Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 3 (2007), 098, 29 pages      arXiv:0708.1705
Contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson

Quantum Gravity: Unification of Principles and Interactions, and Promises of Spectral Geometry

Bernhelm Booß-Bavnbek a, Giampiero Esposito b and Matthias Lesch c
a) IMFUFA, Roskilde University, P.O. Box 260, 4000 Roskilde, Denmark
b) INFN, Sezione di Napoli and Dipartimento di Scienze Fisiche, Complesso Universitario di Monte S. Angelo, Via Cintia, Edificio 6, 80126 Napoli, Italy
c) Bonn University, Mathematical Institute, Beringstr. 6, D-53115 Bonn, Germany

Received August 14, 2007, in final form September 25, 2007; Published online October 05, 2007

Quantum gravity was born as that branch of modern theoretical physics that tries to unify its guiding principles, i.e., quantum mechanics and general relativity. Nowadays it is providing new insight into the unification of all fundamental interactions, while giving rise to new developments in modern mathematics. It is however unclear whether it will ever become a falsifiable physical theory, since it deals with Planck-scale physics. Reviewing a wide range of spectral geometry from index theory to spectral triples, we hope to dismiss the general opinion that the mere mathematical complexity of the unification programme will obstruct that programme.

Key words: general relativity; quantum mechanics; quantum gravity; spectral geometry.

pdf (450 kb)   ps (284 kb)   tex (47 kb)


