Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 7 (2011), 077, 17 pages      arXiv:1104.5101
Contribution to the Special Issue “Relationship of Orthogonal Polynomials and Special Functions with Quantum Groups and Integrable Systems”

Quantum Analogs of Tensor Product Representations of su(1,1)

Wolter Groenevelt
Delft Institute of Applied Mathematics, Technische Universiteit Delft, PO Box 5031, 2600 GA Delft, the Netherlands

Received April 28, 2011, in final form August 04, 2011; Published online August 09, 2011

We study representations of Uq(su(1,1)) that can be considered as quantum analogs of tensor products of irreducible *-representations of the Lie algebra su(1,1). We determine the decomposition of these representations into irreducible *-representations of Uq(su(1,1)) by diagonalizing the action of the Casimir operator on suitable subspaces of the representation spaces. This leads to an interpretation of the big q-Jacobi polynomials and big q-Jacobi functions as quantum analogs of Clebsch-Gordan coefficients.

Key words: tensor product representations; Clebsch-Gordan coefficients; big q-Jacobi functions.

pdf (439 kb)   tex (19 kb)


  1. Andrews G.E., Askey R., Classical orthogonal polynomials, in Orthogonal Polynomials and Applications (Bar-le-Duc, 1984), Lecture Notes in Math., Vol. 1171, Springer, Berlin, 1985, 36-62.
  2. Burban I.M., Klimyk A.U., Representations of the quantum algebra Uq(su1,1), J. Phys. A: Math. Gen. 26 (1993), 2139-2151.
  3. Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge, 2004.
  4. Groenevelt W., Bilinear summation formulas from quantum algebra representations, Ramanujan J. 8 (2004), 383-416, math.QA/0201272.
  5. Groenevelt W., Wilson function transforms related to Racah coefficients, Acta Appl. Math. 91 (2006), 133-191, math.CA/0501511.
  6. Groenevelt W., The vector-valued big q-Jacobi transform, Constr. Approx. 29 (2009), 85-127, math.CA/0612643.
  7. Groenevelt W., Koelink E., Meixner functions and polynomials related to Lie algebra representations, J. Phys. A: Math. Gen. 35 (2002), 65-85, math.CA/0109201.
  8. Groenevelt W., Koelink E., Kustermans J., The dual quantum group for the quantum group analog of the normalizer of SU(1,1) in SL(2,C), Int. Math. Res. Not. 2010 (2010), no. 7, 1167-1314, arXiv:0905.2830.
  9. Gupta D.P., Ismail M.E.H., Masson D.R., Contiguous relations, basic hypergeometric functions, and orthogonal polynomials. III. Associated continuous dual q-Hahn polynomials, J. Comput. Appl. Math. 68 (1996), 115-149, math.CA/9411226.
  10. Kalnins E.G., Manocha H.L., Miller W., Models of q-algebra representations: tensor products of special unitary and oscillator algebras, J. Math. Phys. 33 (1992), 2365-2383.
  11. Kalnins E.G., Miller W., A note on tensor products of q-algebra representations and orthogonal polynomials, J. Comput. Appl. Math. 8 (1996), 197-207.
  12. Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
  13. Koelink E., Stokman J.V., The big q-Jacobi function transform, Constr. Approx. 19 (2003), 191-235, math.CA/9904111.
  14. Korogodsky L.I., Vaksman L.L., Quantum G-spaces and Heisenberg algebra, in Quantum Groups (Leningrad, 1990), Lecture Notes in Math., Vol. 1510, Springer, Berlin, 1992, 56-66.
  15. Masuda T., Mimachi K., Nakagami Y., Noumi M., Saburi Y., Ueno K., Unitary representations of the quantum group SUq(1,1). II. Matrix elements of unitary representations and the basic hypergeometric functions, Lett. Math. Phys. 19 (1990), 195-204.
  16. Neretin Yu.A., Some continuous analogues of the expansion in Jacobi polynomials, and vector-valued orthogonal bases, Funct. Anal. Appl. 39 (2005), 106-119, math.CA/0309445.
  17. Ørsted B., Zhang G., L2-versions of the Howe correspondence. I, Math. Scand. 80 (1997), 125-160.
  18. Pukánszky L., On the Kronecker products of irreducible representations of the 2×2 real unimodular group. I, Trans. Amer. Math. Soc. 100 (1961), 116-152.
  19. Repka J., Tensor products of unitary representations of SL2(R), Amer. J. Math. 100 (1978), 747-774.
  20. Schmüdgen K., Unbounded operator algebras and representation theory, Operator Theory: Advances and Applications, Vol. 37, Birkhäuser Verlag, Basel, 1990.

Previous article   Next article   Contents of Volume 7 (2011)