Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 10 (2014), 018, 47 pages      arXiv:1109.4848
Contribution to the Special Issue “Mirror Symmetry and Related Topics”

Fukaya Categories as Categorical Morse Homology

David Nadler
Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720-3840, USA

Received May 16, 2012, in final form February 21, 2014; Published online March 01, 2014

The Fukaya category of a Weinstein manifold is an intricate symplectic invariant of high interest in mirror symmetry and geometric representation theory. This paper informally sketches how, in analogy with Morse homology, the Fukaya category might result from gluing together Fukaya categories of Weinstein cells. This can be formalized by a recollement pattern for Lagrangian branes parallel to that for constructible sheaves. Assuming this structure, we exhibit the Fukaya category as the global sections of a sheaf on the conic topology of the Weinstein manifold. This can be viewed as a symplectic analogue of the well-known algebraic and topological theories of (micro)localization.

Key words: Fukaya category; microlocalization.

pdf (685 kb)   tex (58 kb)


  1. Abouzaid M., A topological model for the Fukaya categories of plumbings, J. Differential Geom. 87 (2011), 1-80, arXiv:0904.1474.
  2. Abouzaid M., On the wrapped Fukaya category and based loops, J. Symplectic Geom. 10 (2012), 27-79, arXiv:0904.1474.
  3. Abouzaid M., Auroux D., Efimov A.I., Katzarkov L., Orlov D., Homological mirror symmetry for punctured spheres, J. Amer. Math. Soc. 26 (2013), 1051-1083, arXiv:1103.4322.
  4. Abouzaid M., Seidel P., An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010), 627-718, arXiv:0712.3177.
  5. Audin M., Lalonde F., Polterovich L., Symplectic rigidity: Lagrangian submanifolds, in Holomorphic Curves in Symplectic Geometry, Progr. Math., Vol. 117, Birkhäuser, Basel, 1994, 271-321.
  6. Auroux D., Fukaya categories and bordered Heegaard-Floer homology, in Proceedings of the International Congress of Mathematicians. Vol. II, Hindustan Book Agency, New Delhi, 2010, 917-941, arXiv:1003.2962.
  7. Auroux D., Fukaya categories of symmetric products and bordered Heegaard-Floer homology, J. Gökova Geom. Topol. GGT 4 (2010), 1-54, arXiv:1001.4323.
  8. Beilinson A., Bernstein J., A proof of Jantzen conjectures, in I.M. Gel'fand Seminar, Adv. Soviet Math., Vol. 16, Amer. Math. Soc., Providence, RI, 1993, 1-50.
  9. Beilinson A.A., Coherent sheaves on Pn and problems in linear algebra, Funct. Anal. Appl. 12 (1978), 214-216.
  10. Ben-Zvi D., Francis J., Nadler D., Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc. 23 (2010), 909-966, arXiv:0805.0157.
  11. Bierstone E., Milman P.D., Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. (1988), 5-42.
  12. Biran P., Lagrangian barriers and symplectic embeddings, Geom. Funct. Anal. 11 (2001), 407-464.
  13. Biran P., Lagrangian non-intersections, Geom. Funct. Anal. 16 (2006), 279-326, math.SG/0412110.
  14. Bourgeois F., Ekholm T., Eliashberg Y., Symplectic homology product via Legendrian surgery, Proc. Natl. Acad. Sci. USA 108 (2011), 8114-8121, arXiv:1012.4218.
  15. Bourgeois F., Ekholm T., Eliashberg Y., Effect of Legendrian surgery, Geom. Topol. 16 (2012), 301-389, arXiv:0911.0026.
  16. Braden T., Licata A., Proudfoot N., Webster B., Hypertoric category O, Adv. Math. 231 (2012), 1487-1545, arXiv:1010.2001.
  17. Cieliebak K., Handle attaching in symplectic homology and the chord conjecture, J. Eur. Math. Soc. 4 (2002), 115-142.
  18. Cieliebak K., Eliashberg Y., Symplectic geometry of Stein manifolds, 2006, unpublished.
