Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 4 (2008), 035, 10 pages      arXiv:0803.4168

Relative differential K-characters

Mohamed Maghfoul
Université Ibn Tofaïl, Département de Mathématiques, Kénitra, Maroc

Received November 26, 2007, in final form March 17, 2008; Published online March 28, 2008

We define a group of relative differential K-characters associated with a smooth map between two smooth compact manifolds. We show that this group fits into a short exact sequence as in the non-relative case. Some secondary geometric invariants are expressed in this theory.

Key words: geometric K-homology; differential K-characters.

pdf (223 kb)   ps (163 kb)   tex (13 kb)


  1. Atiyah M.F., Patodi V.K., Singer I.M., Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69.
  2. Atiyah M.F., Patodi V.K., Singer I.M., Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc. 78 (1975), 405-432.
  3. Atiyah M.F., Patodi V.K., Singer I.M., Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Philos. Soc. 79 (1976), 71-99.
  4. Asahawa T., Surgimoto S., Terashima S., D-branes, matrix theory and K-homology, J. High Energy Phys. 2002 (2002), no. 3, 034, 40 pages, hep-th/0108085.
  5. Baum P., Douglas R., K-homology and index theory, in Operator Algebras and Applications, Proc. Sympos. Pure Math., Vol. 38, Amer. Math. Soc., Providence, R.I., 1982, 117-173.
  6. Baum P., Douglas R., Relative K-homology and C*-algebras, K-theory 5 (1991), 1-46.
  7. Bunke U., Turner P., Willerton S., Gerbes and homotopy quantum field theories, Algebr. Geom. Topol. 4 (2004), 407-437.
  8. Benameur M.T., Maghfoul M., Differential characters in K-theory, Differential Geom. Appl. 24 (2006), 417-432.
  9. Brightwell M., Turner P., Relative differential characters, Comm. Anal. Geom. 14 (2006), 269-282, math.AT/0408333.
  10. Cheeger J., Simons J., Differential characters and geometric invariants, in Geometry and Topology (1983/84, College Park, Md.), Lecture Notes in Math., Vol. 1167, Springer, Berlin, 1985, 50-80.
  11. Chern S.S., Simons J., Characteristic forms and geometric invariants, Ann. of Math. (2) 79 (1974), 48-69.
  12. Harvey R., Lawson B., Lefschetz-Pontrjagin duality for differential characters, An. Acad. Brasil. Ciênc. 73 (2001), 145-159.
  13. Hopkins M.J., Singer I.M., Quadratic functions in geometry, topology and M-theory, J. Differential Geom. 70 (2005), 329-452, math.AT/0211216.
  14. Lott J., R/Z-index theory, Comm. Anal. Geom. 2 (1994), 279-311.
  15. Lupercio E., Uribe B., Differential characters on orbifolds and string connection. I. Global quotients, in Gromov-Witten Theory of Spin Curves and Orbifolds (May 3-4, 2003, San Francisco, CA, USA), Editors T.J. Jarvis et al., Amer. Math. Soc., Providence, Contemp. Math. 403 (2006), 127-142, math.DG/0311008.
  16. Periwal V., D-branes charges and K-homology, J. High Energy Phys. 2000 (2000), no. 7, 041, 6 pages, hep-th/9805170.
  17. Reis R.M., Szabo R.J., Geometric K-homology of flat D-branes, Comm. Math. Phys. 266 (2006), 71-122, hep-th/0507043.

Previous article   Next article   Contents of Volume 4 (2008)