  1. Angelantonj C., Sagnotti A., Open strings, Phys. Rep. 371 (2002), 1-150, hep-th/0204089.
  2. Atiyah M.F., Harmonic spinors and elliptic operators. Arbeitstagung Lecture, 16 July 1962, Notes by S. Lang, duplicated, Bonn, 1962.
  3. Atiyah M.F., Bott R., Patodi V.K., On the heat equation and the index theorem, Invent. Math. 19 (1973), 279-330.
  4. Avramidi I.G., Esposito G., New invariants in the one-loop divergences on manifolds with boundary, Classical Quantum Grav. 15 (1998), 281-297.
  5. Avramidi I.G., Esposito G., Gauge theories on manifolds with boundary, Comm. Math. Phys. 200 (1999), 495-543, hep-th/9710048.
  6. Barvinsky A.O., Quantum effective action in spacetimes with branes and boundaries: diffeomorphism invariance, Phys. Rev. D 74 (2006), 084033, 18 pages, hep-th/0608004.
  7. Barvinsky A.O., Nesterov D.V., Quantum effective action in spacetimes with branes and boundaries, Phys. Rev. D 73 (2006), 066012, 12 pages, hep-th/0512291.
  8. Barvinsky A.O., Kamenshchik A.Yu., Kiefer C., Nesterov D.V., Effective action and heat kernel in a toy model of brane-induced gravity, Phys. Rev. D 75 (2007), 044010, 14 pages, hep-th/0611326.
  9. Becker K., Becker M., Schwarz J.H., String theory and M-theory: a modern introduction, Cambridge University Press, Cambridge, 2007.
  10. Bohle-Carbonell M., Booß B., Jensen J.H., Innermathematical vs. extramathematical obstructions to model credibility, in Proceedings of the Fourth International Conference "Mathematical Modelling in Science and Technology" (August 1983, Zürich), Editor X. Avula, Pergamon Press, New York, 1984, 62-65.
  11. Bonanno A., Reuter M., Cosmology of the Planck era from a renormalization group for quantum gravity, Phys. Rev. D 65 (2002), 043508, 20 pages, hep-th/0106133.
  12. Booß B., Bleecker D.D., Topology and analysis. The Atiyah-Singer index formula and gauge-theoretic physics, Springer, New York, 1985. See for new edition, in preparation.
  13. Booß-Bavnbek B., Against ill-founded, irresponsible modelling, in Teaching of Mathematical Modelling and Applications, Editors M. Niss et al., Ellis Horwood, Chichester, 1991, 70-82.
  14. Booß-Bavnbek B., Bleecker D., Spectral invariants of operators of Dirac type on partitioned manifolds, in Aspects of Boundary Problems in Analysis and Geometry, Editors J. Gil et al. Birkhäuser, Basel, 2004, 1-130, math.AP/0304214.
  15. Booß-Bavnbek B., Phillips J., Lesch M., Unbounded Fredholm operators and spectral flow, Canad. J. Math. 57 (2005), 225-250, math.FA/0108014.
  16. Booß-Bavnbek B., Wojciechowski K.P., Elliptic boundary problems for Dirac operators, Birkhäuser, Boston, 1993.
  17. Branson T.P., Gilkey P., Residues of the eta function for an operator of Dirac type, J. Funct. Anal. 108 (1992), 47-87.
  18. Branson T.P., Ørsted B., Explicit functional determinants in four dimensions, Proc. Amer. Math. Soc. 113 (1991), 671-684.
  19. Brüning J., Lesch M., On the eta-invariant of certain non-local boundary value problems, Duke Math. J. 96 (1999), 425-468, dg-ga/9609001.
  20. Brüning J., Lesch M., On boundary value problems for Dirac type operators. I. Regularity and self-adjointness, J. Funct. Anal. 185 (2001), 1-62, math.FA/9905181.
  21. Bytsenko A.A., Cognola G., Elizalde E., Moretti V., Zerbini S., Analytic aspects of quantum fields, World Scientific, Singapore, 2004.
  22. Chamseddine A.H., Connes A., The spectral action principle, Comm. Math. Phys. 186 (1997), 731-750, hep-th/9606001.
  23. Chamseddine A.H., Connes A., Marcolli M., Gravity and the standard model with neutrino mixing, hep-th/0610241.
  24. Connes A., Noncommutative geometry, Academic Press, San Diego, CA, 1994.
  25. Connes A., Moscovici H., The local index formula in noncommutative geometry, Geom. Funct. Anal. 5 (1995), 174-243.
  26. Deligne P., Etingof P., Freed D.S., Jeffrey L.C., Kazhdan P., Morgan J.W., Morrison D.R., Witten E., Quantum fields and strings: a course for mathematicians, American Mathematical Society, Providence, 1999.
  27. Deser S., Zumino B., Consistent supergravity, Phys. Lett. B 62 (1976), 335-337.
  28. DeWitt B.S., Dynamical theory of groups and fields, Gordon & Breach, New York, 1965.
  29. DeWitt B.S., Quantum theory of gravity. 2. The manifestly covariant theory, Phys. Rev. 162 (1967), 1195-1239.
  30. DeWitt B.S., The global approach to quantum field theory, Int. Ser. Monogr. Phys., Vol. 114, Clarendon Press, Oxford, 2003.
