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An infinite families of number fields with
fixed indices arising from quintinomials of

type 𝒙𝒏 + 𝒂𝒙𝒎 + 𝒃𝒙𝟐 + 𝒄𝒙 + 𝒅

Omar Kchit

Abstract. In this paper, for any rational prime 𝑝 and for a fixed positive
integer 𝑖𝑝, we provide infinite families of number fields defined by irreducible
quintinomials of type 𝑥𝑛+𝑎𝑥𝑚+𝑏𝑥2+𝑐𝑥+𝑑 ∈ ℤ[𝑥] satisfying 𝜈𝑝(𝑖(𝐾)) = 𝑖𝑝.
We illustrate our results by some computational examples.
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1. Introduction
Let𝐾 = ℚ(𝛼) be a number field of degree 𝑛with ring of integersℤ𝐾 , where 𝛼

is a primitive integer of𝐾. The index of 𝛼, denoted by (ℤ𝐾 ∶ ℤ[𝛼]), is the index
of theAbelian groupℤ[𝛼] inℤ𝐾 . Awell-known formula linking this indexwith
the discriminants is given by:

∆(𝛼) = (ℤ𝐾 ∶ ℤ[𝛼])2 ⋅ 𝑑𝐾 , (1.1)
where 𝑑𝐾 is the absolute discriminant of 𝐾 and ∆(𝛼) is the discriminant of the
minimal polynomial of 𝛼 over ℚ. The index of 𝐾, denoted by 𝑖(𝐾), is defined
as the greatest common divisor of the indices of all primitive integers of 𝐾. Say,
𝑖(𝐾) = gcd {(ℤ𝐾 ∶ ℤ[𝜃]) | 𝐾 = ℚ(𝜃) and 𝜃 ∈ ℤ𝐾}. Remark that for a mono-
genic number field 𝐾, the index is trivial; 𝑖(𝐾) = 1. Therefore, a field with a
non-trivial index is not monogenic. Dedekind was the first one who discovered
a number field with non-trivial index ([3]). In 1930, for every number field𝐾 of
degree𝑛 ≤ 7 and every rational prime𝑝, Engstromestablished a connection be-
tween the prime ideal factorization of 𝑝ℤ𝐾 and 𝜈𝑝(𝑖(𝐾)). This motivated a very
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important question, stated as problem 22 in Narkiewicz’s book ([23]), which
asks for an explicit formula of the highest power 𝜈𝑝(𝑖(𝐾)) for a given rational
prime 𝑝 dividing 𝑖(𝐾). In [28], Śliwa extended Engstrom’s results to number
fields up to degree 12, under the condition that 𝑝 is unramified in 𝐾. These
results were generalized by Nart ([24]), who developed a 𝑝-adic characteriza-
tion of the index of a number field. In [22], Nakahara studied the indices of
non-cyclic but abelian biquadratic number fields. In [12], Funakura showed
that 𝑖(𝐾) = 1 or 2 for every pure quartic number field 𝐾. In [14], Gaál et al.
characterized the field indices of biquadratic number fields havingGalois group
𝑉4. In [29], Spearman and Williams characterized the indices of cyclic quartic
number fields. In [27], Pethö and Pohst studied the index divisors of multi-
quadratic number fields. Recently, many authors are interested in the charac-
terization of the prime power decomposition of the indices of number fields,
especially those defined by trinomials and quadrinomials of fixed degrees (see
[2, 4, 5, 6, 7, 8, 9, 12, 14, 19, 20, 21, 22, 27, 29]). In all the former papers, for a
given number field 𝐾, the authors try to calculate the index 𝑖(𝐾). In contrast,
the present paper introduces a new approach. Namely, for every rational prime
𝑝 and some natural integers 𝑖𝑝, we construct infinite families of number fields
defined by irreducible quintinomials of type𝑥𝑛+𝑎𝑥𝑚+𝑏𝑥2+𝑐𝑥+𝑑 ∈ ℤ[𝑥], with
𝑝-indices 𝑖𝑝, where the𝑝-index of a number field𝐾 is defined as the𝑝-valuation
of its index. Namely, 𝑖𝑝 = 𝜈𝑝(𝑖(𝐾)). Especially, for the rational prime 𝑝 = 2,
we provide families of number fields having 2-indices 𝑖2 ∈ {1, 2, 3, 4, 5}. For ev-
ery odd rational prime 𝑝, we provide families of number fields with 𝑝-indices
𝑖𝑝 ∈ {1, 2, 𝑝 − 2, 𝑝 − 1, 𝑝}. These results present infinite families of number
fields defined by quintinomials with large indices independently of the degree
of these fields.

2. Main results
We start by Table 1, which presents examples where, for some fixed values

of 𝑖, we provide an example of a number field with index 𝑖(𝐾) = 𝑖. All these
examples are collected from some former papers (see [2, 4, 5, 7, 8, 9, 19, 20, 21]).
Given that for every natural integer 𝑖, 𝑖 =

∏

𝑝
𝑝𝑖𝑝 , in the remainder of this

paper, for every rational prime 𝑝 and some fixed natural integers 𝑖𝑝, we provide
infinite families of number fields defined by irreducible quintinomials of the
form 𝐹(𝑥) = 𝑥𝑛 + 𝑎𝑥𝑚 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 ∈ ℤ[𝑥] with 𝑝-indices 𝑖𝑝. In each case,
we establish sufficient conditions which guarantee that 𝜈𝑝(𝑖(𝐾)) = 𝑖𝑝.
Recall that, for every rational integer 𝑧 ∈ ℤ, the (𝑥 − 𝑧)-Taylor expansion of

𝐹(𝑥) is given by the following:

𝐹(𝑥) =
𝑛∑

𝑘=0

𝐹(𝑘)(𝑧)
𝑘! (𝑥 − 𝑧)𝑘, where 𝑛 is the degree of 𝐹(𝑥).
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Table 1. Examples of number fields defined by trinomials or
quadrinomials with some specific indices

𝐹(𝑥) The index 𝑖(𝐾)

𝑥4 + 48𝑥 + 15 2
𝑥5 + 143𝑥3 + 459 3
𝑥6 + 144𝑥5 + 399 4
𝑥9 + 1014𝑥5 − 1903125 5
𝑥7 + 1269𝑥3 + 4282 6
𝑥9 + 183𝑥 + 296 8
𝑥5 + 100𝑥3 + 142𝑥 + 54 9
𝑥9 + 109𝑥5 − 1668750 10
𝑥12 + 1612500𝑥2 + 25410 11
𝑥5 + 352𝑥2 + 135𝑥 + 72 12
𝑥9 + 954𝑥5 + 118840625 15
𝑥7 + 188𝑥 + 576 18
𝑥9 + 139𝑥5 + 1412500 20

We shall denote 𝐴𝑘(𝑧) =
𝐹(𝑘)(𝑧)
𝑘! .

In the remainder, 𝐾 is a number field defined by irreducible quintinomials
of type 𝑥𝑛 + 𝑎𝑥𝑚 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 ∈ ℤ[𝑥].
For 𝑝 = 2 and 𝑖2 ∈ {1, 2}, Theorem 2.1 provides sufficient conditions on 𝐹(𝑥),
which guarantee that each number field of these infinite families has 2-index
𝑖2 ∈ {1, 2}.
Theorem 2.1. Table 2 provides sufficient conditions which guarantees that
𝜈2(𝑖(𝐾)) ∈ {1, 2}.

