Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 3 (2007), 087, 13 pages      arXiv:0707.3341
Contribution to the Proceedings of the Seventh International Conference Symmetry in Nonlinear Mathematical Physics

Quantum Information from Graviton-Matter Gas

Lukasz-Andrzej Glinka
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna, Moscow Region, Russia

Received May 16, 2007, in final form August 27, 2007; Published online September 04, 2007

We present basics of conceptually new-type way for explaining of the origin, evolution and current physical properties of our Universe from the graviton-matter gas viewpoint. Quantization method for the Friedmann-Lemaitre Universe based on the canonical Hamilton equations of motion is proposed and quantum information theory way to physics of the Universe is showed. The current contribution from the graviton-matter gas temperature in quintessence approximation is discussed.

Key words: quantum cosmology; Friedmann Universe; nonequilibrium thermodynamics; quantum information in cosmology.

pdf (276 kb)   ps (231 kb)   tex (120 kb)


  1. Mukhanov V., Physical foundations of cosmology, Cambridge University Press, Cambridge, 2005.
  2. Bojowald M., Universe scenarios from loop quantum cosmology, Ann. Phys. 15 (2006), 326-341, astro-ph/0511557.
  3. Glinka L.A., Pervushin V.N., Hamiltonian unification of general relativity and standard model, Concepts Phys., submitted, arXiv:0705.0655.
  4. Glinka L.A., Pervushin V.N., Higgs particle mass in cosmology, talk on the Tenth European Meeting: From the Planck Scale to the Electroweak Scale,
  5. Zakharov A.F., Zakharova A.A., Pervushin V.N., Conformal cosmological model test with distant SNIa data, astro-ph/0611657.
  6. Dirac P.A.M., Fixation of coordinates in the Hamiltonian theory of gravitation, Phys. Rev. 114 (1959), 924-930.
    Dirac P.A.M., The theory of gravitation in Hamiltonian form, Proc. Roy. Soc. Lond. A 246 (1958), 333-343.
    Dirac P.A.M., Generalized Hamiltonian dynamics, Proc. Roy. Soc. Lond. A 246 (1958), 326-332.
    Dirac P.A.M., Generalized Hamiltonian dynamics, Can. J. Math. 2 (1950), 129-148.
  7. Einstein A., The meaning of relativity, Pricenton University Press, Princeton 1922.
    Einstein A., A generalized theory of gravitation, Rev. Mod. Phys. 20 (1948), 35-39.
  8. Friedmann A.A., Über die Krümmung des Raumes, Z. Phys. 10 (1922), 377-386.
    Friedmann A.A., Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes, Z. Phys. 21 (1924), 326-332.
  9. Lemaître G.-H., l'Univers en expansion, Annales Soc. Sci. Brux. A 53 (1933), 51-85.
  10. Zelmanov A.L., Orthometric form of monad formalism and its relations to chronometric invariants and kinemetric invariants, Doklady Acad. Nauk USSR 227 (1976), no. 1, 78-81.
  11. Barbashov B.M., Pervushin V.N., Zakharov A.F., Zinchuk V.A., Hamiltonian cosmological perturbation theory, Phys. Lett. B 633 (2006), 458-462, hep-th/0501242.
  12. Hilbert D., Die Grundlagen der Physik, Gott. Nachr., 27 (1915), 395-407.
  13. Misner Ch.W., Thorne K.S., Wheeler J.A., Gravitation, Freeman and Company, San Francisco, 1973.
  14. Weinberg S., Gravitation and cosmology. Principles and applications of the general theory of relativity, John Wiley & Sons, New York, 1972.
  15. Kolb E.W., Turner M.S., The early Universe, Addison-Wesley Publishing Company, 1988.
  16. Wheeler J.A., Superspace and the nature of quantum geometrodynamics, in Battelle Rencontres: 1967 Lectures in Mathematics and Physics, Editors C.M. DeWitt and J.A. Wheeler, New York, 1968, 242-307.
  17. DeWitt B.S., Quantum theory of gravity. I. The canonical theory, Phys. Rev. 160 (1967), 1113-1148.
  18. Peskin M.E., Schröder D.V., Introduction to quantum field theory, Addison-Wesley, 1995.
  19. Bogoliubov N.N., Logunov A.A., Oksak A.I., Todorov I.T., General principles of quantum field theory, Fizmatlit, Moscow, 2006 (in Russian).
  20. Bialynicki-Birula I., Bialynicka-Birula Z., Quantum electrodynamics, Pergamon, Oxford, 1975.
  21. Pervushin V.N., Zinchuk V.A., Bogoliubov's integrals of motion in quantum cosmology and gravity, Phys. At. Nucl. 70, (2007), 593-600.
  22. Blaizot J.-P., Ripka G., Quantum theory of finite systems, Massachusetts Institute of Technology Press, 1986.
  23. Breuer H.-P., Petruccione F., The theory of open quantum systems, Oxford University Press, Oxford, 2002.
  24. Zubarev D.N., Morozov V.G., Röpke G., Statistical mechanics of nonequilibrium processes, Fizmatlit, Moscow, 2002 (in Russian).
  25. Alber G., Beth T., Horodecki M., Horodecki P., Horodecki R., Rötteler M., Weinfurter H., Werner R., Zeilinger A., Quantum information. An introduction to basic theoretical concepts and experiments, Springer-Verlag, Berlin - Heidelberg, 2001.

Previous article   Next article   Contents of Volume 3 (2007)