Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 3 (2007), 020, 29 pages      nlin.SI/0605027
Contribution to the Vadim Kuznetsov Memorial Issue

Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows

Henrik Aratyn a and Johan van de Leur b
a) Department of Physics, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607-7059, USA
b) Mathematical Institute, University of Utrecht, P.O. Box 80010, 3508 TA Utrecht, The Netherlands

Received October 11, 2006, in final form January 09, 2007; Published online February 06, 2007

We use a Grassmannian framework to define multi-component tau functions as expectation values of certain multi-component Fermi operators satisfying simple bilinear commutation relations on Clifford algebra. The tau functions contain both positive and negative flows and are shown to satisfy the 2n-component KP hierarchy. The hierarchy equations can be formulated in terms of pseudo-differential equations for n × n matrix wave functions derived in terms of tau functions. These equations are cast in form of Sato-Wilson relations. A reduction process leads to the AKNS, two-component Camassa-Holm and Cecotti-Vafa models and the formalism provides simple formulas for their solutions.

Key words: Clifford algebra; tau-functions; Kac-Moody algebras; loop groups; Camassa-Holm equation; Cecotti-Vafa equations; AKNS hierarchy.

pdf (347 kb)   ps (243 kb)   tex (25 kb)


  1. Aratyn H., Gomes J.F., Zimerman A.H., Integrable hierarchy for multidimensional Toda equations and topological-anti-topological fusion, J. Geom. Phys. 46 (2003), 21-47, Erratum, J. Geom. Phys. 46 (2003), 201, hep-th/0107056.
  2. Aratyn H., Gomes J.F., Zimerman A.H., On negative flows of the AKNS hierarchy and a class of deformations of bihamiltonian structure of hydrodynamic type, J. Phys. A: Math. Gen. 39 (2006), 1099-1114, nlin.SI/0507062.
  3. Cecotti S., Vafa C., Topological-anti-topological fusion, Nuclear Phys. B 367 (1991), 359-461.
  4. Chen M., Liu S-Q., Zhang Y., A 2-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys. 75 (2006), 1-15, nlin.SI/0501028.
  5. Dubrovin B., Geometry and integrability of topological-antitopological fusion, Comm. Math. Phys. 152 (1993), 539-564, hep-th/9206037.
  6. Date E., Jimbo M., Kashiwara M., Miwa T. Operator approach to the Kadomtsev-Petviashvili equation. Transformation groups for soliton equations. III, J. Phys. Soc. Japan 50 (1981), 3806-3812.
  7. Harnad J., Orlov A.Yu., Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions, J. Phys. A: Math. Gen. 39 (2006), 8783-8809, math-ph/0512056.
  8. Jimbo M., Miwa M., Miwa T., Solitons and infinite dimensional Lie algebras, Publ. RIMS, Kyoto Univ. 19 (1983), 943-1001.
  9. Kac V.G., van de Leur J.W., The n-component KP hierarchy and representation theory, J. Math. Phys. 44 (2003), 3245-3293, hep-th/9308137.
  10. ten Kroode F., van de Leur J., Bosonic and fermionic realizations of the affine algebra gln, Comm. Math. Phys. 137 (1991), 67-107.
  11. van de Leur J., Twisted GLn loop group orbit and solutions of the WDVV equations, Int. Math. Res. Not. 11 (2001), 551-574, nlin.SI/0004021.
  12. van de Leur J.W., Martini R., The construction of Frobenius manifolds from KP tau-functions, Comm. Math. Phys. 205 (1999), 587-616, solv-int/9808008.
  13. Liu S-Q., Zhang Y., Deformations of semisimple bihamiltonian structures of hydrodynamic type, J. Geom. Phys. 54 (2005), 427-453, math.DG/0405146.
  14. Okounkov A., Infinite wedge and random partitions, Selecta Math. (N.S.) 7 (2001), 57-81, math.RT/9907127.
  15. Ueno K., Takasaki K., Toda lattice hierarchy, Adv. Stud. Pure Math. 4 (1984), 1-95.

Previous article   Next article   Contents of Volume 3 (2007)