Table 2. Number fields defined by quintinomials with 2-
indices 𝑖2 ∈ {1, 2}

(𝑎, 𝑏, 𝑐, 𝑑) Conditions 𝜈2(𝑖(𝐾))(mod 2)

(0, 1, 0, 0)
𝜈2(𝑑) > 2𝜈2(𝑐) and 𝑛 = 2𝑘 + 1 1𝜈2(𝑑) > 2𝜈2(𝑐), 𝑛 − 2 = 2𝑟 and 𝐴0(1) ≡ 2 (mod 4)
𝜈2(𝑑) > 2𝜈2(𝑐), 𝑛 − 2 = 2𝑟 , 𝐴0(1) ≡ 0 (mod 8) and 𝐴1(1) ≡ 2 (mod 4) 2(1, 0, 0, 0) 𝜈2(𝑑) > 2𝜈2(𝑐) − 𝜈2(𝑏), (𝑚 − 2)𝜈2(𝑐) > (𝑚 − 1)𝜈2(𝑏) and 𝑛 ≢ 𝑚 (mod 2)

Example 2.2. Let 𝐾 = ℚ(𝛼) be a number field defined by the monic irreducible
quintinomial 𝐹(𝑥) = 𝑥15+6𝑥10+3𝑥2+18𝑥+24. Since 𝑎 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 2),
𝑏 ≡ 1 (mod 2), 𝜈2(𝑑) = 3, 𝜈2(𝑐) = 1 𝑛 = 15. Then by Theorem 2.1, 𝜈2(𝑖(𝐾)) = 1.
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Example 2.3. Let 𝐾 = ℚ(𝛼) be a number field defined by the monic irreducible
quintinomial 𝐹(𝑥) = 𝑥22 + 25𝑥13 + 10𝑥2 + 60𝑥 + 80. Since 𝑎 ≡ 1 (mod 2),
𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 2), 𝜈2(𝑑) = 4, 𝜈2(𝑐) = 2, 𝜈2(𝑏) = 1 and 𝑛 ≢ 𝑚 (mod 2).
Then by Theorem 2.1, 𝜈2(𝑖(𝐾)) = 2.

Theorems 2.4 and 2.6 provide infinite families of numberfieldswith 2-indices
𝑖2 = 3.

Theorem 2.4. Suppose that 𝑎 ≡ 1 (mod 2) and 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 2). If the
following conditions simultaneously hold, then 𝜈2(𝑖(𝐾)) = 3.

(1) 𝑚 ≥ 4 and 𝑛 − 𝑚 = 2𝑟 (𝑟 ≥ 2).
(2) 𝐴0(1) ≡ 0 (mod 4) and 𝐴1(1) ≡ 2 (mod 4).
(3) 𝜈2(𝑑) < 2𝜈2(𝑐) − 𝜈2(𝑏) and (𝑚 − 2)𝜈2(𝑑) > 𝑚𝜈2(𝑏).
(4) 𝜈2(𝑑) ≢ 𝜈2(𝑏) (mod 2) and gcd(𝑚 − 2, 𝜈2(𝑏)) = 1.

Example 2.5. Let 𝐾 = ℚ(𝛼) be a number field defined by the monic irreducible
quintinomial 𝐹(𝑥) = 𝑥16 + 21𝑥12 + 14𝑥2 + 56𝑥 + 28. Since 𝑎 ≡ 1 (mod 2),
𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 2), 𝜈2(𝑑) = 2, 𝜈2(𝑐) = 3, 𝜈2(𝑏) = 1, 𝜈2(𝐴0(1)) = 3 and
𝜈2(𝐴1(1)) = 1. Then by Theorem 2.4, 𝜈2(𝑖(𝐾)) = 3.

Theorem 2.6. Suppose that 𝑎 ≡ 1 (mod 2) and 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 2). If the
following conditions simultaneously hold, then 𝜈2(𝑖(𝐾)) = 3.

(1) 𝑛 − 𝑚 = 3.

(2) 𝜈2(𝑐) − 𝜈2(𝑑) < 𝜈2(𝑏) − 𝜈2(𝑐) <
− 𝜈2(𝑏)
𝑚 − 2 .

(3) gcd(𝑚 − 2, 𝜈2(𝑏)) = 3.

Example 2.7. Let 𝐾 = ℚ(𝛼) be a number field defined by the monic irreducible
quintinomial 𝐹(𝑥) = 𝑥23 + 15𝑥20 + 72𝑥2 + 480𝑥 + 192. Since 𝑎 ≡ 1 (mod 2),
𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 2), 𝑛 − 𝑚 = 3, 𝜈2(𝑑) = 6, 𝜈2(𝑐) = 4, 𝜈2(𝑏) = 3 and
𝑚 − 2 = 18. Then by Theorem 2.6, 𝜈2(𝑖(𝐾)) = 3.

The following theorem provides infinite families of number fields with 2-
indices 𝑖2 ∈ {4, 5}.

Theorem 2.8. Suppose that 𝑎 ≡ 1 (mod 2) and 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 2). If the
following conditions simultaneously hold, then 𝜈2(𝑖(𝐾)) = 4 or 5.

(1) 𝑛 − 𝑚 = 2𝑟.
(2) 𝐴0(1) ≡ 0 (mod 8) and 𝐴1(1) ≡ 2 (mod 4).

(3) 𝜈2(𝑐) − 𝜈2(𝑑) < 𝜈2(𝑏) − 𝜈2(𝑐) <
− 𝜈2(𝑏)
𝑚 − 2 .

(4) 𝑚 − 2 = 2𝑘 + 1 divides 𝜈2(𝑏).
More precisely, if 𝑟 ≥ 2, then 𝜈2(𝑖(𝐾)) = 4 and 𝜈2(𝑖(𝐾)) = 5 if 𝑟 = 1.
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Example 2.9. Let 𝐾 = ℚ(𝛼) be a number field defined by the monic irreducible
quintinomial 𝐹(𝑥) = 𝑥35 +25𝑥3 +30𝑥2 +40𝑥 + 1920. Since 𝑎 ≡ 1 (mod 2), 𝑏 ≡
𝑐 ≡ 𝑑 ≡ 0 (mod 2), 𝑛 − 𝑚 = 25, 𝜈2(𝑑) = 7, 𝜈2(𝑐) = 3, 𝜈2(𝑏) = 1, 𝜈2(𝐴0(1)) = 5
and 𝜈2(𝐴1(1)) = 1. Then by Theorem 2.8, 𝜈2(𝑖(𝐾)) = 4.

In the remainder of this section, for every odd rational prime 𝑝 and 𝑖𝑝 ∈
{1, 2, 𝑝−2, 𝑝−1, 𝑝}, we provide infinite families of numberfieldswith 𝜈𝑝(𝑖(𝐾)) =

𝑖𝑝. We shall denote 𝐵𝑝 =
𝐵

𝑝𝜈𝑝(𝐵)
for every rational integer 𝐵.

In particular, Theorem 2.10 provides infinite families of number fields 𝐾 with
𝑝-indices 𝑖𝑝 = 1 for every odd rational prime 𝑝.

Theorem 2.10. Suppose that 𝑏 ≡ −1 (mod 𝑝), 𝑎 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 𝑝), 𝑛 − 2 =
𝑘(𝑝 − 1) and 𝑛 ≢ 2 (mod 𝑝). If any of the following conditions is satisfied, then
𝜈𝑝(𝑖(𝐾)) = 1.

(1) 𝜈𝑝(𝑑) > 2𝜈𝑝(𝑐).
(2) 𝜈𝑝(𝑑) = 2ℎ < 2𝜈𝑝(𝑐) and 𝑑𝑝 ≡ 1 (mod 𝑝).

Example 2.11. Let𝐾 = ℚ(𝛼) be a number field defined by the monic irreducible
quintinomial 𝐹(𝑥) = 𝑥18 + 15𝑥13 + 9𝑥2 + 45𝑥 + 375. Since 𝑏 ≡ −1 (mod 5),
𝑎 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 5), 𝜈5(𝑐) = 1, 𝜈5(𝑑) = 3 and 𝑛 ≡ 3 (mod 5). Then by
Theorem 2.10 (1), 𝜈5(𝑖(𝐾)) = 1.

For every odd rational prime 𝑝 and 𝑖𝑝 = 2, Theorem 2.12 provides infinite
families of number fields with 𝑝-indices 𝑖𝑝 = 2.