  19. Eliashberg Y., Symplectic geometry of plurisubharmonic functions, in Gauge Theory and Symplectic Geometry (Montreal, PQ, 1995), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 488, Kluwer Acad. Publ., Dordrecht, 1997, 49-67.
  20. Eliashberg Y., Gromov M., Convex symplectic manifolds, in Several Complex Variables and Complex Geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., Vol. 52, Amer. Math. Soc., Providence, RI, 1991, 135-162.
  21. Fukaya K., Oh Y.-G., Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997), 96-180.
  22. Fukaya K., Oh Y.-G., Ohta H., Ono K., Lagrangian intersection Floer theory - anomaly and obstruction, Kyoto Preprint, Math 00-17, 2000.
  23. Gordon I., Stafford J.T., Rational Cherednik algebras and Hilbert schemes, Adv. Math. 198 (2005), 222-274, math.RA/0407516.
  24. Gordon I., Stafford J.T., Rational Cherednik algebras and Hilbert schemes. II. Representations and sheaves, Duke Math. J. 132 (2006), 73-135, math.RT/0410293.
  25. Gotay M.J., On coisotropic imbeddings of presymplectic manifolds, Proc. Amer. Math. Soc. 84 (1982), 111-114.
  26. Kashiwara M., Rouquier R., Microlocalization of rational Cherednik algebras, Duke Math. J. 144 (2008), 525-573, arXiv:0705.1245.
  27. Kashiwara M., Schapira P., Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, Vol. 292, Springer-Verlag, Berlin, 1994.
  28. Khovanov M., Seidel P., Quivers, Floer cohomology, and braid group actions, J. Amer. Math. Soc. 15 (2002), 203-271, math.QA/0006056.
  29. Kontsevich M., Symplectic geometry of homological algebra, 2009, available at
  30. Kostant B., On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101-184.
  31. Loday J.L., The diagonal of the Stasheff polytope, in Higher Structures in Geometry and Physics, Progr. Math., Vol. 287, Birkhäuser/Springer, New York, 2011, 269-292, arXiv:0710.0572.
  32. Losev I., Finite W-algebras, in Proceedings of the International Congress of Mathematicians. Vol. III, Hindustan Book Agency, New Delhi, 2010, 1281-1307, arXiv:1003.5811.
  33. Losev I., Quantized symplectic actions and W-algebras, J. Amer. Math. Soc. 23 (2010), 35-59, arXiv:0707.3108.
  34. Lurie J., Higher algebra, available at
  35. Lurie J., Higher topos theory, Annals of Mathematics Studies, Vol. 170, Princeton University Press, Princeton, NJ, 2009, math.CT/0608040.
  36. Lurie J., On the classification of topological field theories, in Current Developments in Mathematics, 2008, Int. Press, Somerville, MA, 2009, 129-280, arXiv:0905.0465.
  37. Manolescu C., Nilpotent slices, Hilbert schemes, and the Jones polynomial, Duke Math. J. 132 (2006), 311-369, math.SG/0411015.
  38. Markl M., Shnider S., Associahedra, cellular W-construction and products of A-algebras, Trans. Amer. Math. Soc. 358 (2006), 2353-2372, math.AT/0312277.
  39. Ma'u S., Gluing pseudoholomorphic quilted disks, arXiv:0909.3339.
  40. McGerty K., Nevins T., Derived equivalence for quantum symplectic resolutions, arXiv:1108.6267.
  41. Nadler D., Microlocal branes are constructible sheaves, Selecta Math. (N.S.) 15 (2009), 563-619, math.SG/0612399.
  42. Nadler D., Springer theory via the Hitchin fibration, Compos. Math. 147 (2011), 1635-1670, arXiv:0806.4566.
  43. Nadler D., Zaslow E., Constructible sheaves and the Fukaya category, J. Amer. Math. Soc. 22 (2009), 233-286, math.SG/0604379.
  44. Oh Y.-G., Unwrapped continuation invariance in Lagrangian Floer theory: energy and C0 estimates, arXiv:0910.1131.
  45. Perutz T., Lagrangian matching invariants for fibred four-manifolds. I, Geom. Topol. 11 (2007), 759-828, math.SG/0606061.
  46. Perutz T., Lagrangian matching invariants for fibred four-manifolds. II, Geom. Topol. 12 (2008), 1461-1542, math.SG/0606062.
  47. Perutz T., A symplectic Gysin sequence, arXiv:0807.1863.
