Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 8 (2012), 017, 30 pages      arXiv:1109.0740
Contribution to the Special Issue “Loop Quantum Gravity and Cosmology”

Relational Observables in Gravity: a Review

Johannes Tambornino
Laboratoire de Physique, ENS Lyon, CNRS-UMR 5672, 46 Allée d'Italie, Lyon 69007, France

Received August 31, 2011, in final form March 14, 2012; Published online March 28, 2012

We present an overview on relational observables in gravity mainly from a loop quantum gravity perspective. The gauge group of general relativity is the diffeomorphism group of the underlying manifold. Consequently, general relativity is a totally constrained theory with vanishing canonical Hamiltonian. This fact, often referred to as the problem of time, provides the main conceptual difficulty towards the construction of gauge-invariant local observables. Nevertheless, within the framework of complete observables, that encode relations between dynamical fields, progress has been made during the last 20 years. Although analytic control over observables for full gravity is still lacking, perturbative calculations have been performed and within de-parameterizable toy models it was possible for the first time to construct a full set of gauge invariant observables for a background independent field theory. We review these developments and comment on their implications for quantum gravity.

Key words: Dirac observables; quantum gravity; problem of time; gauge invariance.

pdf (551 kb)   tex (46 kb)


  1. Arnowitt R., Deser S., Misner C.W., The dynamics of general relativity, in Gravitation: an Introduction to Current Research, Wiley, New York, 1962, 227-265.
  2. Ashtekar A., Singh P., Loop quantum cosmology: a status report, Classical Quantum Gravity 28 (2011), 213001, 122 pages, arXiv:1108.0893.
  3. Barbour J., The definition of Mach's principle, Found. Phys. 40 (2010), 1263-1284, arXiv:1007.3368.
  4. Barbour J., The nature of time, arXiv:0903.3489.
  5. Barbour J., Bertotti B., Mach's principle and the structure of dynamical theories, Proc. Roy. Soc. London Ser. A 382 (1982), 295-306.
  6. Bergmann P.G., "Gauge-invariant" variables in general relativity, Phys. Rev. 124 (1961), 274-278.
  7. Bergmann P.G., Observables in general relativity, Rev. Mod. Phys. 33 (1961), 510-514.
  8. Bergmann P.G., Komar A.B., Poisson brackets between locally defined observables in general relativity, Phys. Rev. Lett. 4 (1960), 432-433.
  9. Bojowald M., Loop quantum cosmology, Living Rev. Relativ. 11 (2008), 4, 131 pages.
  10. Bojowald M., Höhn P.A., Tsobanjan A., An effective approach to the problem of time, Classical Quantum Gravity 28 (2011), 035006, 18 pages, arXiv:1009.5953.
  11. Bojowald M., Höhn P.A., Tsobanjan A., Effective approach to the problem of time: general features and examples, Phys. Rev. D 83 (2011), 125023, 38 pages, arXiv:1011.3040.
  12. Bojowald M., Sandhöfer B., Skirzewski A., Tsobanjan A., Effective constraints for quantum systems, Rev. Math. Phys. 21 (2009), 111-154, arXiv:0804.3365.
  13. Brown J.D., Kuchar K.V., Dust as a standard of space and time in canonical quantum gravity, Phys. Rev. D 51 (1995), 5600-5629, gr-qc/9409001.
  14. Dirac P.A.M., Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series, Vol. 2, Belfer Graduate School of Science, New York, 1967.
  15. Dirac P.A.M., The theory of gravitation in Hamiltonian form, Proc. Roy. Soc. London. Ser. A 246 (1958), 333-343.
  16. Dittrich B., Partial and complete observables for canonical general relativity, Classical Quantum Gravity 23 (2006), 6155-6184, gr-qc/0507106.
  17. Dittrich B., Partial and complete observables for Hamiltonian constrained systems, Gen. Relativity Gravitation 39 (2007), 1891-1927, gr-qc/0411013.
  18. Dittrich B., Tambornino J., A perturbative approach to Dirac observables and their spacetime algebra, Classical Quantum Gravity 24 (2007), 757-783, gr-qc/0610060.