Theorem 2.12. Suppose that 𝑎 ≡ −1 (mod 𝑝), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 𝑝) and
𝑛−𝑚 = 𝑘(𝑝−1). If the following conditions simultaneously hold, then 𝜈𝑝(𝑖(𝐾)) =
2.

(1) 𝑛 ≢ 𝑚 (mod 𝑝).

(2) 𝜈2(𝑐) − 𝜈2(𝑑) < 𝜈2(𝑏) − 𝜈2(𝑐) <
− 𝜈2(𝑏)
𝑚 − 2 .

(3) gcd(𝜈𝑝(𝑏),𝑚 − 2) = 1.

Example 2.13. Let𝐾 = ℚ(𝛼) be a number field defined by the monic irreducible
quintinomial 𝐹(𝑥) = 𝑥52 + 54𝑥22 + 2 ⋅ 11𝑥2 + 4 ⋅ 112𝑥 + 2 ⋅ 114. Since 𝑎 ≡
−1 (mod 11), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 11), 𝜈11(𝑏) = 1, 𝜈11(𝑐) = 2, 𝜈11(𝑑) = 4,
𝑛 ≢ 𝑚 (mod 11) and 𝑛 − 𝑚 = 3(11 − 1). Then by Theorem 2.12, 𝜈11(𝑖(𝐾)) = 2.

For every rational prime 𝑝, the next theorem provides infinite families of
number fields with 𝑝-indices 𝑖𝑝 = 𝑝 − 2.

Theorem 2.14. Suppose that 𝑎 ≡ −1 (mod 𝑝), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 𝑝),
𝜈𝑝(𝑑) < 2𝜈𝑝(𝑐) − 𝜈𝑝(𝑑) and (𝑚 − 2)𝜈𝑝(𝑑) < 𝑚𝜈𝑝(𝑏). If the following condi-
tions simultaneously hold, then 𝜈𝑝(𝑖(𝐾)) = 𝑝 − 2.
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(1) 𝑚 = 𝑘(𝑝 − 1) divides 𝜈𝑝(𝑑).
(2) 𝑛 − 𝑚 = ℎ(𝑝 − 1).
(3) gcd(𝑘, ℎ) = 1 and 𝑘ℎ ≢ 0 (mod 𝑝).
(4) 𝑑𝑝 ≡ 1 (mod 𝑝).

Example 2.15. Let𝐾 = ℚ(𝛼) be a number field defined by the monic irreducible
quintinomial𝐹(𝑥) = 𝑥72+20𝑥16+5⋅78𝑥2+5⋅77𝑥+15⋅76. Since𝑎 ≡ −1 (mod 7),
𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 7), 𝜈7(𝑑) = 6, 𝜈7(𝑐) = 7, 𝜈7(𝑏) = 8, 𝑚 = (7 − 1) divides
𝜈7(𝑑), 𝑛 − 𝑚 = 11(7 − 1), gcd(11, 1) = 1, 11 ≢ 0 (mod 7) and 𝑑7 ≡ 1 (mod 7).
Then by Theorem 2.14, 𝜈7(𝑖(𝐾)) = 5.

Theorem 3.1 provides infinite families of number fields with 𝑝-indices 𝑖𝑝 =
𝑝 − 1 for every odd rational prime 𝑝.

Theorem 2.16. Suppose that 𝑎 ≡ −1 (mod 𝑝), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 𝑝), (𝑚 −
1)𝜈𝑝(𝑑) > 𝑚𝜈𝑝(𝑐) and (𝑚 − 2)𝜈𝑝(𝑐) < (𝑚 − 1)𝜈𝑝(𝑏). If the following conditions
simultaneously hold, then 𝜈𝑝(𝑖(𝐾)) = 𝑝 − 1.

(1) 𝑚 − 1 = 𝑘(𝑝 − 1) divides 𝜈𝑝(𝑐).
(2) 𝑛 − 𝑚 = ℎ(𝑝 − 1).
(3) gcd(𝑘, ℎ) = 1 and 𝑘ℎ ≢ 0 (mod 𝑝).
(4) 𝑐𝑝 ≡ 1 (mod 𝑝).

Example 2.17. Let𝐾 = ℚ(𝛼) be a number field defined by the monic irreducible
quintinomial 𝐹(𝑥) = 𝑥141 + 28𝑥29 + 14 ⋅ 2930𝑥2 + 24 ⋅ 72 ⋅ 2928𝑥 + 7 ⋅ 2931.
Since 𝑎 ≡ −1 (mod 29), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 29), 𝜈29(𝑏) = 30, 𝜈29(𝑐) = 28,
𝜈29(𝑑) = 31,𝑚− 1 = (29 − 1) divides 𝜈29(𝑐), 𝑛 −𝑚 = 4(29 − 1), 4 ≢ 0 (mod 29)
and 𝑐29 ≡ 1 (mod 29). Then by Theorem 2.16, 𝜈29(𝑖(𝐾)) = 28.

In the next theorem, for every odd rational prime 𝑝, we provide infinite fam-
ilies of number fields 𝐾 with 𝑝-indices 𝑖𝑝 = 𝑝.

Theorem 2.18. Suppose that 𝑎 ≡ −1 (mod 𝑝), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 𝑝) and

𝜈𝑝(𝑐) − 𝜈𝑝(𝑑) < 𝜈𝑝(𝑏) − 𝜈𝑝(𝑐) <
− 𝜈𝑝(𝑏)
𝑚 − 2 . If the following conditions simultane-

ously hold, then 𝜈𝑝(𝑖(𝐾)) = 𝑝.
(1) 𝑚 − 2 = 𝑘(𝑝 − 1) divides 𝜈𝑝(𝑏).
(2) 𝑛 − 𝑚 = ℎ(𝑝 − 1).
(3) gcd(𝑘, ℎ) = 1 and 𝑘ℎ ≢ 0 (mod 𝑝).
(4) 𝑏𝑝 ≡ 1 (mod 𝑝).

Example 2.19. Let𝐾 = ℚ(𝛼) be a number field defined by the monic irreducible
quintinomial 𝐹(𝑥) = 𝑥283+163𝑥42+42 ⋅ 4140𝑥2+9 ⋅ 4142𝑥 +3 ⋅ 4148. Since 𝑎 ≡
−1 (mod 41), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 41), 𝜈41(𝑑) = 48, 𝜈41(𝑐) = 42, 𝜈41(𝑏) = 40,
𝑚 = (41 − 1) divides 𝜈41(𝑏), 𝑛 − 𝑚 = 6(41 − 1), gcd(6, 1) = 1, 6 ≢ 0 (mod 41)
and 𝑏41 ≡ 1 (mod 41). Then by Theorem 2.18, 𝜈41(𝑖(𝐾)) = 41.
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The following example provides a number field with index 𝑖(𝐾) = 2 ⋅ 52 ⋅ 72 ⋅
132 ⋅ 1918.

Example 2.20. Let𝐾 = ℚ(𝛼) be a number field defined by the monic irreducible
quintinomial 𝐹(𝑥) = 𝑥55 + 𝑎𝑥19 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑, where

𝑎 = 23 ⋅ 3 ⋅ 1801,
𝑏 = 3 ⋅ 5 ⋅ 7 ⋅ 13 ⋅ 1918,
𝑐 = 215 ⋅ 33 ⋅ 52 ⋅ 72 ⋅ 132 ⋅ 1918 and
𝑑 = 232 ⋅ 3 ⋅ 55 ⋅ 75 ⋅ 137 ⋅ 1920.

By the index formula (1.1), one can check easily that the rational prime candidates
to divide the index 𝑖(𝐾) are 𝑝 = 2, 3, 5, 7, 13 and 19.

(1) For 𝑝 = 2, we have 𝑎 ≡ 1 (mod 2), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 2), 𝜈2(𝑑) = 3,
𝜈2(𝑐) = 1 and 𝑛 is odd. Then by Theorem 2.1, 𝜈2(𝑖(𝐾)) = 1.

