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ABsTRACT. Certain conditions related with the De Wilde and Valdivia closed graph
theorems enable us to guarantee the exhaustivity of certain bounded vector measures.
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valued scalar function space with the supremum norm is ultrabornological.
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In this paper ‘space’ means ‘locally convex Hausdorff space over the real or complex
field’. Unless other thing is stated, by ‘topology’ we understand ‘Hausdorff locally
convex topology’.

If s is a positive integer, then the countable family of subspaces W = { Xy my...m, ||
m, € N|1<r <p<s}ofaspace X is an s—net if {X,,, | m1 € N} is an increasing
covering of X and the sequence { Xy, m,...m; | m; € N} is an increasing covering of
Xmyma--mj_y, for 2 < j < s. We write Ws = {Xpnymy..m, | mr € N1 < < s}
A space X is Iy, [11] (A, [12]) if given any quasi-complete (locally complete) sub-
space G of X*(o(X*, X)), X* being the algebraic dual of X, such that G meets the
topological dual X’ of X in a weak* dense subspace of X', then G contains X’.
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B,-complete spaces are I',., and reflexive BANACH spaces and FRECHET-SCHWARTZ
spaces provide some examples of A,.-spaces.

By ¥ we shall denote a o-algebra of subsets of the set . If u is a mapping from
Y in a space X such that u(AU B) = p(A) + u(B) for each disjoint pair (A, B)
of elements of X, then p is said to be a finite additive vector measure or simply a
vector measure.

A vector measure p is bounded if the set {u(A) | A € ¥} is bounded, and
i is called exhaustive if whenever we have a sequence {E; | i € N} of pairwise
disjoint elements of ¥, then lim y(E;) = 0. It is well-known that each exhaustive
vector measure is bounded, and the aim of this paper is to find out some conditions
implying that bounded measures are exhaustive.

A vector measure p is strongly additive if for every sequence {E; : i € N} of
pairwise disjoint elements of ¥, > {u(F;) | ¢ € N} converges in X. If, additionally,
SAu(E;) | i € N} = p(U{E; | i € N}), the measure p is called countably additive.
Obviously, each strongly additive measure is exhaustive, the converse being true
when the space X is sequentially complete.

In the space L>(2,X) of all bounded Y-measurable scalar functions endowed
with the supremum norm, we are going to consider the following subspaces:

e The subspaces S.(£2,X) of the functions of countable range. Note that a
function f € S.(Q,Y) is determined by the bounded sequence of scalars
{a, | n € N} formed by the elements of f(£2) and the sets f~1(a,).

e The subspace L(A) of S.(2, X) formed by those functions determined by all
the elements of £>° and the sequence A = {A,, | n € N} of pairwise disjoint
elementes of . Obviously L(.A) is isometric to £°°.

e The linear span of the characteristic funtions e(E) of all E € ¥. This space
will be denoted either by S(€2,X) or by £5°(€, X).

When (2 is the set N of natural numbers and 2 is the g-algebra of all subsets of N,
we shall write £3° instead of £3°(N, P(N)).

If 4 : 3 — X is a vector measure, the linear mapping S from S(, X)) into X such
that S(e(F)) = u(E) for each E € ¥ will be called the linear mapping associated to
p. If 1 is bounded, we have that S is continuous. In fact, if [A1]|+|A2|+...+|An| <
1, E1,E,, ..., E, € ¥ and p is a continuous seminorm on X we have that

p<5()\16(E1) + Aze(Ea) + ...+ )‘ne(En))) <sup{p(u(E)) | E € I}

and continuity of S follows immediately from this inequality and the following result
given by M. VALDIVIA in [13], Lemmas 1 and 2:

(a) if B stands for the closed unit ball of £3°(2,X), then the absolutely convex
hull of {e(E) | E € %} contains 1B.

The next result is an extension, due to L. DREWNOWSKI, [4] and [5], of a well
known result of H. P. ROSENTHAL for Banach spaces [10].

(1) ”(b)” Let T be a linear continuous mapping from £*° into a Hausdorff topo-
logical vector space X and let {e, | n € N} be the sequence of the unit
vectors of £*°. If X has a neighbourhood of the origin U such that the set
{n € N|Te, ¢ U} is infinite, then X contains a copy of £>°.

We use this in order to prove our first theorem (see also [8], Theorem 1, Corollary
A).
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Theorem 1. Let p be a bounded vector measure defined in % with values in a
sequentially complete topological vector space X . If X does not contain any copy of
£2° then p is strongly additive.

Proof. We know that the linear mapping S : S(2,%) — X associated with u is
continuous. The metrizability of L>(£2, ) and the sequential completeness of X
enables us to extend S to a continuous linear mapping S : L*°(Q,¥) — X.