  19. Dittrich B., Tambornino J., Gauge-invariant perturbations around symmetry-reduced sectors of general relativity: applications to cosmology, Classical Quantum Gravity 24 (2007), 4543-4585, gr-qc/0702093.
  20. Dittrich B., Thiemann T., Are the spectra of geometrical operators in loop quantum gravity really discrete?, J. Math. Phys. 50 (2009), 012503, 11 pages, arXiv:0708.1721.
  21. Domagala M., Giesel K., Kaminski W., Lewandowski J., Gravity quantized: loop quantum gravity with a scalar field, Phys. Rev. D 82 (2010), 104038, 13 pages, arXiv:1009.2445.
  22. Gambini R., García-Pintos L.P., Pullin J., An axiomatic formulation of the Montevideo interpretation of quantum mechanics, Stud. History Philos. Modern Phys. 42 (2011), 256-263, arXiv:1002.4209.
  23. Gambini R., García-Pintos L.P., Pullin J., Undecidability and the problem of outcomes in quantum measurements, Found. Phys. 40 (2010), 93-115, arXiv:0905.4222.
  24. Gambini R., Porto R.A., Pullin J., Torterolo S., Conditional probabilities with Dirac observables and the problem of time in quantum gravity, Phys. Rev. D 79 (2009), 041501, 5 pages, arXiv:0809.4235.
  25. Gambini R., Pullin J., Making classical and quantum canonical general relativity computable through a power series expansion in the inverse cosmological constant, Phys. Rev. Lett. 85 (2000), 5272-5275, gr-qc/0008031.
  26. Gambini R., Pullin J., Relational physics with real rods and clocks and the measurement problem of quantum mechanics, Found. Phys. 37 (2007), 1074-1092, quant-ph/0608243.
  27. Gambini R., Pullin J., The large cosmological constant approximation to classical and quantum gravity: model examples, Classical Quantum Gravity 17 (2000), 4515-4539, gr-qc/0008032.
  28. Giddings S.B., Marolf D., Hartle J.B., Observables in effective gravity, Phys. Rev. D 74 (2006), 064018, 20 pages, hep-th/0512200.
  29. Giesel K., Hofmann S., Thiemann T., Winkler O., Manifestly gauge-invariant general relativistic perturbation theory. I. Foundations, Classical Quantum Gravity 27 (2010), 055005, 80 pages, arXiv:0711.0115.
  30. Giesel K., Hofmann S., Thiemann T., Winkler O., Manifestly gauge-invariant general relativistic perturbation theory. II. FRW background and first order, Classical Quantum Gravity 27 (2010), 055006, 52 pages, arXiv:0711.0117.
  31. Giesel K., Tambornino J., Thiemann T., Born-Oppenheimer decomposition for quantum fields on quantum spacetimes, arXiv:0911.5331.
  32. Giesel K., Tambornino J., Thiemann T., LTB spacetimes in terms of Dirac observables, Classical Quantum Gravity 27 (2010), 105013, 29 pages, arXiv:0906.0569.
  33. Giesel K., Thiemann T., Algebraic quantum gravity (AQG): IV. Reduced phase space quantization of loop quantum gravity, Classical Quantum Gravity 27 (2010), 175009, 29 pages, arXiv:0711.0119.
  34. Guillemin V., Sternberg S., Symplectic techniques in physics, 2nd ed., Cambridge University Press, Cambridge, 1990.
  35. Hellmann F., Partial observables in extended systems, arXiv:0812.0775.
  36. Hellmann F., Mondragon M., Perez A., Rovelli C., Multiple-event probability in general-relativistic quantum mechanics, Phys. Rev. D 75 (2007), 084033, 13 pages, gr-qc/0610140.
  37. Henneaux M., Teitelboim C., Quantization of gauge systems, Princeton University Press, Princeton, NJ, 1992.
  38. Husain V., Pawlowski T., Dust reference frame in quantum cosmology, arXiv:1108.1147.
  39. Husain V., Pawlowski T., Time and a physical Hamiltonian for quantum gravity, arXiv:1108.1145.
  40. Isham C.J., Canonical quantum gravity and the problem of time, gr-qc/9210011.
  41. Isham C.J., Structural issues in quantum gravity, gr-qc/9510063.
  42. Kaminski W., Lewandowski J., Pawlowski T., Physical time and other conceptual issues of quantum gravity on the example of loop quantum cosmology, Classical Quantum Gravity 26 (2009), 035012, 20 pages, arXiv:0809.2590.
  43. Kaminski W., Lewandowski J., Pawlowski T., Quantum constraints, Dirac observables and evolution: group averaging versus the Schrödinger picture in LQC, Classical Quantum Gravity 26 (2009), 245016, 37 pages, arXiv:0907.4322.
