Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 4 (2008), 013, 23 pages      arXiv:0802.0479
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics

Towards Unifying Structures in Higher Spin Gauge Symmetry

Anders K.H. Bengtsson
School of Engineering, University College of Borås, Allégatan 1, SE-50190 Borås, Sweden

Received November 01, 2007, in final form January 25, 2008; Published online February 04, 2008

This article is expository in nature, outlining some of the many still incompletely understood features of higher spin field theory. We are mainly considering higher spin gauge fields in their own right as free-standing theoretical constructs and not circumstances where they occur as part of another system. Considering the problem of introducing interactions among higher spin gauge fields, there has historically been two broad avenues of approach. One approach entails gauging a non-Abelian global symmetry algebra, in the process making it local. The other approach entails deforming an already local but Abelian gauge algebra, in the process making it non-Abelian. In cases where both avenues have been explored, such as for spin 1 and 2 gauge fields, the results agree (barring conceptual and technical issues) with Yang-Mills theory and Einstein gravity. In the case of an infinite tower of higher spin gauge fields, the first approach has been thoroughly developed and explored by M. Vasiliev, whereas the second approach, after having lain dormant for a long time, has received new attention by several authors lately. In the present paper we briefly review some aspects of the history of higher spin gauge fields as a backdrop to an attempt at comparing the gauging vs. deforming approaches. A common unifying structure of strongly homotopy Lie algebras underlying both approaches will be discussed. The modern deformation approach, using BRST-BV methods, will be described as far as it is developed at the present time. The first steps of a formulation in the categorical language of operads will be outlined. A few aspects of the subject that seems not to have been thoroughly investigated are pointed out.

Key words: higher spin; gauge field theory; BRST-BV methods.

pdf (333 kb)   ps (213 kb)   tex (32 kb)


