
SIGMA 6 (2010), 042, 18 pages arXiv:0903.5237
https://doi.org/10.3842/SIGMA.2010.042
Contribution to the Special Issue “Noncommutative Spaces and Fields”
Discrete Minimal Surface Algebras
Joakim Arnlind ^{a} and Jens Hoppe ^{b}
^{a)} Institut des Hautes Études Scientifiques, Le BoisMarie, 35, Route de Chartres,
91440 BuressurYvette, France
^{b)} Eidgenössische Technische Hochschule, 8093 Zürich, Switzerland
(on leave of absence from Kungliga Tekniska Högskolan, 100 44 Stockholm, Sweden)
Received March 23, 2010, in final form May 18, 2010; Published online May 26, 2010
Abstract
We consider discrete minimal surface algebras (DMSA) as
generalized noncommutative analogues of minimal surfaces in
higher dimensional spheres. These algebras appear naturally in
membrane theory, where sequences of their representations are used
as a regularization. After showing that the defining relations of
the algebra are consistent, and that one can compute a basis of the
enveloping algebra, we give several explicit examples of
DMSAs in terms of subsets of sl_{n} (any semisimple Lie algebra
providing a trivial example by itself). A special class of DMSAs
are YangMills algebras.
The representation graph is introduced to study representations of
DMSAs of dimension d ≤ 4, and properties of representations
are related to properties of graphs. The representation graph of a
tensor product is (generically) the Cartesian product of the
corresponding graphs. We provide explicit examples of irreducible
representations and, for coinciding eigenvalues, classify all the
unitary representations of the corresponding algebras.
Key words:
noncommutative surface; minimal surface; discrete Laplace operator; graph representation; matrix regularization; membrane theory; YangMills algebra.
pdf (333 kb)
ps (234 kb)
tex (59 kb)
References
 Arnlind J.,
Graph techniques for matrix equations and eigenvalue dynamics,
PhD Thesis, Royal Institute of Technology, 2008.
 Arnlind J.,
Representation theory of Calgebras for a higherorder class of spheres and tori,
J. Math. Phys. 49 (2008), 053502, 13 pages,
arXiv:0711.2943.
 Arnlind J., Bordemann M., Hofer L., Hoppe J., Shimada H.,
Noncommutative Riemann surfaces by embeddings in R^{3},
Comm. Math. Phys. 288 (2009), 403429,
arXiv:0711.2588.
 Arnlind J., Hoppe J., Theisen S.,
Spinning membranes,
Phys. Lett. B 599 (2004), 118128.
 Berger R., DuboisViolette M.,
Inhomogeneous YangMills algebras,
Lett. Math. Phys. 76 (2006), 6575,
math.QA/0511521.
 Bergman G.M.,
The diamond lemma for ring theory,
Adv. in Math. 29 (1978), 178218.
 Bianchi L.,
Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti,
Mem. Soc. Ital. delle Scienze (3) 11 (1898), 267352.
 Connes A., DuboisViolette M.,
YangMills algebra,
Lett. Math. Phys. 61 (2002), 149158,
math.QA/0206205.
 Fairlie D.B., Fletcher P., Zachos C.K.,
Trigonometric structure constants for new infinitedimensional algebras,
Phys. Lett. B 218 (1989), 203206.
 Harary F., Trauth C.A. Jr.,
Connectedness of products of two directed graphs.
SIAM J. Appl. Math. 14 (1966), 250254.
 Herscovich E., Solotar A.,
Representation theory of YangMills algebras,
arXiv:0807.3974.
 Hoppe J.,
Quantum theory of a massless relativistic surface and a twodimensional bound state problem,
PhD Thesis, MIT, 1982, available at
http://dspace.mit.edu/handle/1721.1/15717.
 Hoppe J.,
Diffeomorphism groups, quantization, and SU(∞),
Internat. J. Modern Phys. A 4 (1989), 52355248.
 Hoppe J.,
Some classical solutions of membrane matrix model equations,
hepth/9702169.
 Lawson H.B. Jr.,
Complete minimal surfaces in S^{3},
Ann. of Math. (2) 92 (1970), 335374.
 Nekrasov N.,
Lectures on open strings, and noncommutative gauge theories,
hepth/0203109.
 Sabidussi G.,
Graph multiplication,
Math. Z. 72 (1959/1960), 446457.

