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Abstract: It is shown that if S is a free group, a free semigroup, or a free inverse

semigroup then the Brown-McCoy radical of the Banach algebra [1(S) is zero.

Let S be a semigroup. We denote by I!(S) the Banach algebra consisting of
all functions a: S — C (the complex field), with finite or countably infinite sup-
port and such that ) g |a(z)| < oo, where addition and scalar multiplication are
defined pointwise, multiplication is convolution and the norm of the element a is
> wes la(x)] ([1]). The semigroup algebra C[S] consists of all functions a: S — C
of finite support: this is clearly a subalgebra of '(S). It is convenient to iden-
tify the elements of .S with the corresponding characteristic functions: thus, if S
is infinite, we can write a € [1(S) in the form 3°°° | a2, where () is a sequence
of complex numbers with Yo% |a,|<oo and (z,) is a sequence of distinct
elements of S.

The Brown-McCoy radical of an algebra A is denoted by B(A). A survey of
the basic properties of this radical may be found in [7, Ch. 7, §37]. In particular,
B(A) contains the Jacobson radical of A; and, assuming that A is nontrivial,
B(A) = {0} if and only if A is a subdirect product of simple algebras with unity.
The purpose of the present paper is to show that B(A) = {0} if A =1!(9),
where S is a free group, a free semigroup or a free inverse semigroup.

Received: July 14, 2003; Revised: October 16, 2003.



394 W.D. MUNN

We note, in passing, that if S is a free group of rank at least two or a free
semigroup of rank at least two then [1(.9) is also primitive [10, 3; 9, 2].

The set of all congruences on a semigroup S is denoted by A(S) and, for
p € A(S), the p-class containing x € S is denoted by zp. We write A¢(S) :=
{peA(S): S/p is finite}. Observe that A¢(S) is closed under finite intersections.
Recall that S is termed residually finite if and only if, for every pair (z,y) € SxS
with « # y there exists p € A¢(S) such that (z,y) ¢ p. Thus S is residually finite
if and only if N{p: p € Af(S)} = s, the identity relation on S. It is convenient
here to introduce a further concept. We say that S is residually M-finite if and
only if there exists a nonempty subset M of Af(S) such that (i) M is closed
under finite intersections and (ii) ({p: p € M} = ts. Note that if S is residually
M-finite then it is residually finite and that if S is residually finite then it is
residually A ¢(S)-finite.

Lemma. Let S be an infinite residually M-finite semigroup such that, for all
p € M, the finite-dimensional algebra C[S/p] is semisimple. Then B(I'(S))=1{0}.

Proof: Let p € M. Define a surjective homomorphism 6,: I1(S) — C[S/p]
by the rule that

9,0(27; an ﬂfn) = Zn:an(wn p)

where (ay,) is a sequence of complex numbers with >, |a,| < oo and (z,) is a
sequence of distinct elements of S. By hypothesis, C[S/p] is semisimple and so,
for some positive integer k,, C[S/p] is a direct sum of ideals A4,; (i=1,2,....,k,),
each of which is a finite-dimensional simple algebra with unity. Hence, for each
i€{1,2,...,k,}, there exists a surjective homomorphism ¢,;: C[S/p] — A,; ;
further,

Ep
(1) m ker ¢,; = {0} .
i=1

We now show that [!(9) is a subdirect product of the algebras A,; (p€Af(S);
i=1,2,...,k,). Since each A,; is a simple algebra with unity, this will establish
the result.

For each pair (p,7), with p € A¢(S) and i € {1,2,...,k,}, write 1, ; := ¢pi00,.
Then v, : I}(S) — A,; is a surjective homomorphism. Let a € [1(S) be such
that v, ;(a) =0 for all p € Af(S) and all ¢ € {1,2,...,k,}. Thus, from (1),

2) (V p € Ap(S)) 0,(a) =0 .
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Suppose that a # 0. Then a = Y, a,z, for some sequence (cv,) of complex
numbers, not all zero, such that >, |a,| < co and some sequence (x,,) of distinct
elements of S. Choose a positive integer m such that a,, # 0. Since >, |ay]

1
n>p lan| < 5 |aum].
Now, since S is residually M-finite, for each pair (r,s) of positive integers with

converges, there exists a positive integer p > m such that >

r < s < p, there exists p,s € M such that (z,,zs) ¢ prs. Write p := Nr,s) Prs-
Then p € M; also, for each pair (r,s) with r < s < p, we have that (z,,zs) ¢ p,
that is, z.p # zsp. In particular, x,.p # x,p for all r such that r # m and
1 <r < p. Let 8 denote the coefficient of x,,p in 6,(a) and let T be the set of
all positive integers ¢ such that t > p and z;p = z,p. If T= 0 then 8 = a,, # 0.
On the other hand, if T'# () then

1
ZOdt > |am| = Z loe| > | — Z | > ) lom| -
teT teT n>p
Thus, in either case, 3 # 0. However, by (2), 6,(a) = 0, which implies that 8 = 0.