If {A; | ¢ € N} is a sequence of pairwise disjoint elements of 3, Ay =
YNU{4; | i € N}, A is the sequence {Ag, A1, As,...} and T is the restriction
of S to L(A) then, by property b), the sequence (S(e(4;))) converges to zero given
that X does not contain a copy of £°°. Therefore the measure p is exhaustive and
given that X is sequentially complete, pu is strongly additive. [

Corollary 1. Let p : ¥ — X be a bounded measure and suppose that X is se-
quentially complete. If f : X — Y is a linear mapping with closed graph taking
its values into a webbed space Y which does not contain a copy of £°°, then fu is
exhaustive.

Proof. Let S : L®°(Q,%) — X be the continuous linear mapping determined in
Theorem 1. Then fS : L®°(Q,X) — Y has a closed graph and, according to the
DE WILDE closed graph theorem [2], fS : L®(£,X) — Y is continuous. Then,
the conclusion is obtained as in Theorem 1, considering the restriction of fS to

L(A). O
In Theorem 4 of [13], M. VALDIVIA has obtained the following result:

(¢) Let u be a bounded finite additive X -valued vector measure and let {F, |
n € N} be an increasing sequence of I',.-spaces covering a space F. If f
is a linear mapping defined in X with values in F' which has closed graph,
then there is a positive integer q such that fu is a Fy-valued bounded finite
additive measure on Y.

In [9], Theorem 16, B. RODRIGUEZ-SALINAS gives the following extension of result
(o):

(d) Let p: X — X be a bounded finite additive measure and let F' be a space
which has an increasing covering {F, | n € N} of subspaces such that for
each n there is a topology T, on F,,, finer than that induced by F', under
which F, () is a sequentially complete I',.-space which does not contain a
copy of £>°. If f : X — F' is a linear mapping with closed graph, then there
is a positive integer n such that fu : X — F,(7,) is a strongly additive
measure.

Our next result follows from these two results and from [6], Theorem 1, as well
as from the observation that in result (d) there is in F' a topology 7 weaker than
the initial one such that f : X — F(7p) is continuous and the map fu: ¥ — F(7r)
is a bounded finite additive measure.

Theorem 2. Let p: X — X be a bounded measure defined in a space X containing
an s-net W such that every H € W has a topology T finer than the induced by the
original topology of X and such that H(7tg) is a I'y-space which does not contain
any copy of £>°. Then there is a G € W such that the mapping fu: ¥ — G(1¢g) is
erhaustive.
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Proof. Let S : S(€2,¥) — X be the continuous linear mapping associated with p.
By Theorem 1 of [6] there is a G € Wy such that S™1(G) is a dense and barrelled
subspace of S(€2,3). But according to Theorems 1 and 14 of [11] the restriction of
S to S7}(Q) has a continuous extension S : L (Q, ¥) — G(7g) which agrees with
S in S(©2,%). Now the conclusion follows exactly as in Theorem 1, changing X by
G(T G)- O

If G(7¢) is sequentially complete then obviously fu : ¥ — G(7¢) is strongly
additive.

Corollary 2. Let y : ¥ — X be a bounded measure defined in a space X that
contains an s-net W such that every H € Wy has a topology T finer than the
induced by the original topology of X and such that H(7tg) is a I'y-space. If f is
a linear mapping with closed graph from X into a webbed space Y which does not
contain a copy of £°°, then fu is erhaustive.

Proof. In Theorem 2 we have obtained the continuous linear mapping
S 1 L®(Q,%) = G(1g). Then, fS : L*®(Q,¥) — Y has closed graph and is
continuous according to DE WILDE closed graph theorem. The conclusion follows
as in Theorem 1, T' being now the restriction of fS to L(A). O

If the webbed space is sequentially complete then fu is strongly additive.

Examples.

1. Let E be a Banach space having a separable strong dual E'(B(E’, E)) and
let u:% — E'(o(E',E)) be a bounded measure.

E'(B(FE', E)) is a webbed space and also a T',.—space and since it is separable,
it cannot contain any copy of £>°. Clearly, E'(c(E', F)) is also a T',.-space.
Hence, if p : ¥ — E'(0(E', E)) is a bounded measure, the preceding corol-
lary and the completeness of E'(B(E', E)) imply that pn: ¥ — E'(B(E', E))
15 strongly additive.

2. Let now E be a Fréchet space such that E'(B(E', E)) does not contain a
copy of £°. Let {V,,n € N} be a fundamental system of neighbourhoods of
zero in E, and let E,(1,) denote the Banach space generated by V.0, with
its Minkowski functional as norm. The topology T,, is finer than the induced
by o(E',E) and E,(t,) is a T'.-space. The immersion i : E'(o(E',E)) —
E'(B(E',E)) has obviously closed graph. Now, if the measure p : ¥ —
E'(c(E',E)) is bounded, Corollary 2 implies that p : ¥ — E'(B(E', E)) is
strongly additive.