(2) For 𝑝 = 3, 𝐹(𝑥) is 3-Eisenstein. Hence 𝜈3(𝑖(𝐾)) = 0.
(3) For 𝑝 = 5, we have 𝑎 ≡ −1 (mod 5), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 5), 𝜈5(𝑏) = 1,

𝜈5(𝑐) = 2, 𝜈5(𝑑) = 5, 𝑛−𝑚 = 9(5−1), 𝑛 ≢ 𝑚 (mod 5) and gcd(𝜈5(𝑏),𝑚−
2) = 1. Then by Theorem 2.12, 𝜈5(𝑖(𝐾)) = 2.

(4) For 𝑝 = 7, we have 𝑎 ≡ −1 (mod 7), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 7), 𝜈7(𝑏) = 1,
𝜈7(𝑐) = 2, 𝜈7(𝑑) = 5, 𝑛−𝑚 = 6(7−1), 𝑛 ≢ 𝑚 (mod 7) and gcd(𝜈7(𝑏),𝑚−
2) = 1. Then by Theorem 2.12, 𝜈7(𝑖(𝐾)) = 2.

(5) For 𝑝 = 13, we have 𝑎 ≡ −1 (mod 13), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 13),
𝜈13(𝑏) = 1, 𝜈13(𝑐) = 2, 𝜈13(𝑑) = 5, 𝑛 − 𝑚 = 3(13 − 1), 𝑛 ≢ 𝑚 (mod 13)
and gcd(𝜈13(𝑏),𝑚 − 2) = 1. Then by Theorem 2.12, 𝜈13(𝑖(𝐾)) = 2.

(6) For 𝑝 = 19, we have 𝑎 ≡ −1 (mod 19), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 19),
𝜈19(𝑏) = 18, 𝜈19(𝑐) = 18, 𝜈19(𝑑) = 20, 𝑚 − 1 = (19 − 1) divides 𝜈19(𝑐),
𝑛 − 𝑚 = 2(19 − 1), gcd(1, 2) = 1, 2 ≢ 0 (mod 19) and 𝑐19 ≡ 1 (mod 19).
Then by Theorem 2.16, 𝜈19(𝑖(𝐾)) = 18.

Finally, we conclude that 𝑖(𝐾) = 2 ⋅ 52 ⋅ 72 ⋅ 132 ⋅ 1918.

3. Preliminaries
Our proofs are based on Newton polygon techniques applied on prime ideal

factorization, which is rather technical but very efficient to apply. We have in-
troduced the corresponding concepts in several former papers. Here we only
give the theorem of index of Ore which plays a key role for proving our main
results. For more details, we refer to [10] and [16].

Let 𝐾 = ℚ(𝛼) be a number field generated by a complex root 𝛼 of a monic
irreducible polynomial 𝐹(𝑥) ∈ ℤ[𝑥]. We shall use Dedekind’s theorem [25,
Chapter I, Proposition 8.3] and Dedekind’s criterion [1, Theorem 6.1.4]. Let
𝜙 ∈ ℤ𝑝[𝑥] be a monic lift to an irreducible factor of 𝐹(𝑥) modulo 𝑝, 𝐹(𝑥) =
𝑎0(𝑥) + 𝑎1(𝑥)𝜙(𝑥) + ⋯ + 𝑎𝑘(𝑥)𝜙(𝑥)𝑘 the 𝜙-expansion of 𝐹(𝑥) and 𝑁+

𝜙 (𝐹) the
principal 𝜙-Newton polygon of 𝐹(𝑥), which can be obtained only by consider-
ing the principal 𝜙-expansion of 𝐹(𝑥). As defined in [10, Def. 1.3], the 𝜙-index
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of𝐹(𝑥), denoted ind𝜙(𝐹), is deg(𝜙)multiplied by the number of points with nat-
ural integer coordinates that lie below or on the polygon 𝑁+

𝜙 (𝐹), strictly above
the horizontal axis and strictly beyond the vertical axis. Let 𝔽𝜙 be the field
𝔽𝑝[𝑥]∕(𝜙) and 𝑢𝑖 = 𝜈𝑝(𝑎𝑖(𝑥)), then to every side 𝑆 of 𝑁+

𝜙 (𝐹) with initial point
(𝑠, 𝑢𝑠), length 𝑙 = 𝑙(𝑆) and every 𝑖 = 0, … , 𝑙, let the residue coefficient 𝑐𝑖 ∈ 𝔽𝜙
defined as follows:

𝑐𝑖 =
⎧

⎨
⎩

0, if (𝑠 + 𝑖, 𝑢𝑠+𝑖) lies strictly above 𝑆,

(
𝑎𝑠+𝑖(𝑥)
𝑝𝑢𝑠+𝑖 ) mod (𝑝, 𝜙(𝑥)), if (𝑠 + 𝑖, 𝑢𝑠+𝑖) lies on 𝑆.

Let −𝜆 = −ℎ∕𝑒 be the slope of 𝑆, where ℎ and 𝑒 are two positive coprime in-
tegers and 𝑙 = 𝑙(𝑆) its length. Then 𝑑 = 𝑙∕𝑒 is the degree of 𝑆. Hence, if
𝑖 is not a multiple of 𝑒, then (𝑠 + 𝑖, 𝑢𝑠+𝑖) does not lie on 𝑆 and 𝑐𝑖 = 0. Let
𝑅𝜆(𝐹)(𝑦) = 𝑡𝑑𝑦𝑑 + 𝑡𝑑−1𝑦𝑑−1 + ⋯ + 𝑡1𝑦 + 𝑡0 ∈ 𝔽𝜙[𝑦] be the residual polyno-
mial of 𝐹(𝑥) associated to the side 𝑆, where for every 𝑖 = 0, … , 𝑑, 𝑡𝑖 = 𝑐𝑠+𝑖𝑒.
If 𝑅𝜆(𝐹)(𝑦) is square-free for each side of the polygon 𝑁+

𝜙 (𝐹), then we say that
𝐹(𝑥) is 𝜙-regular.

Let𝐹(𝑥) =
𝑟∏

𝑖=1
𝜙𝑖
𝑘𝑖
be the factorization of𝐹(𝑥) into powers ofmonic irreducible

coprime polynomials over 𝔽𝑝, we say that the polynomial 𝐹(𝑥) is 𝑝-regular if
𝐹(𝑥) is a 𝜙𝑖-regular polynomial with respect to 𝑝 for every 𝑖 = 1, … , 𝑟. Let
𝑁+
𝜙𝑖
(𝐹) = 𝑆𝑖1+⋯+𝑆𝑖𝑟𝑖 be the 𝜙𝑖-principal Newton polygon of 𝐹(𝑥)with respect

to 𝑝. For every 𝑗 = 1,… , 𝑟𝑖, let 𝑅𝜆𝑖𝑗 (𝐹)(𝑦) =
𝑠𝑖𝑗∏

𝑠=1
𝜓𝑎𝑖𝑗𝑠𝑖𝑗𝑠 (𝑦) be the factorization of

𝑅𝜆𝑖𝑗 (𝐹)(𝑦) in 𝔽𝜙𝑖 [𝑦]. Then we have the following theorem of index of Ore:

Theorem 3.1. (Ore) ([10, Theorem 1.7 and Theorem 1.9])
Under the above hypothesis, we have the following:

(1)

𝜈𝑝((ℤ𝐾 ∶ ℤ[𝛼])) ≥
𝑟∑

𝑖=1
ind𝜙𝑖 (𝐹).

The equality holds if 𝐹(𝑥) is 𝑝-regular.
(2) If 𝐹(𝑥) is 𝑝-regular, then

𝑝ℤ𝐾 =
𝑟∏

𝑖=1

𝑟𝑖∏

𝑗=1

𝑠𝑖𝑗∏

𝑠=1
𝔭𝑒𝑖𝑗𝑖𝑗𝑠

is the factorization of 𝑝ℤ𝐾 into powers of prime ideals of ℤ𝐾 , where 𝑒𝑖𝑗 is
the smallest positive integer satisfying 𝑒𝑖𝑗𝜆𝑖𝑗 ∈ ℤ and the residue degree
of 𝔭𝑖𝑗𝑠 over 𝑝 is given by 𝑓𝑖𝑗𝑠 = deg(𝜙𝑖) ⋅ deg(𝜓𝑖𝑗𝑠) for every (𝑖, 𝑗, 𝑠).