  1. Fang J., Fronsdal C., Deformations of gauge groups: gravitation, J. Math. Phys. 20 (1979), 2264-2271.
  2. Fronsdal C., Some open problems with higher spins, in Supergravity, Editors P. van Nieuwenhuizen and D.Z. Freedman, North-Holland Publishing Company, 1979, 245-249.
  3. Bengtsson A.K.H., Gauge invariance for spin-3 fields, Phys. Rev. D 32 (1985), 2031-2036.
  4. Burgers G.J.H., On the construction interactions of field theories for higher spin massless particles, PhD Thesis, Rijksuniversteit, Leiden, 1985.
  5. Berends F.A., Burgers G.J.H., van Dam H., On spin three self interactions, Z. Phys. C 24 (1984), 247-254.
  6. Bengtsson A.K.H., Bengtsson I., Brink L., Cubic interaction terms for arbitrary spin, Nuclear Phys. B 227 (1983), 31-40.
  7. Fuchs J., Scweigert C., Symmetries, Lie algebras and representations, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1997.
  8. Bengtsson A.K.H., Bengtsson I., Massless higher-spin fields revisited, Classical Quantum Gravity 3 (1986), 927-936.
  9. Bekaert X., Higher spin algebras as higher symmetries, arXiv:0704.0898.
  10. Siegel W., Zwiebach B., Gauge string fields from the light-cone, Nuclear Phys. B 282 (1987), 125-141.
  11. Ouvry S., Stern J., Gauge fields of any spin and symmetry, Phys. Lett. B 177 (1987), 335-340.
  12. Bengtsson A.K.H., A unified action for higher spin gauge bosons from covariant string theory, Phys. Lett. B 182 (1987), 321-325.
  13. Meurice Y., From points to gauge fields, Phys. Lett. B 186 (1988), 189-194.
  14. Labastida J.M.F., Massless particles in arbitrary representations of the Lorentz group, Nuclear Phys. B 322 (1989), 185-209.
  15. Pashnev A., Tsulaia M.M., Dimensional reduction and BRST approach to the description of a Regge trajectory, Modern Phys. Lett. A 12 (1997), 861-870, hep-th/9703010.
  16. Pashnev A., Tsulaia M., Description of the higher massless irreducible integer spins in the BRST approach, Modern Phys. Lett. A 13 (1998), 1853-1864, hep-th/9803207.
  17. Francia D., Sagnotti A., Free geometric equations for higher spins, Phys. Lett. B 543 (2002), 303-310, hep-th/0207002.
  18. Sundborg B., Stringy gravity, interacting tensionless strings and massless higher spins, Nuclear Phys. Proc. Suppl. 102 (2001), 113-119, hep-th/0103247.
  19. Bonelli G., On the tensionless limit of bosonic strings, infinite symmetries and higher spins, Nuclear Phys. B 669 (2003), 159-172, hep-th/0305155.
  20. Sagnotti A., Tsulaia M., On higher spins and the tensionless limit of string theory, Nuclear Phys. B 682 (2004), 83-116. hep-th/0311257.
  21. Francia D., Sagnotti A., Higher-spin geometry and string theory, J. Phys. Conf. Ser. 33 (2006), 57-72, hep-th/0601199.
  22. Bianchi M., Higher spins and stringy AdS5 × S5, Fortsch. Phys. 53 (2005), 665-691, hep-th/0409304.
  23. Sezgin E., Sagnotti A., Sundell P., On higher spins with a strong sp(2,r) condition, in Proceedings of First Solvay Workshop on Higher-Spin Gauge Theories (May 12-14, 2004, Brussels), Editors G. Bonelli, R. Argurio, G. Barnich and M. Grigoriev, Université Libre de Bruxelles, International Solvay Institutes for Physics and Chemistry, 2004, 100-121, hep-th/0501156.
  24. Mourad J., Francia D., Sagnotti A., Current exchanges and unconstrained higher spins, Nuclear Phys. B 773 (2007), 203-237, hep-th/0701163.
  25. Maldacena J., The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998), 231-252, hep-th/9711200.
  26. Sezgin E., Sundell P., Massless higher spins and holography, Nuclear Phys. B 644 (2002), 303-370, Erratum, Nuclear Phys. B 660 (2003), 403, hep-th/0205131.
  27. Morales J.F., Beisert N., Bianchi M., Samtleben H., Higher spin symmetry and N = 4 SYM, J. High Energy Phys. 2004 (2004), no. 07, 058, 35 pages, hep-th/0405057.
  28. Fronsdal C., Massless fields with integer spin, Phys. Rev. D 18 (1978), 3624-3629.
  29. Bengtsson A.K.H., Structure of higher spin gauge interactions, J. Math. Phys. 48 (2007), 072302, 35 pages, hep-th/0611067.
  30. Bengtsson A.K.H., BRST approach to interacting higher-spin gauge fields, Classical Quantum Gravity 5 (1988), 437-451.
  31. Francia D., Sagnotti A., On the geometry of higher-spin gauge fields, Classical Quantum Gravity 20 (2003), 473-486, hep-th/0212185.
  32. Bengtsson A.K.H., A one-dimensional invariance principle for gauge fields of integer spin, Phys. Lett. B 189 (1987), 337-340.
  33. Henneaux M., Teitelboim C., First and second quantized point particles of any spin, in Quantum Mechanics of Fundamental Systems 2, Editors C. Teitelboim and J. Zanelli, Series of the Centro de Estudios Científicos de Santiago, Plenum Press, New York, 1989, 113-152.
  34. Svartholm N. (Editor), Elementary Particle theory. Relativistic groups and analyticity, Almqvist-Wiksell, Wiley Interscience Division, 1968.
  35. Casalbuoni R., Longhi G., A geometrical model for nonhadrons and its implications for hadrons, Nouvo Cimento A 25 (1975), 482-502.
  36. Dirac P.A.M., A remarkable represenation of the 3 + 2 deSitter group, J. Math. Phys. 4 (1963), 901-909.
  37. Flato M., Fronsdal C., One massless particle equals two Dirac singletons. Lett. Math. Phys. 2 (1978), 421-426.
  38. Flato M., Fronsdal C., On Dis and Racs, Phys. Lett. B 97 (1980), 236-240.
  39. Günaydin M., Saçlioglu C., Oscillator-like unitary representations of non-compact groups with a Jordan structure and the non-compact groups of supergravity, Comm. Math. Phys. 87 (1982), 159-179.
  40. Günaydin M., Singleton and doubleton supermultiplets of space-time supergroups and infinite spin superalgebras, Preprint CERN-TH-5500/89, HU-TFT-89-35, 1989.
