Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 11 (2015), 010, 13 pages      arXiv:1305.2178

Pseudo-Exponential-Type Solutions of Wave Equations Depending on Several Variables

Bernd Fritzsche a, Bernd Kirstein a, Inna Ya. Roitberg a and Alexander L. Sakhnovich b
a) Fakultät für Mathematik und Informatik, Universität Leipzig, Augustusplatz 10, D-04009 Leipzig, Germany
b) Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria

Received September 04, 2014, in final form January 23, 2015; Published online January 29, 2015

Using matrix identities, we construct explicit pseudo-exponential-type solutions of linear Dirac, Loewner and Schrödinger equations depending on two variables and of nonlinear wave equations depending on three variables.

Key words: Bäcklund-Darboux transformation; matrix identity; $S$-node; $S$-multinode; explicit solution; non-stationary Dirac equation; non-stationary Schrödinger equation; Loewner system; pseudo-exponential-type potential; integrable nonlinear equations.

pdf (377 kb)   tex (25 kb)


  1. Ablowitz M.J., Chakravarty S., Trubatch A.D., Villarroel J., A novel class of solutions of the non-stationary Schrödinger and the Kadomtsev-Petviashvili I equations, Phys. Lett. A 267 (2000), 132-146.
  2. Ablowitz M.J., Haberman R., Nonlinear evolution equations - two and three dimensions, Phys. Rev. Lett. 35 (1975), 1185-1188.
  3. Ablowitz M.J., Haberman R., Resonantly coupled nonlinear evolution equations, J. Math. Phys. 16 (1975), 2301-2305.
  4. Ablowitz M.J., Prinari B., Trubatch A.D., Discrete and continuous nonlinear Schrödinger systems, London Mathematical Society Lecture Note Series, Vol. 302, Cambridge University Press, Cambridge, 2004.
  5. Andrianov A.A., Borisov N.V., Ioffe M.V., The factorization method and quantum systems with equivalent energy spectra, Phys. Lett. A 105 (1984), 19-22.
  6. Anker D., Freeman N.C., On the soliton solutions of the Davey-Stewartson equation for long waves, Proc. Roy. Soc. London Ser. A 360 (1978), 529-540.
  7. Bagrov V.G., Samsonov B.F., Supersymmetry of a nonstationary Schrödinger equation, Phys. Lett. A 210 (1996), 60-64.
  8. Bergvelt M., Gekhtman M., Kasman A., Spin Calogero particles and bispectral solutions of the matrix KP hierarchy, Math. Phys. Anal. Geom. 12 (2009), 181-200, arXiv:0806.2613.
  9. Caudrey P.J., Gibbon J.D., Eilbeck J.C., Bullough R.K., Exact multisoliton solutions of the self-induced transparency and sine-Gordon equations, Phys. Rev. Lett. 30 (1973), 237-238.
  10. Cieśliński J.L., Algebraic construction of the Darboux matrix revisited, J. Phys. A: Math. Theor. 42 (2009), 404003, 40 pages, arXiv:0904.3987.
  11. Davey A., Stewartson K., On three-dimensional packets of surface waves, Proc. Roy. Soc. London Ser. A 338 (1974), 101-110.
  12. Dimakis A., Müller-Hoissen F., Solutions of matrix NLS systems and their discretizations: a unified treatment, Inverse Problems 26 (2010), 095007, 55 pages, arXiv:1001.0133.
  13. Dimakis A., Müller-Hoissen F., Binary Darboux transformations in bidifferential calculus and integrable reductions of vacuum Einstein equations, SIGMA 9 (2013), 009, 31 pages, arXiv:1207.1308.
  14. Fritzsche B., Kirstein B., Roitberg I.Ya., Sakhnovich A.L., Weyl theory and explicit solutions of direct and inverse problems for Dirac system with a rectangular matrix potential, Oper. Matrices 7 (2013), 183-196, arXiv:1105.2013.
  15. Fritzsche B., Kirstein B., Sakhnovich A.L., Completion problems and scattering problems for Dirac type differential equations with singularities, J. Math. Anal. Appl. 317 (2006), 510-525, math.SP/0409424.
  16. Gesztesy F., Holden H., Soliton equations and their algebro-geometric solutions. Vol. I. $(1+1)$-dimensional continuous models, Cambridge Studies in Advanced Mathematics, Vol. 79, Cambridge University Press, Cambridge, 2003.
  17. Gesztesy F., Holden H., Michor J., Teschl G., Soliton equations and their algebro-geometric solutions. Vol. II. $(1+1)$-dimensional discrete models, Cambridge Studies in Advanced Mathematics, Vol. 114, Cambridge University Press, Cambridge, 2008.
  18. Gesztesy F., Teschl G., On the double commutation method, Proc. Amer. Math. Soc. 124 (1996), 1831-1840.
  19. Gilson C.R., Macfarlane S.R., Dromion solutions of noncommutative Davey-Stewartson equations, J. Phys. A: Math. Theor. 42 (2009), 235202, 20 pages, arXiv:0901.4918.
  20. Gohberg I., Kaashoek M.A., Sakhnovich A.L., Canonical systems with rational spectral densities: explicit formulas and applications, Math. Nachr. 194 (1998), 93-125.
  21. Gohberg I., Kaashoek M.A., Sakhnovich A.L., Pseudo-canonical systems with rational Weyl functions: explicit formulas and applications, J. Differential Equations 146 (1998), 375-398.
  22. Gohberg I., Kaashoek M.A., Sakhnovich A.L., Scattering problems for a canonical system with a pseudo-exponential potential, Asymptot. Anal. 29 (2002), 1-38.
