Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 10 (2014), 098, 7 pages      arXiv:1403.6817
Contribution to the Special Issue on New Directions in Lie Theory

Center of Twisted Graded Hecke Algebras for Homocyclic Groups

Wee Liang Gan a and Matthew Highfield b
a) University of California, Riverside, CA 92521, USA
b) Pepperdine University, Malibu, CA 90263, USA

Received March 31, 2014, in final form October 10, 2014; Published online October 15, 2014

We determine explicitly the center of the twisted graded Hecke algebras associated to homocyclic groups. Our results are a generalization of formulas by M. Douglas and B. Fiol in [J. High Energy Phys. 2005 (2005), no. 9, 053, 22 pages].

Key words: twisted graded Hecke algebra; homocyclic group.

pdf (330 kb)   tex (11 kb)


  1. Căldăraru A., Giaquinto A., Witherspoon S., Algebraic deformations arising from orbifolds with discrete torsion, J. Pure Appl. Algebra 187 (2004), 51-70, math.KT/0210027.
  2. Chmutova T., Twisted symplectic reflection algebras, math.RT/0505653.
  3. Douglas M.R., Fiol B., D-branes and discrete torsion. II, J. High Energy Phys. 2005 (2005), no. 9, 053, 22 pages, hep-th/9903031.
  4. Drinfel'd V.G., Degenerate affine Hecke algebras and Yangians, Funct. Anal. Appl. 20 (1986), 58-60.
  5. Lusztig G., Cuspidal local systems and graded Hecke algebras. I, Inst. Hautes Études Sci. Publ. Math. (1988), 145-202.
  6. Lusztig G., Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), 599-635.
  7. Ram A., Shepler A.V., Classification of graded Hecke algebras for complex reflection groups, Comment. Math. Helv. 78 (2003), 308-334, math.GR/0209135.
  8. Walton C.M., On degenerations and deformations of Sklyanin algebras, Ph.D. Thesis, University of Michigan, 2011.
  9. Witherspoon S., Skew derivations and deformations of a family of group crossed products, Comm. Algebra 34 (2006), 4187-4206, math.RA/0506154.
  10. Witherspoon S., Twisted graded Hecke algebras, J. Algebra 317 (2007), 30-42, math.RT/0506152.

Previous article  Next article   Contents of Volume 10 (2014)