  31. DeWitt B.S., The space of gauge fields: its structure and geometry, in 50 Years of Yang-Mills Theory, Editor G. 't Hooft, World Scientific, Singapore, 2005, 15-32.
  32. Dirac P.A.M., The fundamental equations of quantum mechanics, Proc. R. Soc. Lond. A 109 (1925), 642-653.
  33. Dirac P.A.M., The Lagrangian in quantum mechanics, Phys. Z. USSR 3 (1933), 64-72.
  34. Di Vecchia P., Liccardo A., D-branes in string theory. 1, NATO Adv. Study Inst. Ser. C. Math. Phys. Sci. 556 (2000), 1-59, hep-th/9912161.
  35. Di Vecchia P., Liccardo A., D-branes in string theory. 2, hep-th/9912275.
  36. Donaldson S.K., Kronheimer P.B., The geometry of four-manifolds, The Clarendon Press, Oxford University Press, New York, 1990.
  37. Douglas R.G., Wojciechowski K.P., Adiabatic limits of the h-invariants. The odd-dimensional Atiyah-Patodi-Singer problem, Comm. Math. Phys. 142 (1991), 139-168.
  38. Dowker J.S., Kirsten K., The a3/2 heat kernel coefficient for oblique boundary conditions, Classical Quantum Gravity 16 (1999), 1917-1936, hep-th/9806168.
  39. Einstein A., The foundation of the general theory of relativity, Annalen Phys. 49 (1916), 769-822.
  40. Ellis G.F.R., Hawking S.W., The cosmic black body radiation and the existence of singularities in our universe, Astrophys. J. 152 (1968), 25-36.
  41. Elizalde E., On the concept of determinant for the differential operators of quantum physics, JHEP 1999 (1999), no. 07, 015, 13 pages, hep-th/9906229.
  42. Elizalde E., Zeta functions: formulas and applications, J. Comput. & Appl. Math. 118 (2000), 125-142.
  43. Elizalde E., Vanzo L., Zerbini, S., Zeta function regularization, the multiplicative anomaly and the Wodzicki residue, Comm. Math. Phys. 194 (1998) 613-630, hep-th/9701060.
  44. Esposito G., Dirac operators and spectral geometry, Cambridge Lect. Notes Phys., Vol. 12, Cambridge University Press, Cambridge, 1998.
  45. Esposito G., Fucci G., Kamenshchik A.Yu., Kirsten K., Spectral asymptotics of Euclidean quantum gravity with diff-invariant boundary conditions, Classical Quantum Gravity 22 (2005), 957-974, hep-th/0412269.
  46. Esposito G., Fucci G., Kamenshchik A.Yu., Kirsten K., A non-singular one-loop wave function of the universe from a new eigenvalue asymptotics in quantum gravity, JHEP 2005 (2005), no. 09, 063, 17 pages, hep-th/0507264.
  47. Esposito G., Marmo G., Sudarshan G., From classical to quantum mechanics, Cambridge University Press, Cambridge, 2004.
  48. Faddeev L.D., Popov V.N., Feynman diagrams for the Yang-Mills field, Phys. Lett. B 25 (1967), 29-30.
  49. Feynman R.P., Space-time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20 (1948), 367-387.
  50. Geroch R.P., Singularities in closed universes, Phys. Rev. Lett. 17 (1966), 445-447.
  51. Geroch R.P., An approach to quantization of general relativity, Ann. Phys. (N.Y.) 62 (1971), 582-589.
  52. Gilkey P.B., The residue of the global h-function at the origin, Adv. Math. 40 (1981), 290-307.
  53. Golfand A.Yu., Likhtman E.P., Extension of the algebra of Poincaré group generators and violation of p invariance, JETP Lett. 13 (1971), 323-326.
  54. Gracia-Bondía J.M., Várilly J.C., Figueroa H., Elements of noncommutative geometry, Birkhäuser, Boston, MA, 2001.
  55. Grubb G., Seeley R.T., Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems, Invent. Math. 121 (1995), 481-529.
  56. Guillemin V., A new proof of Weyl's formula on the asymptotic distribution of eigenvalues, Adv. Math. 55 (1985), 131-160.
  57. Hawking S.W., Occurrence of singularities in open universes, Phys. Rev. Lett. 15 (1965), 689-690.
  58. Hawking S.W., Singularities in the universe, Phys. Rev. Lett. 17 (1966), 444-445.
  59. Hawking S.W., The occurrence of singularities in cosmology, Proc. R. Soc. Lond. A 294 (1966), 511-521.
  60. Hawking S.W., The occurrence of singularities in cosmology. II, Proc. R. Soc. Lond. A 295 (1966), 490-493.
  61. Hawking S.W., The occurrence of singularities in cosmology. III. Causality and singularities, Proc. R. Soc. Lond. A 300 (1967), 187-201.
  62. Hawking S.W., Ellis G.F.R., Singularities in homogeneous world models, Phys. Lett. 17 (1965), 246-247.
  63. Hawking S.W., Ellis G.F.R., The large-scale structure of space-time, Cambridge University Press, Cambridge, 1973.
  64. Hawking S.W., Penrose R., The singularities of gravitational collapse and cosmology, Proc. R. Soc. Lond. A 314 (1970), 529-548.
  65. Heisenberg W., Quantum-mechanical re-interpretation of kinematic and mechanical relations, Z. Phys. 33 (1925), 879-893.