  23. Gu C., Hu H., Zhou Z., Darboux transformations in integrable systems. Theory and their applications to geometry, Mathematical Physics Studies, Vol. 26, Springer, Dordrecht, 2005.
  24. Hirota R., Exact solution of the sine-Gordon equation for multiple collisions of solitons, J. Phys. Soc. Japan 33 (1972), 1459-1463.
  25. Kasman A., Gekhtman M., Solitons and almost-intertwining matrices, J. Math. Phys. 42 (2001), 3540-3551, math-ph/0011011.
  26. Leznov A.N., Yuzbashyan E.A., Multi-soliton solutions of the two-dimensional matrix Davey-Stewartson equation, Nuclear Phys. B 496 (1997), 643-653, hep-th/9612107.
  27. Livšic M.S., Operator waves in Hilbert space and related partial differential equations, Integral Equations Operator Theory 2 (1979), 25-47.
  28. Loewner C., A transformation theory of the partial differential equations of gas dynamics, Tech. Notes Nat. Adv. Comm. Aeronaut. 1950 (1950), no. 2065, 1-56.
  29. Loewner C., Generation of solutions of systems of partial differential equations by composition of infinitesimal Baecklund transformations, J. Analyse Math. 2 (1953), 219-242.
  30. Marchenko V.A., Nonlinear equations and operator algebras, Mathematics and its Applications (Soviet Series), Vol. 17, D. Reidel Publishing Co., Dordrecht, 1988.
  31. Matveev V.B., Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation, depending on functional parameters, Lett. Math. Phys. 3 (1979), 213-216.
  32. Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991.
  33. Pecheritsyn A.A., Pozdeeva E.O., Samsonov B.F., The Darboux transformation for the nonstationary Dirac equation, Russ. Phys. J. 48 (2005), 365-374.
  34. Sabatier P.C., On multidimensional Darboux transformations, Inverse Problems 14 (1998), 355-366.
  35. Sakhnovich A.L., Exact solutions of nonlinear equations and the method of operator identities, Linear Algebra Appl. 182 (1993), 109-126.
  36. Sakhnovich A.L., Dressing procedure for solutions of nonlinear equations and the method of operator identities, Inverse Problems 10 (1994), 699-710.
  37. Sakhnovich A.L., Matrix Kadomtsev-Petviashvili equation: matrix identities and explicit non-singular solutions, J. Phys. A: Math. Gen. 36 (2003), 5023-5033.
  38. Sakhnovich A.L., Bäcklund-Darboux transformation for non-isospectral canonical system and Riemann-Hilbert problem, SIGMA 3 (2007), 054, 11 pages, math-ph/0703072.
  39. Sakhnovich A.L., On the GBDT version of the Bäcklund-Darboux transformation and its applications to linear and nonlinear equations and Weyl theory, Math. Model. Nat. Phenom. 5 (2010), 340-389, arXiv:0909.1537.
  40. Sakhnovich A.L., The time-dependent Schrödinger equation of dimension $k+1$: explicit and rational solutions via GBDT and multinodes, J. Phys. A: Math. Theor. 44 (2011), 475201, 12 pages, arXiv:1104.2554.
  41. Sakhnovich A.L., Sakhnovich L.A., Roitberg I.Ya., Inverse problems and nonlinear evolution equations. Solutions, Darboux matrices and Weyl-Titchmarsh functions, De Gruyter Studies in Mathematics, Vol. 47, De Gruyter, Berlin, 2013.
  42. Sakhnovich L.A., On the factorization of the transfer matrix function, Sov. Math. Dokl. 17 (1976), 203-207.
  43. Sakhnovich L.A., Integral equations with difference kernels on finite intervals, Operator Theory: Advances and Applications, Vol. 84, Birkhäuser Verlag, Basel, 1996.
  44. Sakhnovich L.A., Spectral theory of canonical differential systems. Method of operator identities, Operator Theory: Advances and Applications, Vol. 107, Birkhäuser Verlag, Basel, 1999.
  45. Sakhnovich L.A., Levy processes, integral equations, statistical physics: connections and interactions, Operator Theory: Advances and Applications, Vol. 225, Birkhäuser/Springer Basel AG, Basel, 2012.
  46. Schiebold C., Explicit solution formulas for the matrix-KP, Glasg. Math. J. 51 (2009), 147-155.
  47. Schief W.K., Rogers C., Loewner transformations: adjoint and binary Darboux connections, Stud. Appl. Math. 100 (1998), 391-422.
  48. Skljanin E.K., A class of potentials for the nonstationary Dirac equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 77 (1978), 214-226.
  49. Suzko A.A., Schulze-Halberg A., Darboux transformations and supersymmetry for the generalized Schrödinger equations in $(1+1)$ dimensions, J. Phys. A: Math. Theor. 42 (2009), 295203, 14 pages.
  50. Takebe T., Dispersionless BKP hierarchy and quadrant Löwner equation, SIGMA 10 (2014), 023, 13 pages, arXiv:1308.4584.
  51. Zakharov V.E., Manakov S.V., The theory of resonance interaction of wave packets in nonlinear media, Soviet Phys. JETP 69 (1975), 1654-1673.
  52. Zakharov V.E., Mikhailov A.V., On the integrability of classical spinor models in two-dimensional space-time, Comm. Math. Phys. 74 (1980), 21-40.
  53. Zakharov V.E., Shabat A.B., A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I, Funct. Anal. Appl. 8 (1974), 226-235.

Previous article  Next article   Contents of Volume 11 (2015)