For the proof of our results, we need the following lemma, which character-
izes the prime divisors of 𝑖(𝐾).
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Lemma 3.2. (Hensel) ([11])
Let 𝑝 be a rational prime and𝐾 a number field. For every positive integer 𝑓, let𝒫𝑓
be the number of distinct prime ideals of ℤ𝐾 lying above 𝑝 with residue degree 𝑓
and𝒩𝑓 the number of monic irreducible polynomials of 𝔽𝑝[𝑥] of degree 𝑓. Then
𝑝 divides the index 𝑖(𝐾) if and only if 𝒫𝑓 > 𝒩𝑓 for some positive integer 𝑓.
For every number field of degree 𝑛 ≤ 7 and every rational prime 𝑝, Engstrom

established a connection between 𝑖𝑝 = 𝜈𝑝(𝑖(𝐾)) and the prime ideal factoriza-
tion of 𝑝ℤ𝐾 . That is, from the factorization of 𝑝ℤ𝐾 , one can determine explic-
itly 𝑖𝑝. Moreover, he provided some formulas which allow us to evaluate 𝑖𝑝 for
some particular number fields of degree 𝑛 ≥ 8 (for more details, see [11]). Also,
Śliwa extended Engstrom’s results to number fields up to degree 12, under the
condition that 𝑝 is unramified in the extension 𝐾∕ℚ (see [28]).

4. Proofs of main results
Recall that, according to the factorization given in Theorem 3.1, we use the

triple indices in the factorization of 𝑝ℤ𝐾 . Namely,

𝑝ℤ𝐾 =
𝑟∏

𝑖=1

𝑟𝑖∏

𝑗=1

𝑠𝑖𝑗∏

𝑠=1
𝔭𝑒𝑖𝑗𝑖𝑗𝑠.

Here 𝑒𝑖𝑗 is the ramification index of 𝔭𝑖𝑗𝑠 and 𝑓𝑖𝑗𝑠 = deg(𝜙𝑖) ⋅ deg(𝜓𝑖𝑗𝑠) is its
residue degree for every (𝑖, 𝑗, 𝑠).
Proof of Theorem 2.1.

(1) If 𝑎 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 2) and 𝑏 ≡ 1 (mod 2), then 𝐹(𝑥) ≡ 𝑥𝑛 − 𝑥2 ≡
𝑥2(𝑥𝑛−2 − 1) (mod 2). Let 𝜙1 = 𝑥. Since 𝜈2(𝑑) > 2𝜈2(𝑐), then 𝑁+

𝜙1
(𝐹) =

𝑆11 + 𝑆12 has two sides joining (0, 𝜈2(𝑑)), (1, 𝜈2(𝑐)) and (2, 0). Thus the
degree of each side of 𝑁+

𝜙1
(𝐹) is 1. Hence 𝜙1 provides two prime ideals

of ℤ𝐾 lying above 2 with residue degree 1. On the other hand, we have
the following:
(a) If 𝑛 is odd, then 𝑥𝑛−2 − 1 is a separable polynomial over 𝔽2. Since

𝑥 − 1 divides 𝑥𝑛−2 − 1 and 𝑥𝑛−2 − 1 ≡ (𝑥 − 1)𝑈(𝑥) (mod 2) with
gcd(𝑥 − 1,𝑈(𝑥)) = 1. Then 𝑥 − 1 provides a unique prime ideal of
ℤ𝐾 lying above 2with residue degree 1. The prime ideals provided
by 𝑈(𝑥), which we denote by the unramified ideal 𝔞, have residue
degrees 𝑓 > 1 and satisfies 𝒫𝑓 < 𝒩𝑓 for every integer 𝑓. We con-
clude that 2ℤ𝐾 = 𝔭111𝔭121𝔭211𝔞 with 𝑓111 = 𝑓121 = 𝑓211 = 1 and
the prime ideal factorization of 𝔞 contains only prime ideals with
residue degrees 𝑓 > 1 satisfying 𝒫𝑓 < 𝒩𝑓 for every positive inte-
ger 𝑓. By Lemma 3.2, 2 divides 𝑖(𝐾). Applying [11, Theorem 4],
we get 𝜈2(𝑖(𝐾)) = 1.

(b) If 𝑛 − 2 = 2𝑟 (𝑟 ≥ 1), then 𝐹(𝑥) ≡ 𝑥2(𝑥 − 1)2𝑟 (mod 2). Let 𝜙2 =

𝑥−1. Then 𝐹(𝑥) =
𝑛∑

𝑖=0
𝐴𝑖(1)𝜙𝑖2. Since𝐴0(1) ≡ 2 (mod 4),𝑁+

𝜙2
(𝐹) =
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𝑆21 has a single side of height 1. Thus 2ℤ𝐾 = 𝔭111𝔭121𝔭2
𝑟

211 with
residue degree 1 each ideal factor. Applying [11, Corollary], we get
𝜈2(𝑖(𝐾)) = 1.

(c) If 𝑛 − 2 = 2𝑟 (𝑟 ≥ 1), then 𝐹(𝑥) ≡ 𝑥2(𝑥 − 1)2𝑟 (mod 2). Let

𝜙2 = 𝑥 − 1. Then 𝐹(𝑥) =
𝑛∑

𝑖=0
𝐴𝑖(1)𝜙𝑖2. Since 𝐴0(1) ≡ 0 (mod 8)

and 𝐴1(1) ≡ 2 (mod 4), then 𝑁+
𝜙2
(𝐹) = 𝑆21 + 𝑆22 has two sides

joining (0, 𝜈2(𝐴0(1))), (1, 𝜈2(𝐴1(1))) and (2𝑟, 0). Thus the degree
of each side of 𝑁+

𝜙2
(𝐹) is 1, and so 2ℤ𝐾 = 𝔭111𝔭121𝔭211𝔭2

𝑟−1
221 with

residue degree 1 each ideal factor. If 𝑟 = 1, then by [11, Theorem4],
𝜈2(𝑖(𝐾)) = 2. If 𝑟 ≥ 2, then by [11, Corollary], we get 𝜈2(𝑖(𝐾)) = 2
also.

(2) If 𝑎 ≡ 1 (mod 2) and 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 2), then 𝐹(𝑥) ≡ 𝑥𝑛 − 𝑥𝑚 ≡
𝑥𝑚(𝑥𝑛−𝑚 − 1) (mod 2). Let 𝜙1 = 𝑥. Since 𝜈2(𝑑) > 2𝜈2(𝑐) − 𝜈2(𝑏) and
(𝑚 − 2)𝜈2(𝑐) > (𝑚 − 1)𝜈2(𝑏), then 𝑁+

𝜙1
(𝐹) = 𝑆11 + 𝑆12 + 𝑆13 has three

sides joining (0, 𝜈2(𝑑)), (1, 𝜈2(𝑐)), (2, 𝜈2(𝑏)) and (𝑚, 0). Thus the degree
of each side of 𝑁+

𝜙1
(𝐹) is 1. Hence 𝜙1 provides three prime ideals of ℤ𝐾

lying above 2with residue degree 1. On the other hand, 𝑛 ≢ 𝑚 (mod 2),
then 𝑥𝑛−𝑚 − 1 is separable over 𝔽2. Since 𝑥 − 1 divides 𝑥𝑛−𝑚 − 1, and
𝑥𝑛−𝑚 − 1 ≡ (𝑥 − 1)𝑈(𝑥) (mod 2) with gcd(𝑥 − 1,𝑈(𝑥)) = 1, then 𝑥 − 1
provides a unique prime ideal ofℤ𝐾 lying above 2with residue degree 1.
The prime ideals provided by𝑈(𝑥), which we denote by the unramified
ideal 𝔞, have residue degrees 𝑓 > 1 and satisfies 𝒫𝑓 < 𝒩𝑓 for every
integer 𝑓. We conclude that 2ℤ𝐾 = 𝔭111𝔭121𝔭𝑚−2131 𝔭211𝔞 with 𝑓111 =
𝑓121 = 𝑓131 = 𝑓211 = 1 and the prime ideal factorization of 𝔞 contains
only prime ideals with residue degrees 𝑓 > 1 satisfying 𝒫𝑓 < 𝒩𝑓 for
every positive integer 𝑓. If 𝑚 = 3, then by [11, Theorem 4], we get
𝜈2(𝑖(𝐾)) = 2. If𝑚 ≥ 4, then by [11, Corollary], we get 𝜈2(𝑖(𝐾)) = 2 also.