  48. Premet A., Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), 1-55.
  49. Saneblidze S., Umble R., A diagonal on the associahedra, math.AT/0011065.
  50. Saneblidze S., Umble R., Diagonals on the permutahedra, multiplihedra and associahedra, Homology Homotopy Appl. 6 (2004), 363-411, math.AT/0209109.
  51. Seidel P., More about vanishing cycles and mutation, in Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ, 2001, 429-465, math.SG/0010032.
  52. Seidel P., Vanishing cycles and mutation, in European Congress of Mathematics, Vol. II (Barcelona, 2000), Progr. Math., Vol. 202, Birkhäuser, Basel, 2001, 65-85, math.SG/0007115.
  53. Seidel P., A long exact sequence for symplectic Floer cohomology, Topology 42 (2003), 1003-1063, math.SG/0105186.
  54. Seidel P., A-subalgebras and natural transformations, Homology, Homotopy Appl. 10 (2008), 83-114, math.KT/0701778.
  55. Seidel P., Fukaya categories and Picard-Lefschetz theory, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008, math.SG/0206155.
  56. Seidel P., Symplectic homology as Hochschild homology, in Algebraic Geometry - Seattle 2005. Part 1, Proc. Sympos. Pure Math., Vol. 80, Amer. Math. Soc., Providence, RI, 2009, 415-434, math.SG/0609037.
  57. Seidel P., Cotangent bundles and their relatives, morse Lectures, Princeton University, 2010, available at
  58. Seidel P., Homological mirror symmetry for the genus two curve, J. Algebraic Geom. 20 (2011), 727-769, arXiv:0812.1171.
  59. Seidel P., Some speculations on pairs-of-pants decompositions and Fukaya categories, in Surveys in Differential Geometry. Vol. XVII, Surv. Differ. Geom., Vol. 17, Int. Press, Boston, MA, 2012, 411-425, arXiv:1004.0906.
  60. Seidel P., Smith I., A link invariant from the symplectic geometry of nilpotent slices, Duke Math. J. 134 (2006), 453-514, math.SG/0405089.
  61. Sheridan N., On the homological mirror symmetry conjecture for pairs of pants, J. Differential Geom. 89 (2011), 271-367, arXiv:1012.3238.
  62. Sibilla N., Treumann D., Zaslow E., Ribbon graphs and mirror symmetry I, arXiv:1103.2462.
  63. Sikorav J.C., Some properties of holomorphic curves in almost complex manifolds, in Holomorphic curves in symplectic geometry, Progr. Math., Vol. 117, Birkhäuser, Basel, 1994, 165-189.
  64. Stasheff J.D., Homotopy associativity of H-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275-292.
  65. Stasheff J.D., Homotopy associativity of H-spaces. II, Trans. Amer. Math. Soc. 108 (1963), 293-312.
  66. van den Dries L., Miller C., Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
  67. Wehrheim K., Woodward C.T., Exact triangle for fibered Dehn twists, available at
  68. Wehrheim K., Woodward C., Pseudoholomorphic quilts, arXiv:0905.1369.
  69. Wehrheim K., Woodward C.T., Functoriality for Lagrangian correspondences in Floer theory, Quantum Topol. 1 (2010), 129-170, arXiv:0708.2851.
  70. Wehrheim K., Woodward C.T., Quilted Floer cohomology, Geom. Topol. 14 (2010), 833-902, arXiv:0905.1370.
  71. Wehrheim K., Woodward C.T., Floer cohomology and geometric composition of Lagrangian correspondences, Adv. Math. 230 (2012), 177-228, arXiv:0905.1368.
  72. Wehrheim K., Woodward C.T., Quilted Floer trajectories with constant components: corrigendum to the article "Quilted Floer cohomology", Geom. Topol. 16 (2012), 127-154, arXiv:1101.3770.
  73. Weinstein A., Lectures on symplectic manifolds, Regional Conference Series in Mathematics, Vol. 29, Amer. Math. Soc., Providence, R.I., 1977.
  74. Weinstein A., Neighborhood classification of isotropic embeddings, J. Differential Geom. 16 (1981), 125-128.
  75. Weinstein A., Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991), 241-251.

Previous article  Next article   Contents of Volume 10 (2014)