  41. Kibble T.W.B., Lorentz invariance and the gravitational field, J. Math. Phys. 2 (1961), 212-221.
  42. Utiyama R., Invariant theoretical interpretation of interaction, Phys. Rev. 101 (1956), 1597-1607.
  43. MacDowell S.W., Mansouri F., Unified geometric theory of gravity and supergravity, Phys. Rev. Lett. 38 (1977), 739-742.
  44. Mansouri F., Chang L.N., Gravitation as a gauge theory, Phys. Rev. D 13 (1976), 3192-3200.
  45. Grensing D., Grensing G., General relativity as a gauge theory of the Poincaré group, Phys. Rev. D 28 (1983), 286-296.
  46. Hehl F.W., von der Heyde P., Kerlick G.D., Nester J.M., General relativity with spin and torsion: foundations and prospects, Rev. Modern Phys. 48 (1976), 393-416.
  47. Kibble T.W.B., Stelle K.S., Gauge theories of gravity and supergravity, in Progress in Quantum Field Theory: In Honour of Professor H. Umewaza, Editors H. Ezawa and S. Kamefuchi, North-Holland, Amsterdam, 1986, 57-81.
  48. Stelle K.S., West P.C., Spontaneously broken de Sitter symmetry and the gravitational holonomy group, Phys. Rev. D 21 (1980), 1466-1488.
  49. Iazeolla C., Bekaert X., Cnockaert S., Vasiliev M.A., Nonlinear higher spin theories in various dimensions, in Proceedings of First Solvay Workshop on Higher-Spin Gauge Theories (May 12-14, 2004, Brussels), Editors G. Bonelli, R. Argurio, G. Barnich and M. Grigoriev, Université Libre de Bruxelles, International Solvay Institutes for Physics and Chemistry, 2004, 132-197, hep-th/0503128.
  50. Engqvist J., Dualities, symmetries and unbroken phases in string theory, PhD Thesis, Uppsala University, 2005.
  51. D'Auria R., Fré P., Geometric supergravity in D = 11 and its hidden supergroup, Nuclear Phys. B 201 (1982), 101-140, Errata, Nuclear Phys. B 206 (1982), 496.
  52. Sullivan D., Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977), no. 47, 269-331.
  53. Vasiliev M.A., Actions, charges and off-shell fields in the unfolded dynamics approach, Int. J. Geom. Methods Mod. Phys. 3 (2006), 37-80, hep-th/0504090.
  54. Lada T., Stasheff J., Introduction to sh-Lie algebras for physicists, Internat. J. Theoret. Phys. 32 (1993), 1087-1104, hep-th/9209099.
  55. Lada T., Markl M., Strongly homotopy Lie algebras, Comm. Algebra 23 (1995), 2147-2161, hep-th/9406095.
  56. Voronov T., Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra 202 (2005), 133-153, math.QA/0304038.
  57. de Azcárraga J.A., Pérez Bueno J.C., Higher-order simple Lie algbras, Comm. Math. Phys. 184 (1997), 669-681, hep-th/9605213.
  58. Barnich G., Grigoriev M., BRST extension of the non-linear unfolded formalism, hep-th/0504119.
  59. Semikhatov A., Barnich G., Grigoriev M., Tipunin I., Parent field theory and unfolding in BRST first-quantized terms, Comm. Math. Phys. 260 (2005), 147-181, hep-th/0406192.
  60. Ogievetski V.I., Polubarinov I.V., Interacting fields of spin 1 and symmetry properties, Ann. Phys. 25 (1963), 358-386.
  61. Gupta S.N., Quantization of Einstein's gravitational field: linear approximation, Proc. Phys. Soc. Sect. A 65 (1952), 161-169.
  62. Gupta S.N., Gravitation and electromagnetism, Phys. Rev. (2) 96 (1954), 1693-1685.
  63. Kraichnan R.H., Special-relativistic derivation of generally covariant gravitation theory, Phys. Rev. 98 (1955), 1118-1122.
  64. Wyss W., Zur unizität der Gravitationstheorie, Helv. Phys. Acta 38 (1965), 469-480.
  65. Thirring W.E., An alternative approach to the theory of gravitation, Ann. Phys. 16 (1961), 96-117.
  66. Feynman R.P., Feynman lectures on gravitation, Westview Press, 2002.
  67. Deser S., Self-interaction and gauge invariance, Gen. Relativity Gravitation 1 (1970), 9-18.
  68. Boulware D.G., Deser S., Kay J.H., Supergravity from self-interaction, Phys. A 96 (1979), 141-162.
  69. Deser S., Gravity from self-interaction in a curved background, Classical Quantum Gravity 4 (1987), L99-L105.
  70. Bengtsson A.K.H., An abstract interface to higher spin gauge field theory, J. Math. Phys. 46 (2005), 042312, 23 pages, hep-th/0403267.
  71. Barnich G., Henneaux M., Consistent couplings between fields with a gauge freedom and deformations of the master equation, Phys. Lett. B 311 (1993), 123-129, hep-th/9304057.
  72. Henneaux M., Consistent interactions between gauge fields: the cohomological approach, in Secondary Calculus and Cohomological Physics, Editors M. Henneaux, J. Krasil'shchik and A. Vinogradov, Contemp. Math. 219 (1998), 93-109, hep-th/9712226.
  73. Boulanger N., Bekaert X., Cnockaert S., Spin three gauge theory revisited, J. High Energy Phys. 2006 (2006), no. 01, 052, 34 pages, hep-th/0508048.
  74. Stasheff J., The (secret?) homological algebra of the Batalin-Vilkovisky approach, in Secondary Calculus and Cohomological Physics, Editors M. Henneaux, J. Krasil'shchik and A. Vinogradov, Contemp. Math. 219 (1998), 195-210, hep-th/9712157.
  75. Berends F.A., Burgers G.J.H., van Dam H., On the theoretical problems in constructing interactions involving higher-spin massless particles, Nuclear Phys. B 260 (1985), 295-322.
  76. Fulp R., Lada T., Stasheff J., Sh-Lie algebras induced by gauge transformations, Comm. Math. Phys. 231 (2002), 25-43, math.QA/0012106.
  77. Baez J., Quantum quandaries: a category-theoretic perspective, in Structural Foundations of Quantum Gravity, Editors D.P. Rickles, S.R.D. French and J. Saatsi, Oxford University Press, 2006, 240-265, quant-ph/0404040.
  78. May J.P., Operads, algebras and modules, in Operads: Proceedings of Renaissance Conferences (1995, Hartford, CT/Luminy), Contemp. Math. 202 (1997), 15-31.
  79. Leinster T., Higher operads, higher categories, Cambridge University Press, 1989.

Previous article   Next article   Contents of Volume 4 (2008)