectures on analytic differential equations, Graduate Studies in Mathematics, Vol. 86, Amer. Math. Soc., Providence, RI, 2008.
  31. Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, Vol. E16, Friedr. Vieweg & Sohn, Braunschweig, 1991.
  32. Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
  33. Katsnelson V., Volok D., Deformations of Fuchsian systems of linear differential equations and the Schlesinger system, Math. Phys. Anal. Geom. 9 (2006), 135-186, math.CA/0506328.
  34. Katz N.M., Rigid local systems, Annals of Mathematics Studies, Vol. 139, Princeton University Press, Princeton, NJ, 1996.
  35. Kawakami H., Generalized Okubo systems and the middle convolution, Int. Math. Res. Not. 2010 (2010), 3394-3421.
  36. Kitaev A.V., Non-Schlesinger deformations of ordinary differential equations with rational coefficients, J. Phys. A: Math. Gen. 34 (2001), 2259-2272, nlin.SI/0102019.
  37. Malgrange B., Sur les déformations isomonodromiques. I. Singularités régulières, in Mathematics and Physics (Paris, 1979/1982), Progr. Math., Vol. 37, Birkhäuser Boston, Boston, MA, 1983, 401-426.
  38. Mitschi C., Singer M.F., Projective isomonodromy and Galois groups, Proc. Amer. Math. Soc. 141 (2013), 605-617, arXiv:1002.2005.
  39. Oshima T., Katz's middle convolution and Yokoyama's extending operation, arXiv:0812.1135.
  40. Oshima T., Fractional calculus of Weyl algebra and Fuchsian differential equations, MSJ Memoirs, Vol. 28, Mathematical Society of Japan, Tokyo, 2012, arXiv:1102.2792.
  41. Patrikis S., Generalized Kuga-Satake theory and rigid local systems, I: the middle convolution, arXiv:1407.1942.
  42. Poberezhnyi V.A., The general linear problem of the isomonodromic deformation of Fuchsian systems, Math. Notes 81 (2007), 529-542.
  43. Reiter S., Halphen's transform and middle convolution, arXiv:0903.3654.
  44. Schlesinger L., Über die Lösungen gewisser linearer Differentialgleichungen als Funktionen der singulären Punkte, J. Reine Angew. Math. 129 (1905), 287-294.
  45. Schlesinger L., Über eine Klasse von Differentialsystemen beliebliger Ordnung mit festen kritischen Punkten, J. Reine Angew. Math. 141 (1912), 96-145.
  46. Sibuya Y., Stokes phenomena, Bull. Amer. Math. Soc. 83 (1977), 1075-1077.
  47. Simpson C., Katz's middle convolution algorithm, Pure Appl. Math. Q. 5 (2009), 781-852, math.AG/0610526.
  48. Takemura K., Middle convolution and Heun's equation, SIGMA 5 (2009), 040, 22 pages, arXiv:0810.3112.
  49. Takemura K., Introduction to middle convolution for differential equations with irregular singularities, in New Trends in Quantum Integrable Systems, World Sci. Publ., Hackensack, NJ, 2011, 393-420, arXiv:1002.2535.
  50. Yamakawa D., Middle convolution and Harnad duality, Math. Ann. 349 (2011), 215-262, arXiv:0911.3863.
  51. Yamakawa D., Fourier-Laplace transform and isomonodromic deformations, arXiv:1306.0444.

Previous article  Next article   Contents of Volume 11 (2015)