  44. Komar A., Construction of a complete set of independent observables in the general theory of relativity, Phys. Rev. 111 (1958), 1182-1187.
  45. Kuchar K.V., Canonical quantum gravity, gr-qc/9304012.
  46. Kuchar K.V., Time and interpretations of quantum gravity, in Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics (Winnipeg, MB, 1991), World Sci. Publ., River Edge, NJ, 1992, 211-314.
  47. Kuchar K.V., Romano J.D., Gravitational constraints that generate a Lie algebra, Phys. Rev. D 51 (1995), 5579-5582, gr-qc/9501005.
  48. Kuchar K.V., Torre C.G., Gaussian reference fluid and interpretation of quantum geometrodynamics, Phys. Rev. D 43 (1991), 419-441.
  49. Kunstatter G., Dirac versus reduced quantization: a geometrical approach, Classical Quantum Gravity 9 (1992), 1469-1485.
  50. Loll R., Noncommutativity of constraining and quantizing: a U(1)-gauge model, Phys. Rev. D 41 (1990), 3785-3791.
  51. Mondragon M., Perez A., Rovelli C., Multiple-event probability in general-relativistic quantum mechanics. II. A discrete model, Phys. Rev. D 76 (2007), 064005, 8 pages, arXiv:0705.0006.
  52. Perez A., Rovelli C., Observables in quantum gravity, gr-qc/0104034.
  53. Plyushchay M.S., Razumov A.V., Dirac versus reduced phase space quantization, in Geometry of Constrained Dynamical Systems (Cambridge, 1994), Cambridge Univ. Press, Cambridge, 1995, 239-250, hep-th/9412137.
  54. Reisenberger M., Rovelli C., Spacetime states and covariant quantum theory, Phys. Rev. D 65 (2002), 125016, 16 pages, gr-qc/0111016.
  55. Rovelli C., A note on the foundation of relativistic mechanics. I. Relativistic observables and relativistic states, gr-qc/0111037.
  56. Rovelli C., A note on the foundation of relativistic mechanics. II. Covariant Hamiltonian general relativity, gr-qc/0202079.
  57. Rovelli C., Comment on "Are the spectra of geometrical operators in Loop Quantum Gravity really discrete?" by B. Dittrich and T. Thiemann, arXiv:0708.2481.
  58. Rovelli C., Dynamics without time for quantum gravity: covariant Hamiltonian formalism and Hamilton-Jacobi equation on the space G, in Decoherence and entropy in complex systems, Lecture Notes in Phys., Vol. 633, Springer, Berlin, 2004, 36-62, gr-qc/0207043.
  59. Rovelli C., Loop quantum gravity: the first 25 years, Classical Quantum Gravity 28 (2011), 153002, 35 pages, arXiv:1012.4707.
  60. Rovelli C., Quantum gravity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004.
  61. Rovelli C., Quantum mechanics without time: a model, Phys. Rev. D 42 (1990), 2638-2646.
  62. Rovelli C., Partial observables, Phys. Rev. D 65 (2002), 124013, 8 pages, gr-qc/0110035.
  63. Rovelli C., Relational quantum mechanics, Internat. J. Theoret. Phys. 35 (1996), 1637-1678, quant-ph/9609002.
  64. Rovelli C., What is observable in classical and quantum gravity?, Classical Quantum Gravity 8 (1991), 297-316.
  65. Rovelli C., Smolin L., The physical Hamiltonian in nonperturbative quantum gravity, Phys. Rev. Lett. 72 (1994), 446-449, gr-qc/9308002.
  66. Schleich K., Is reduced phase space quantisation equivalent to Dirac quantisation?, Classical Quantum Gravity 7 (1990), 1529-1538.
  67. Speziale S., Background-free propagation in loop quantum gravity, Adv. Sci. Lett. 2 (2009), 280-290, arXiv:0810.1978.
  68. Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007.
  69. Thiemann T., Reduced phase space quantization and Dirac observables, Classical Quantum Gravity 23 (2006), 1163-1180, gr-qc/0411031.
  70. Thiemann T., Solving the problem of time in general relativity and cosmology with phantoms and k-essence, astro-ph/0607380.
  71. Ticciati R., Quantum field theory for mathematicians, Encyclopedia of Mathematics and its Applications, Vol. 72, Cambridge University Press, Cambridge, 1999.
  72. Torre C.G., Gravitational observables and local symmetries, Phys. Rev. D 48 (1993), R2373-R2376, gr-qc/9306030.

Previous article  Next article   Contents of Volume 8 (2012)