□

Proof of Theorem 2.4.
If 𝑎 ≡ 1 (mod 2), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 2) and 𝑛−𝑚 = 2𝑟, then𝐹(𝑥) ≡ 𝑥𝑛−𝑥𝑚 ≡
𝑥𝑚(𝑥2𝑟 − 1) ≡ 𝑥𝑚(𝑥 − 1)2𝑟 (mod 2), where 𝑟 ≥ 2. Let 𝜙1 = 𝑥 and 𝜙2 = 𝑥 − 1.
Then

𝐹(𝑥) = 𝜙𝑛1 + 𝑎𝜙𝑚1 + 𝑏𝜙21 + 𝑐𝜙1 + 𝑑,

=
𝑛∑

𝑖=0
𝐴𝑖(1)𝜙𝑖2.

Since 𝐴0(1) ≡ 0 (mod 4) and 𝐴1(1) ≡ 2 (mod 4), then 𝑁+
𝜙2
(𝐹) = 𝑆21 + 𝑆22 has

two sides joining (0, 𝜈2(𝐴0)), (1, 1) and (2𝑟, 0) with 𝜈2(𝐴0(1)) ≥ 2 (see Figure
1). Thus the degree of each side of 𝑁+

𝜙2
(𝐹) is 1. Hence 𝜙2 provides two prime

ideals of ℤ𝐾 lying above 2 with residue degree 1. On the other hand, 𝜈2(𝑑) <
2𝜈2(𝑐) − 𝜈2(𝑏) and (𝑚 − 2)𝜈2(𝑑) > 𝑚𝜈2(𝑏). Then 𝑁+

𝜙1
(𝐹) = 𝑆11 + 𝑆12 has



INFINITE FAMILIES OF NUMBER FIELDS WITH GIVEN INDICES 1595

two sides joining (0, 𝜈2(𝑑)), (2, 𝜈2(𝑏)) and (𝑚, 0) (see Figure 1). Since 𝜈2(𝑑) ≢
𝜈2(𝑏) (mod 2) and gcd(𝑚−2, 𝜈2(𝑏)) = 1, then𝑑(𝑆11) = 𝑑(𝑆12) = 1. We conclude
that 2ℤ𝐾 = 𝔭2111𝔭

𝑚−2
121 𝔭211𝔭

2𝑟−1
221 with residue degree 1 each ideal factor. Since

𝑟 ≥ 2 and𝑚 ≥ 4, then𝑚−2 ≥ 2 and 2𝑟 ≥ 3. Applying [11, Theorem 6], we get
𝜈2(𝑖(𝐾)) = 3.

0 1 2 𝑚
1

∣

𝜈2(𝑑)

𝜈2(𝑏)

0 1 2
∣

2𝑟
1

∣ ∣ ∣ ∣
−

−

−
−

∙𝜈2(𝐴0(1))

∙

∙
∙

𝑆11

𝑆12
𝑆21

𝑆23

𝑁+
𝜙1
(𝐹) 𝑁+

𝜙2
(𝐹)

Figure 1. 𝑁+
𝜙𝑖
(𝐹), 𝑖 = 1, 2

□

Proof of Theorem 2.6.
If 𝑎 ≡ 1 (mod 2) and 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 2), then 𝐹(𝑥) ≡ 𝑥𝑛 − 𝑥𝑚 ≡
𝑥𝑚(𝑥𝑛−𝑚−1) ≡ 𝑥𝑚(𝑥−1)(𝑥2+𝑥+1) (mod 2). Let 𝜙1 = 𝑥. Since 𝜈2(𝑐)−𝜈2(𝑑) <

𝜈2(𝑏) − 𝜈2(𝑐) <
− 𝜈2(𝑏)
𝑚 − 2 , then 𝑁

+
𝜙1
(𝐹) = 𝑆11 + 𝑆12 + 𝑆13 has three sides join-

ing (0, 𝜈2(𝑑)), (1, 𝜈2(𝑐)), (2, 𝜈2(𝑏)) and (𝑚, 0) with 𝑑(𝑆11) = 𝑑(𝑆12) = 1. Since
gcd(𝑚 − 2, 𝜈2(𝑏)) = 3, then 𝑅𝜆13(𝐹)(𝑦) = 𝑦3 + 1 = (𝑦 + 1)(𝑦2 + 𝑦 + 1) ∈ 𝔽𝜙1[𝑦].

We conclude that 2ℤ𝐾 = 𝔭111𝔭121𝔭𝑒131𝔭
𝑒
132𝔭211𝔭311 with 𝑒 =

𝑚 − 2
3 , 𝑓111 =

𝑓121 = 𝑓131 = 𝑓211 = 1 and 𝑓132 = 𝑓311 = 2. Applying [11, Theorem 7], we get
𝜈2(𝑖(𝐾)) = 3. □

Proof of Theorem 2.8.
If 𝑎 ≡ 1 (mod 2), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 2) and 𝑛−𝑚 = 2𝑟, then𝐹(𝑥) ≡ 𝑥𝑛−𝑥𝑚 ≡
𝑥𝑚(𝑥2𝑟 − 1) ≡ 𝑥𝑚(𝑥 − 1)2𝑟 (mod 2). Let 𝜙1 = 𝑥 and 𝜙2 = 𝑥 − 1. Then

𝐹(𝑥) = 𝜙𝑛1 + 𝑎𝜙𝑚1 + 𝑏𝜙21 + 𝑐𝜙1 + 𝑑,

=
𝑛∑

𝑖=0
𝐴𝑖(1)𝜙𝑖2.

Since 𝐴0(1) ≡ 0 (mod 8) and 𝐴1(1) ≡ 2 (mod 4), then 𝑁+
𝜙2
(𝐹) = 𝑆21 + 𝑆22

has two sides joining (0, 𝜈2(𝐴0(1))), (1, 1) and (2𝑟, 0) with 𝜈2(𝐴0(1)) ≥ 3 (see
Figure 2). Thus the degree of each side of 𝑁+

𝜙2
(𝐹) is 1. Hence 𝜙2 provides two

prime ideals of ℤ𝐾 lying above 2 with residue degree 1. On the other hand,

𝜈2(𝑐)−𝜈2(𝑑) < 𝜈2(𝑏)−𝜈2(𝑐) <
− 𝜈2(𝑏)
𝑚 − 2 , then𝑁

+
𝜙1
(𝐹) = 𝑆11+𝑆12+𝑆13 has three

sides joining (0, 𝜈2(𝑑)), (1, 𝜈2(𝑐)), (2, 𝜈2(𝑏)) and (𝑚, 0) with 𝑑(𝑆11) = 𝑑(𝑆12) = 1
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(see Figure 2). Since 𝑚 − 2 = 2𝑘 + 1 divides 𝜈2(𝑏), then 𝑑(𝑆13) = 𝑚 − 2 with
𝑅𝜆13(𝐹)(𝑦) = 𝑦𝑚−2+1 ∈ 𝔽𝜙1[𝑦]. Also,𝑚−2 is odd, then 𝑅𝜆13(𝐹)(𝑦) is separable
over 𝔽𝜙1 and 𝑅𝜆13(𝐹)(𝑦) = (𝑦+1)𝑈(𝑦) ∈ 𝔽𝜙1[𝑦]with gcd(𝑦+1,𝑈(𝑦)) = 1, then
𝑦 + 1 provides a unique prime ideal of ℤ𝐾 lying above 2 with residue degree 1.
The prime ideals provided by 𝑈(𝑦), which we denote by the unramified ideal
𝔞, have residue degrees 𝑓 > 1 and satisfies 𝒫𝑓 < 𝒩𝑓 for every integer 𝑓. We
conclude that 2ℤ𝐾 = 𝔭111𝔭121𝔭131𝔭211𝔭2

𝑟−1
221 𝔞 with 𝑓111 = 𝑓121 = 𝑓131 = 𝑓211 =

𝑓221 = 1 and the prime ideal factorization of 𝔞 contains only prime ideals with
residue degrees 𝑓 > 1 satisfying 𝒫𝑓 < 𝒩𝑓 for every positive integer 𝑓. If 𝑟 = 1,
then by [11, Theorem 4], we get 𝜈2(𝑖(𝐾)) = 5. If 𝑟 ≥ 2, then by [11, Corollary],
we get 𝜈2(𝑖(𝐾)) = 4.