Our aim now is to debilitate the conditions imposed to X in the last Corollary.
To compensate we have to strengthen the conditions imposed to the bounded vector
measure .

Given a continuous seminorm p on the space X. The p-variation |u|, of the
vector measure p with values in X is defined by

|/1'|P(E) = sup {ZP(M(EZ)) ‘ {E17E27 ce. 7ETL} € P(E)} ’

where P(E) denotes the family of all finite partitions of E by elements of ¥. The
vector measure p is said of bounded variation if |p|,(€2) < oo for every continuous



ON EXHAUSTIVE VECTOR MEASURES 5

seminorm p of X. If the space X is sequentially complete and u is a X-valued vector
measure of bounded variation, then y is strongly additive because ¥{p(u(E;)) | i €
N} < |p|p(€2). There are countably additive vector measures which are not of
bounded variation ([3], pp. 7-8).

Lemma. S.(Q,Y) is ultrabornological.

Proof. Let P, be the family of all countable partitions A of  formed by elements
of 3. We are going to prove that S.(€2,Y) is the locally convex hull of the family
{L(A) | A € P.}. Let V be an absolutely convex subset of S.(€2,3) such that
V N L(A) is a neighbourhood of zero in L(A) for every A € P.. In order to
prove that V is a neighbourhood of the origin in S.(€2, %), one can easily show
that it suffices, because of result (b), to prove that there exists a A > 0 such that
Xe(E) C V, for every E € 3.

Suppose that this property is not true, and let n; € N be such that e(Q2) €
(n1/6)V. Then there must be some A; € ¥ such that e(A;) ¢ (4n1/3)V. But,
since e(A1) = e(Q) —e(2\ A1), it follows that e(2\ A1) ¢ n1V. So we have shown
that e(A1) ¢ n1V and e(2\ A4;) ¢ n V.

Let ny > 2nq be such that e(A41) € (n2/12)V. Then
e(2N A1) =e(Q) —e(A41) € (n1/6)V + (n2/12)V C (n2/6)V.

So we have obtained that e(A;1) € (n2/6)V and e(Q \ A1) € (n2/6)V.

Since e(E) = e(ENA;)+e(EN(2\ Ay)) for every E € 3, we deduce that either
V' does not absorb the family {e(E) | E C A;, E € X} or it does not absorb the
family {e(F) | E C Q\ Ay, E € X}

We may suppose that V' does not absorb {e(F) | E C @\ A4;, E € ¥}. In
this moment we have e(A41) ¢ n1V,e(Q2 N\ A1) € (ny/6)V and there is in 2\ A; a
subset As € X such that e(Az) ¢ (4na/3)V. We can obviously repeat the preceding
argument, and proceeding by induction we can obtain a sequence A = {4,, | n € N}
of pairwise disjoint subsets of ¥ and a sequence n; < ng < --- of positive integer
numbers such that e(A4;) ¢ n;V, contradicting that L(A) NV is a neighbourhood
of zero in L(A). O

Theorem 3. Let i : % — X be a countably additive measure of bounded variation
and suppose that every series in the space X that is subseries convergent is bounded
multiplier convergent. Let Y be a webbed space that does not contain any copy of
£° and let f be a linear mapping from X into Y with closed graph. Then fu is an
erhaustive vector measure.

Proof. Since p is countably additive we have that, given a sequence {E,, | n € N} of
pairwise disjoint elements of X, the series > {u(FE;) | ¢ € N} is subseries convergent
and, consequently, by the hypotheses imposed on the space X, the series > {u(E;) |
i € N} is bounded multiplier convergent. Then for every {a, | n € N} € £*°, the
series Y {a;u(E;) | i € N} is also subseries convergent.

This obsevation enables us to define a linear mapping U from S.(€2,¥) into X
by Ug = > {a;u(E;) | i € N}, where {a,, | n € N} € £ and g(F;) = {a;} for
every i € N. The definition is correct because if {F,, | m € N} is a refinement of
{En | n € N} we have by the subseries convergence that

> {bip(F) [ie Ny =) {ain(E) | i€ N},
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since in the series Y {b;u(F;) | i € N} we may reorder and associate as needed. The
same argument shows that U is linear.

The mapping U is continuous since taking any continuous seminorm p we have
that

pUyg) =p(2{am(E¢) i€ N}> < |plp(€2) x {ai |7 € N}loo = |plp(€2) x [lg]]

Therefore T = fU is a mapping with closed graph from S.(2,Y) into Y. Since
S:(€, X)) is ultrabornological according to the previous lemma, then T is continuous
by DE WILDE closed graph theorem [2].

