Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 3 (2007), 014, 11 pages      math.CA/0701677
Contribution to the Vadim Kuznetsov Memorial Issue

An Analytic Formula for the A2 Jack Polynomials

Vladimir V. Mangazeev
Department of Theoretical Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, Australia

Received November 01, 2006, in final form January 05, 2007; Published online January 24, 2007

In this letter I shall review my joint results with Vadim Kuznetsov and Evgeny Sklyanin [Indag. Math. 14 (2003), 451-482] on separation of variables (SoV) for the An Jack polynomials. This approach originated from the work [RIMS Kokyuroku 919 (1995), 27-34] where the integral representations for the A2 Jack polynomials was derived. Using special polynomial bases I shall obtain a more explicit expression for the A2 Jack polynomials in terms of generalised hypergeometric functions.

Key words: Jack polynomials; integral operators; hypergeometric functions.

pdf (243 kb)   ps (164 kb)   tex (15 kb)


  1. Calogero F., Solution of a three-body problem in one dimension, J. Math. Phys. 10 (1969), 2191-2196.
  2. Erdélyi A. (Editor), Higher transcendental functions, Vol. I, McGraw-Hill Book Company, 1953.
  3. Jack H., A class of symmetric functions with a parameter, Proc. Royal Soc. Edinburgh (A) 69 (1970), 1-18.
  4. Jing N.H., Józefiak T., A formula for two-row Macdonald functions, Duke Math. J. 67 (1992), 377-385.
  5. Koornwinder T.H., Sprinkhuizen-Kuyper I.G., Generalized power series expansions for a class of orthogonal polynomials in two variables, SIAM J. Math. Anal. 9 (1978), 457-483.
  6. Kuznetsov V.B., Mangazeev V.V., Sklyanin E.K., Q-operator and factorized separation chain for Jack polynomials, Indag. Math. 14 (2003), 451-482, math.CA/0306242.
  7. Kuznetsov V.B., Sklyanin E.K., Separation of variables in the A2 type Jack polynomials, RIMS Kokyuroku 919 (1995), 27-34, solv-int/9508002.
  8. Kuznetsov V.B., Sklyanin E.K., On Bäcklund transformations for many-body systems, J. Phys. A: Math. Gen. 31 (1998), 2241-2251, solv-int/9711010.
  9. Kuznetsov V.B., Sklyanin E.K., Factorisation of Macdonald polynomials, in Symmetries and Integrability of Difference Equations, Lecture Note Series, Vol. 255, London Math. Society, Cambridge University Press, 1999, 370-384, q-alg/9703013.
  10. Kuznetsov V.B., Sklyanin E.K., Separation of variables and integral relations for special functions, The Ramanujan J. 3 (1999), 5-35, q-alg/9705006.
  11. Lassalle M., Explicitation des polynômes de Jack et de Macdonald en longueur trois, C.R. Acad. Sci. Paris Ser. I Math. 333 (2001), 505-508.
  12. Lassalle M., Schlosser M., Inversion of the Pieri formula for Macdonald polynomials, Adv. Math., 202 (2006), 289-325, math.CO/0402127.
  13. Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, Oxford, 1995.
  14. Olshanetsky M.A., Perelomov A.M., Quantum integrable systems related to Lie algebras, Phys. Rep. 94 (1983), 313-404.
  15. Perelomov A.M., Ragoucy E., Zaugg P., Explicit solution of the quantum three-body Calogero-Sutherland model, J. Phys. A: Math. Gen. 31 (1998), L559-L565, hep-th/9805149.
  16. Oshima T., Sekiguchi H., Commuting families of differential operators invariant under the action of a Weyl group, J. Math. Sci. Univ. Tokyo 2 (1995), 1-75.
  17. Sklyanin E.K., Quantum inverse scattering method. Selected topics, in Quantum Group and Quantum Integrable Systems, Editor M.-L. Ge, Nankai Lectures in Mathematical Physics, World Scientific, Singapore, 1992, 63-97, hep-th/9211111.
  18. Sklyanin E.K., Separation of variables. New trends, Progr. Theoret. Phys. Suppl. 118 (1995), 35-60, solv-int/9504001.
  19. Slater L.J., Generalized hypergeometric functions, Cambridge University Press, 1966.
  20. Stanley R.P., Some combinatorial properties of Jack symmetric functions, Adv. Math. 77 (1989), 76-115.
  21. Sutherland B., Quantum many-body problem in one dimension, I, II, J. Math. Phys. 12 (1971), 246-250, 251-256.
  22. Watson G.N., The product of two hypergeometric functions, Proc. London Math. Soc. (2) 20 (1922), 191-195.

Previous article   Next article   Contents of Volume 3 (2007)