0 1 2 𝑚
1

∣

𝜈2(𝑑)

𝜈2(𝑏)

0 1 2
∣

2𝑟
1

∣ ∣ ∣ ∣
−

−

−
−

−𝜈2(𝑐)
∙𝜈2(𝐴0(1))

∙

∙

∙
∙

𝑆11

𝑆12
𝑆13

𝑆21

𝑆23

𝑁+
𝜙1
(𝐹) 𝑁+

𝜙2
(𝐹)

Figure 2. 𝑁+
𝜙𝑖
(𝐹), 𝑖 = 1, 2

□

Proof of Theorem 2.10.
Since 𝑏 ≡ −1 (mod 𝑝), 𝑎 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 𝑝) and 𝑛 − 2 = 𝑘(𝑝 − 1), then
𝐹(𝑥) ≡ 𝑥𝑛−𝑥2 ≡ 𝑥2(𝑥𝑘(𝑝−1)−1) (mod 𝑝). Since 𝑛 ≢ 2 (mod 𝑝), then 𝑥𝑘(𝑝−1)−1

is separable over 𝔽𝑝 and 𝑥𝑘(𝑝−1) − 1 ≡
𝑝−1∏

𝑖=1
(𝑥 − 𝑖)𝑈(𝑥) (mod 𝑝) with gcd(𝑥 −

𝑖,𝑈(𝑥)) = 1. Let 𝜙𝑖 = 𝑥−𝑖 for every 𝑖 = 0, … , 𝑝−1. Then For every 𝑖 = 1, … , 𝑝−
1, 𝜙𝑖 provides a unique prime ideal of ℤ𝐾 lying above 𝑝 with residue degree 1.
The prime ideals provided by 𝑈(𝑥), which we denote by the unramified ideal
𝔞, have residue degrees 𝑓 > 1 and satisfies 𝒫𝑓 < 𝒩𝑓 for every integer 𝑓. For
𝜙0, we have the following:

(1) If 𝜈𝑝(𝑑) > 2𝜈𝑝(𝑐), then𝑁+
𝜙0
(𝐹) = 𝑆01+𝑆02 has two sides joining (0, 𝜈𝑝(𝑑)),

(1, 𝜈𝑝(𝑐)) and (2, 0). Thus the degree of each side of 𝑁+
𝜙0
(𝐹) is 1. Hence

𝑝ℤ𝐾 = 𝔭011𝔭021
𝑝−1∏

𝑖=1
𝔭𝑖11𝔞 with 𝑓011 = 𝑓021 = 𝑓𝑖11 = 1 for every 𝑖 =

1, … , 𝑝 − 1 and the prime ideal factorization of 𝔞 contains only prime
ideals with residue degrees 𝑓 > 1 satisfying 𝒫𝑓 < 𝒩𝑓 for every positive
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integer 𝑓. By Lemma 3.2, 𝑝 divides 𝑖(𝐾). Applying [11, Theorem 4], we
get 𝜈𝑝(𝑖(𝐾)) = 1.

(2) If 𝜈𝑝(𝑑) = 2ℎ < 2𝜈𝑝(𝑐), then 𝑁+
𝜙0
(𝐹) = 𝑆01 has a single side join-

ing (0, 𝜈𝑝(𝑑)) and (2, 0). Since 𝜈𝑝(𝑑) = 2ℎ and 𝑑𝑝 ≡ 1 (mod 𝑝), then
𝑑(𝑆01) = 2 with 𝑅𝜆01(𝐹)(𝑦) = 𝑏𝑦2 + 𝑑𝑝 = −𝑦2 + 1 = −(𝑦 − 1)(𝑦 + 1) ∈

𝔽𝜙0[𝑦]. Hence 𝑝ℤ𝐾 = 𝔭011𝔭011
𝑝−1∏

𝑖=1
𝔭𝑖11𝔞 with 𝑓011 = 𝑓012 = 𝑓𝑖11 = 1

for every 𝑖 = 1, … , 𝑝 − 1 and the prime ideal factorization of 𝔞 contains
only prime ideals with residue degrees 𝑓 > 1 satisfying 𝒫𝑓 < 𝒩𝑓 for
every positive integer 𝑓. By Lemma 3.2, 𝑝 divides 𝑖(𝐾). Applying [11,
Theorem 4], we get 𝜈𝑝(𝑖(𝐾)) = 1.

□

Proof of Theorem 2.12.
Since 𝑎 ≡ −1 (mod 𝑝), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 𝑝) and 𝑛 − 𝑚 = 𝑘(𝑝 − 1), then
𝐹(𝑥) ≡ 𝑥𝑛 − 𝑥𝑚 ≡ 𝑥𝑚(𝑥𝑘(𝑝−1) − 1) (mod 𝑝). Since 𝑛 ≢ 𝑚 (mod 𝑝), then

𝑥𝑘(𝑝−1) − 1 is separable over 𝔽𝑝 and 𝑥𝑘(𝑝−1) − 1 ≡
𝑝−1∏

𝑖=1
(𝑥 − 𝑖)𝑈(𝑥) (mod 𝑝)with

gcd(𝑥−𝑖,𝑈(𝑥)) = 1 for every 𝑖 = 1, … , 𝑝−1. Let 𝜙𝑖 = 𝑥−𝑖 with 𝑖 = 0, … , 𝑝−1.
Then for every 𝑖 = 1, … , 𝑝−1,𝜙𝑖 provides a unique prime ideal ofℤ𝐾 lying above
𝑝 with residue degree 1. The prime ideals provided by 𝑈(𝑥), which we denote
by the unramified ideal 𝔞, have residue degrees 𝑓 > 1 and satisfies 𝒫𝑓 < 𝒩𝑓

for every integer 𝑓. For 𝜙0, since 𝜈𝑝(𝑐)−𝜈𝑝(𝑑) < 𝜈𝑝(𝑏)−𝜈𝑝(𝑐) <
− 𝜈𝑝(𝑏)
𝑚 − 2 , then

𝑁+
𝜙0
(𝐹) = 𝑆01 + 𝑆02 + 𝑆03 has three sides joining (0, 𝜈𝑝(𝑑)), (1, 𝜈𝑝(𝑐)), (2, 𝜈𝑝(𝑏))

and (𝑚, 0)with 𝑑(𝑆01) = 𝑑(𝑆02) = 1 (see Figure 3). Since gcd(𝜈𝑝(𝑏),𝑚−2) = 1,

then 𝑑(𝑆03) = 1 also. Finally, we get 𝑝ℤ𝐾 = 𝔭011𝔭021𝔭𝑚−2031

𝑝−1∏

𝑖=1
𝔭𝑖11𝔞with 𝑓011 =

𝔭021 = 𝑓031 = 𝑓𝑖11 = 1 for every 𝑖 = 1, … , 𝑝−1 and the prime ideal factorization
of 𝔞 contains only prime ideals with residue degrees 𝑓 > 1 satisfying 𝒫𝑓 <
𝒩𝑓 for every positive integer 𝑓. If 𝑚 = 3, then by [11, Theorem 4], we get
𝜈𝑝(𝑖(𝐾)) = 2. If𝑚 ≥ 4, then by [11, Corollary], we get 𝜈𝑝(𝑖(𝐾)) = 2 also.