Finally, to prove that fu is exhaustive, let {A; | i € N} be a sequence of pairwise
disjoint elements of ¥, Ag := Q@ N U{A4; | i € N} and A = {Ap, A1, As,...}. Since
L(A) is isometric to £°, we have that 0 = limT'(e(Ay)) = lim fu(4,). O

In the preceding theorem the space X has to verify that every subseries conver-
gent series is bounded multiplier convergent or, briefly, BM—convergent. The next
proposition gives a sufficient condition which implies this property.

Proposition 1. Let > {z, | n € N} be subseries convergent in a space X contain-
ing an s-net W such that every F € Wy has a finer topology T7r such that F (1) is
a A,-space. Then there is a G € Wy such that Y {z, | n € N} is a BM-convergent
series in G(7q).-

Proof. The subseries convergence condition implies that the mapping K from
L3°(a (£, £Y)) into X given by K(e(A)) = Y {z, | n € A} is well-defined and
linear. It is also continuous since given an x* € X’ we have that

(Ktz*)e(A) = z* (Z{mn In e A}) => {z*z, | n€ A}
= ((z*zp,n € N),e(4))

and therefore the sequence (z*x,,) is subseries convergent, which implies that (z*z,,) €J}
2.

By [6], Theorem 1, there is a G € W, such that H = K~!(G) is a barrelled and
dense subspace of £5°. Then if M is a subset of £} which is o(¢!, H) bounded,
M is £3°-equicontinuous and, since H is dense in £°°, it is also £°°-equicontinuous.
Thus we have that every u € £°° is bounded on M and hence £*° is contained in
the bounded closure of H respect to the dual pair (H,¢!). From Theorems 2 and
6 of [12], it follows that the restriction of K to H possesses a continuous linear
extension T : £ (g (4>, 0')) — G(o(G,G(76)")). Now, the continuity of K implies
that T is also an extension of K.

Given a vector a = {a, | n € N} € £>° we write a(™ = (ay,a9,...,0n_1,an,
0,0,0,...) for every n € N. Then lim a(™ = @ in o(¢>°,¢") and therefore S {anzy, |
n € N} is 0(G,G(1q)")—convergent in G. Changing some of the a,’s by zeros
we obtain that ) {a,z, | n € N} is weakly subseries convergent, and then the
conclusion follows directly from the Orlicz—Pettis theorem. [J

From the two former results we obtain the following corollary.
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Corollary. Let p: 3 — X be a countably additive measure with bounded variation
and suppose that the space X contains an s-net W such that every F' € Wy has
a finer topology T under which F(7p) is a A.-space. Suppose that'Y is a webbed
space that does not contain a copy of £°. If f is a linear mapping from X into Y
with closed graph, then fu is an exhaustive vector measure.

If X and Y are two spaces, a linear mapping f : X — Y is said to be sub-
continuous if given any series Y {z, | n € N} which is subseries convergent, then

S {f(xn) | n € N} converges to f (D _{z, | n € N}).

In [9], B. RODRIGUEZ—SALINAS proves the following, which generalizes Theorem
1 in G. BENNETT and N. J. KALTON [1].

(e) Let X andY be two spaces. Let us suppose thatY is a sequentially complete
[, (£5°)-space. If f : X — Y is a linear mapping with closed graph and Y
does not contain a copy of £°°, then f is subcontinuous.

This result has motivated our following theorem.

Theorem 4. Let X and Y be two spaces. Let W be an s-net in'Y such that every
L € W has a finer topology 11, such that L(7r) is a T';-space sequentially complete
which does not contain a copy of £°°. If f: X — Y is a linear mapping with closed
graph, then f is subcontinuous.

Proof. Let us assume that > {z, | n € N} is subseries convergent in X. In [9],
Theorem 14, it is proved that the mapping K : £5° — X defined by

K({an |n €N}) = {anzy | n € N}

is continuous. In fact, if sup {|an|,n € N} <1 and 3y’ € Y/, then
Y (K({an | n € N}))| < o,

since > {y'z, | n € N} is absolutely convergent.

Consequently by [6], Theorem 1, there is a G € W, such that (fK) 1(G) is
barrelled and dense in £3°.

By [11], Theorems 1 and 14, there is a continuous extension U : £*° — G(7¢q) of
the restriction of fK to (fK) !(G). Since f has closed graph, U coincides with
fK in £3°. Then, exactly as we did in Theorem 1, but working with the restriction
of U to L(A) instead of T, we obtain that the G(7g)valued bounded measure p
defined in the o-algebra of subsets of N by u(A) = U(e(A)) is strongly additive.
Hence, taking A,, = {n}, we have that

> {u({n) [n e N} = 37{f(ea) [ n e N}

converges in G(7g) and hence in Y. Thus by the closed graph condition,

Z{f(a:n),n e N} = f(Z{a:n |n e N})
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