Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 5 (2009), 022, 12 pages      arXiv:0902.3968
Contribution to the Proceedings of the XVIIth International Colloquium on Integrable Systems and Quantum Symmetries

Conformal Killing-Yano Tensors on Manifolds with Mixed 3-Structures

Stere Ianus a, Mihai Visinescu b and Gabriel Eduard Vîlcu a, c
a) University of Bucharest, Faculty of Mathematics and Computer Science, Str. Academiei, Nr. 14, Sector 1, Bucharest 70109, Romania
b) National Institute for Physics and Nuclear Engineering, Department of Theoretical Physics, P.O. Box M.G.-6, Magurele, Bucharest, Romania
c) Petroleum-Gas University of Ploiesti, Department of Mathematics and Computer Science, Bulevardul Bucuresti, Nr. 39, Ploiesti 100680, Romania

Received October 30, 2008, in final form February 16, 2009; Published online February 23, 2009

We show the existence of conformal Killing-Yano tensors on a manifold endowed with a mixed 3-Sasakian structure.

Key words: Killing-Yano tensor; mixed 3-structure; Einstein space.

pdf (244 kb)   ps (172 kb)   tex (15 kb)


  1. Bejancu A., Duggal K.L., Lightlike submanifolds of semi-Riemannian manifolds and its application, Kluwer, Dortrecht, 1996.
  2. Belgun F., Moroianu A., Semmelmann U., Killing forms on symmetric spaces, Differential Geom. Appl. 24 (2006), 215-222, math.DG/0409104.
  3. Benenti S., Separable dynamical systems: characterization of separability structures on Riemannian manifolds, Rep. Math. Phys. 12 (1977), 311-316.
  4. Blair D.E., Almost contact manifolds with Killing structure tensors, Pacific J. Math. 39 (1971), 285-292.
  5. Blair D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin - New York, 1976.
  6. Boyer C., Galicki K., 3-Sasakian manifolds, in Surveys in Differential Geometry: Essays on Einstein Manifolds, Surv. Differ. Geom., Vol. VI, Int. Press, Boston, MA, 1999, 123-184, hep-th/9810250.
  7. Caldarella A., Pastore A.M., Mixed 3-Sasakian structures and curvature, arXiv:0803.1953.
  8. Cariglia M., Quantum mechanics of Yano tensors: Dirac equation in curved spacetime, Classical Quantum Gravity 21 (2004), 1051-1077, hep-th/0305153.
  9. Carter B., Killing tensor quantum numbers and conserved currents in curved spaces, Phys. Rev. D 16 (1977), 3395-3414.
  10. Carter B., McLenaghan R.G., Generalized total angular momentum operator for Dirac equation in curved space-time, Phys. Rev. D 19 (1979), 1093-1097.
  11. Cortés V., Mayer C., Mohaupt T., Saueressig F., Special geometry of euclidean supersymmetry. II. Hypermultiplets and the c-map, J. High Energy Phys. 2005 (2005), no. 06, 025, 37 pages, hep-th/0503094.
  12. Dunajski M., West S., Anti-self-dual conformal structures in neutral signature, in Recent Developments in Pseudo-Riemannian Geometry, Editors D.V. Alekseevsky and H. Baum, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, 113-148, math.DG/0610280.
  13. Floyd R., The dynamics of Kerr fields, PhD Thesis, London University, 1973.
  14. Frolov V.P., Kubiznak D., Higher-dimensional black holes: hidden symmetries and separation of variables, Classical Quantum Gravity 25 (2008), 154005, 22 pages, arXiv:0802.0322.
  15. Gibbons G.W., Rietdijk R.H., van Holten J.W., SUSY in the sky, Nuclear Phys. B 404 (1993), 42-64, hep-th/9303112.
  16. Gray A., Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), 259-280.
  17. Hull C.M., Actions for (2,1) sigma models and strings, Nuclear Phys. B 509 (1998), 252-272, hep-th/9702067.
  18. Hull C.M., Duality and the signature of space-time, J. High Energy Phys. 1998 (1998), no. 11, 017, 36 pages, hep-th/9807127.
  19. Ianus S., Mazzocco R., Vîlcu G.E., Real lightlike hypersurfaces of paraquaternionic Kähler manifolds, Mediterr. J. Math. 3 (2006), 581-592.
  20. Ianus S., Vîlcu G.E., Some constructions of almost para-hyperhermitian structures on manifolds and tangent bundles, Int. J. Geom. Methods Mod. Phys. 5 (2008), 893-903, arXiv:0707.3360.
  21. Ianus S., Vîlcu G.E., Hypersurfaces of paraquaternionic space forms, J. Gen. Lie Theory Appl. 2 (2008), 175-179.
  22. Ianus S., Vîlcu G.E., Paraquaternionic manifolds and mixed 3-structures, in Proceedings of the VIII International Colloquium on Differential Geometry (July 7-21, 2008, Santiago de Compostela), Editors J.A. López and E. García-Río, Analysis and Geometry in Foliated Manifolds, World Scientific, Singapore, 2009, to appear.
  23. Jost J., Riemannian geometry and geometric analysis, 3rd ed., Springer-Verlag, Berlin, 2002.
  24. Kamada H., Neutral hyper-Kähler structures on primary Kodaira surfaces, Tsukuba J. Math. 23 (1999), 321-332.
  25. Kashiwada T., On conformal Killing tensor, Natur. Sci. Rep. Ochanomizu Univ. 19 (1968), 67-74.
  26. Leiva C., Plyushchay M., Nonlinear superconformal symmetry of a fermion in the field of a Dirac monopole, Phys. Lett. B 582 (2004), 135-143, hep-th/0311150.
  27. Matsumoto K., On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci. 12 (1989), 151-156.
  28. Molino P., Riemannian foliations, Progress in Mathematics, Vol. 73, Birkhäuser Boston, Inc., Boston, MA, 1988.
  29. Moroianu A., Semmelmann U., Twistor forms on Kähler manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), 823-845, math.DG/0204322.
  30. O'Neill B., Semi-Riemannian geometry. With applications to relativity, Pure and Applied Mathematics, Vol. 103, Academic Press, New York, 1983.
  31. Ooguri H., Vafa C., Geometry of N = 2 strings, Nuclear Phys. B 361 (1991), 469-518.
  32. Penrose R., Naked singularities, Ann. New York Acad. Sci. 224 (1973), 125-134.
  33. Plyushchay M.S., On the nature of fermion-monopole supersymmetry, Phys. Lett. B 485 (2000), 187-192, hep-th/0005122.
  34. Semmelmann U., Conformal Killing forms on Riemannian manifolds, Math. Z. 245 (2003), 503-527, math.DG/0206117.
  35. Tanimoto M., The role of Killing-Yano tensors in supersymmetric mechanics on a curved manifold, Nuclear Phys. B 442 (1995), 549-560, gr-qc/9501006.
  36. Vaman D., Visinescu M., Supersymmetries and constants of motion in Taub-NUT spinning space, Fortschr. Phys. 47 (1999), 493-514, hep-th/9805116.
  37. Yano K., Some remarks on tensor fields and curvature, Ann. of Math. (2) 55 (1952), 328-347.

Previous article   Next article   Contents of Volume 5 (2009)