From this contradiction we see that a = 0. Hence [!(S) is a subdirect product of
the algebras A,; (p € Af(S); i =1,2,...,k,), as required. u

’ﬁ| > |am| -

Theorem 1. Let Gx and Sx denote, respectively, the free group and the free
semigroup on a nonempty set X. Then B(I'(Gx)) = {0} and B(I'(Sx)) = {0}.

Proof: Note that Sx can be regarded as a subsemigroup of Gx. Let S be
an infinite subsemigroup of G x. It suffices to show that B(I'(S)) = {0}.

Let p € Ay(Gx)andlet T, := {wp: w € S}. Then T}, is a subsemigroup of the
finite group Gx/p and so is itself a finite group. Thus, by Maschke’s theorem,
C[T},] is semisimple. Write pg:=pN(SxS). Then pg is a congruence on S
and S/ps = T,. Hence ps € Ay(S) and C[S/ps] is semisimple. Let M := {pg:
p € Ap(Gx)}. Since Ay(Gx) is closed under finite intersections, so also is M.
Further, by [8, Theorem 8.18], G x is residually finite and so ({ps: peAf(Gx)} =
MN{p:p e Ar(Gx)} N(SxS) =ts. Thus S is residually M-finite. Applying the
lemma, we see that B(I'(S)) = {0}. u

By an inverse semigroup we mean a semigroup S such that
VzeS) (A2 es) r2’r=x and 2’x2’ =2’ .
A basic account of such semigroups is provided in [4, Chapter V]; for an extended

discussion, see [6].

Theorem 2. Let FIx denote the free inverse semigroup on a nonempty set X.
Then B(I'(FIx)) = {0}.
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Proof: Write S:=FIx. By [12, Theorem 3.6], S is residually finite. Further,
by [4, Proposition V.1.6], for all p € A¢(S), S/p is a finite inverse semigroup and
so C[S/p] is semisimple [14, Theorem 4; 11, Theorem 4.4]. The result now follows
by the lemma. n

We conclude with some remarks about the semigroup algebra F'[S] of a semi-
group S over an arbitrary field F' [13]. Theorems analogous to those above hold
for S a free group, a free semigroup or a free inverse semigroup, the analogue of
Theorem 1 being deducible from more general results of Jespers and Puczylowski
[5, Corollary 6 and Corollary 13].

To obtain these theorems, we may proceed as follows. First, note that
the lemma still holds if we replace ‘C[S/p]” by ‘F[S/p]’ and ‘I}(S)’ by ‘F[S].
As in the proof of Theorem 1, consider an infinite subsemigroup S of Gx. Choose
a prime p different from the characteristic of F' and let Il := {p € Af(Gx):
Gx/pis a p-group}. For p € II, let T, := {wp: w € S}. Then T, is a sub-
semigroup of the finite p-group Gx/p and so is itself a finite p-group. Thus,
by Maschke’s theorem, F[T)] is semisimple. Further, S/pg = T,, where pg :=
p N (SxS). Now Gx is residually II-finite [8, Chapter 8, Problem 16]. Hence,
taking M := {pg: p € II}, we see that S is residually M-finite. It follows from
the modified lemma that B(F[S]) = {0}. In particular, B(F[Gx]) = {0} and
B(F[Sx]) = {0} ([5)).

Next, let S := FIx, the free inverse semigroup on X. For a proper ideal T' of
S we define the Rees congruence pr on S by

(x,y) €Epr <= x=y or z,yeT.

The proof of [12, Theorem 3.6] shows that S is residually M-finite, where M :=
{p € A¢(S): p=pr for a proper ideal T of S}. Further, by [12, Theorem 3.2(iii)],
S has only trivial subgroups. Hence, for all p € M, S/p has only trivial sub-

groups and so F[S/p] is semisimple [14, 11]. The modified lemma now shows
that B(F[S]) = {0}.
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