  66. Horowitz G.T., Marolf D., Quantum probes of spacetime singularities, Phys. Rev. D 52 (1995), 5670-5675, gr-qc/9504028.
  67. Horowitz G.T., Myers R., The value of singularities, Gen. Relativity Gravitation 27 (1995), 915-919, gr-qc/9503062.
  68. Horowitz G.T., Steif A.R., Space-time singularities in string theory, Phys. Rev. Lett. 64 (1990), 260-263.
  69. Joachim M., Unbounded Fredholm operators and K-theory, in High-dimensional Manifold Topology, World Sci. Publ., River Edge, NJ, 2003, 177-199.
  70. Kirk P., Lesch M., The h-invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary, Forum Math. 16 (2004), 553-629, math.DG/0012123.
  71. Lauscher O., Reuter M., Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev. D 65 (2002), 025013, 44 pages, hep-th/0108040.
  72. Lauscher O., Reuter M., Asymptotic safety in quantum Einstein gravity: nonperturbative renormalizability and fractal spacetime structure, hep-th/0511260.
  73. Lesch M., Determinants of regular singular Sturm-Liouville operators, Math. Nachr. 194 (1998), 139-170, math.DG/9902114.
  74. Lorenz L., On the identity of the vibrations of light with electrical currents, Phil. Mag. 34 (1867), 287-301.
  75. Lück W., Analytic and topological torsion for manifolds with boundary and symmetry, J. Differential Geom. 37 (1993), 263-322.
  76. Manin Y., Presentation to the closing round table "Are pure and applied mathematics drifting apart?", in Proceedings of the International Congress of Mathematicians (August 22-30, 2006, Madrid), Editors M. Sanz-Solé et al., European Mathematical Society, Zürich, 2007, 762-764, 775-776.
  77. Manin Y., Mathematical knowledge: internal, social and cultural aspects, Mathematics and Culture, Vol. 2, Editors C. Bartocci and P. Odifreddi, 2007, math.HO/0703427.
  78. van Nieuwenhuizen P., Supergravity, Phys. Rep. 68 (1981), 189-398.
  79. Osgood B., Phillips R., Sarnak P., Extremals of determinants of Laplacians, J. Funct. Anal. 80 (1988), 148-211.
  80. Park J., Wojciechowski K.P., Adiabatic decomposition of the z-determinant of the Dirac Laplacian I. The case of invertible tangential operator, Comm. Partial Differential Equations 27 (2002), 1407-1435 (with an Appendix by Y. Lee), math.DG/0112174.
  81. Park J., Wojciechowski K.P., Adiabatic decomposition of the z-determinant and scattering theory, Michigan Math. J. 54 (2006), 207-238, math.DG/0111046.
  82. Penrose R., Gravitational collapse and space-time singularities, Phys. Rev. Lett 14 (1965), 57-59.
  83. Polyakov A.M., Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981), 207-210.
  84. Polyakov A.M., Quantum geometry of fermionic strings, Phys. Lett. B 103 (1981), 211-213.
  85. Rennie A., Commutative geometries are spin manifolds, Rev. Math. Phys. 13 (2001), 409-464, math-ph/9903021.
  86. Rennie A., Várilly J.C., Reconstruction of manifolds in noncommutative geometry, math.OA/0610418.
  87. Rarita W., Schwinger J., On a theory of particles with half-integral spin, Phys. Rev. 60 (1941), 61-61.
  88. Reuter M., Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998), 971-985, hep-th/9605030.
  89. Reuter M., Saueressig F., Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev. D 65 (2002), 065016, 26 pages, hep-th/0110054.
  90. Sakharov A.D., Vacuum quantum fluctuations in curved space and the theory of gravitation, Sov. Phys. Dokl. 12 (1968), 1040-1041.
  91. Scott S.G., Wojciechowski K.P., The z-determinant and Quillen determinant for a Dirac operator on a manifold with boundary, Geom. Funct. Anal. 10 (2000), 1202-1236.
  92. Smolin L., The trouble with physics - the rise of string theory, the fall of a science and what comes next, Penguin Books, London, 2006.
  93. Streater R.F., Lost causes in and beyond physics, Springer, New York, 2007.
  94. Vishik S.M., Generalized Ray-Singer conjecture. I. A manifold with a smooth boundary, Comm. Math. Phys. 167 (1995), 1-102, hep-th/9305184.
  95. Volovik G.E., The Universe in a Helium droplet, Int. Ser. Monogr. Phys., Vol. 117, Clarendon Press, Oxford, 2003.
  96. Wess J., Zumino B., Supergauge transformations in four dimensions, Nuclear Phys. B 70 (1974), 39-50.
  97. Wodzicki M., Noncommutative residue. I. Fundamentals, in K-theory, Arithmetic and Geometry (Moscow, 1984-1986), Lecture Notes in Math., Vol. 1289, Springer, Berlin, 1987, 320-399.
  98. Yang C.N., Mills R.L., Conservation of isotopic spin and isotopic gauge invariance, Phys. Rev. 96 (1954), 191-195.

Previous article   Next article   Contents of Volume 3 (2007)