□

Proof of Theorem 2.14.
Since 𝑎 ≡ −1 (mod 𝑝), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 𝑝) and 𝑛 − 𝑚 = ℎ(𝑝 − 1), then
𝐹(𝑥) ≡ 𝑥𝑛 − 𝑥𝑚 ≡ 𝑥𝑘(𝑝−1)(𝑥ℎ(𝑝−1) − 1) (mod 𝑝). Since ℎ ≢ 0 (mod 𝑝), then

𝑥ℎ(𝑝−1) − 1 is separable over 𝔽𝑝 and 𝑥ℎ(𝑝−1) − 1 ≡
𝑝−1∏

𝑖=1
(𝑥 − 𝑖)𝑈(𝑥) (mod 𝑝)with

gcd(𝑥−𝑖,𝑈(𝑥)) = 1 for every 𝑖 = 1, … , 𝑝−1. Let 𝜙𝑖 = 𝑥−𝑖 with 𝑖 = 0, … , 𝑝−1.
Then for every 𝑖 = 1, … , 𝑝−1,𝜙𝑖 provides a unique prime ideal ofℤ𝐾 lying above
𝑝 with residue degree 1. The prime ideals provided by 𝑈(𝑥), which we denote
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Figure 3. 𝑁+
𝜙0
(𝐹)

by the unramified ideal 𝔞, have residue degrees 𝑓 > 1 and satisfies𝒫𝑓 < 𝒩𝑓 for
every integer𝑓. For𝜙0, since 𝜈𝑝(𝑑) < 2𝜈𝑝(𝑐)−𝜈𝑝(𝑑) and (𝑚−2)𝜈𝑝(𝑑) < 𝑚𝜈𝑝(𝑏),
then 𝑁+

𝜙0
(𝐹) = 𝑆01 has a single side joining (0, 𝜈𝑝(𝑑)) and (𝑚, 0). On the other

hand,𝑚 = 𝑘(𝑝−1) divides 𝜈𝑝(𝑑). Thus𝑅𝜆01(𝐹)(𝑦) = 𝑎𝑦𝑘(𝑝−1)+𝑑𝑝 = −𝑦𝑘(𝑝−1)+
1 ∈ 𝔽𝜙0[𝑦]. Since 𝑘 ≢ 0 (mod 𝑝), then 𝑅𝜆01(𝐹)(𝑦) is separable over 𝔽𝜙0 and

𝑅𝜆01(𝐹)(𝑦) = −
𝑝−1∏

𝑗=1
(𝑦 − 𝑗)𝑉(𝑦) ∈ 𝔽𝜙0[𝑦] with gcd(𝑦 − 𝑖, 𝑉(𝑦)) = 1 for every

𝑖 = 1, … , 𝑝−1. Thus 𝑦−𝑗 provides a unique prime ideal ofℤ𝐾 lying above𝑝with
residue degree 1 for every 𝑗 = 1,… , 𝑝 − 1. The prime ideals provided by 𝑉(𝑦),
which we denote by the unramified ideal 𝔟, have residue degrees 𝑓 > 1 and

satisfies𝒫𝑓 < 𝒩𝑓 for every integer 𝑓. Finally, we get 𝑝ℤ𝐾 =
𝑝−1∏

𝑗=1
𝔭01𝑗

𝑝−1∏

𝑖=1
𝔭𝑖11𝔞𝔟

with 𝑓01𝑗 = 𝑓𝑖11 = 1 for every 𝑖, 𝑗 = 1, … , 𝑝 − 1. Since gcd(𝑘, ℎ) = 1 and
𝔽𝜙0 ≃ 𝔽𝑝, then gcd(𝑈(𝑥), 𝑉(𝑥)) = 1. Therefore, the prime ideal factorization of
𝔞𝔟 contains only prime ideals with residue degrees 𝑓 > 1 satisfying 𝒫𝑓 < 𝒩𝑓
for every positive integer 𝑓. By [11, Theorem 4], 𝜈𝑝(𝑖(𝐾)) = 𝑝 − 2. □

Proof of Theorem 2.16.
Since 𝑎 ≡ −1 (mod 𝑝), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 𝑝) and 𝑛 − 𝑚 = ℎ(𝑝 − 1),
then 𝐹(𝑥) ≡ 𝑥𝑛 − 𝑥𝑚 ≡ 𝑥𝑚(𝑥ℎ(𝑝−1) − 1) (mod 𝑝). Since ℎ ≢ 0 (mod 𝑝), then

𝑥ℎ(𝑝−1) − 1 is separable over 𝔽𝑝 and 𝑥ℎ(𝑝−1) − 1 ≡
𝑝−1∏

𝑖=1
(𝑥 − 𝑖)𝑈(𝑥) (mod 𝑝)

with gcd(𝑥 − 𝑖,𝑈(𝑥)) = 1 for every 𝑖 = 1, … , 𝑝 − 1. Let 𝜙𝑖 = 𝑥 − 𝑖 with 𝑖 =
0, … , 𝑝−1. Then for every 𝑖 = 1, … , 𝑝−1, 𝜙𝑖 provides a unique prime ideal ofℤ𝐾
lying above 𝑝 with residue degree 1. The prime ideals provided by𝑈(𝑥), which
we denote by the unramified ideal 𝔞, have residue degrees 𝑓 > 1 and satisfies
𝒫𝑓 < 𝒩𝑓 for every integer 𝑓. For 𝜙0, since (𝑚 − 1)𝜈𝑝(𝑑) > 𝑚𝜈𝑝(𝑐) and (𝑚 −
2)𝜈𝑝(𝑐) < (𝑚−1)𝜈𝑝(𝑏), then𝑁+

𝜙0
(𝐹) = 𝑆01+𝑆02 has two sides joining (0, 𝜈𝑝(𝑑)),

(1, 𝜈𝑝(𝑐)) and (𝑚, 0)with 𝑑(𝑆01) = 1. Since𝑚−1 = 𝑘(𝑝−1) divides 𝜈𝑝(𝑐), then
𝑅𝜆02(𝐹)(𝑦) = 𝑎𝑦𝑘(𝑝−1) + 𝑐𝑝 = −𝑦𝑘(𝑝−1) + 1 ∈ 𝔽𝜙0[𝑦]. Since 𝑘 ≢ 0 (mod 𝑝), then
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𝑅𝜆02(𝐹)(𝑦) is separable over 𝔽𝜙0 and 𝑅𝜆02(𝐹)(𝑦) = −
𝑝−1∏

𝑗=1
(𝑦 − 𝑗)𝑉(𝑦) ∈ 𝔽𝜙0[𝑦]

with gcd(𝑦− 𝑖, 𝑉(𝑦)) = 1 for every 𝑖 = 1, … , 𝑝−1. Thus 𝑦−𝑗 provides a unique
prime ideal ofℤ𝐾 lying above 𝑝 with residue degree 1 for every 𝑗 = 1,… , 𝑝 − 1.
The prime ideals provided by𝑉(𝑦), which we denote by the unramified ideal 𝔟,
have residue degrees 𝑓 > 1 and satisfies 𝒫𝑓 < 𝒩𝑓 for every integer 𝑓. Finally,

we get 𝑝ℤ𝐾 = 𝔭011
𝑝−1∏

𝑗=1
𝔭02𝑗

𝑝−1∏

𝑖=1
𝔭𝑖11𝔞𝔟 with 𝑓011 = 𝑓02𝑗 = 𝑓𝑖11 = 1 for every

𝑖, 𝑗 = 1, … , 𝑝 − 1. Since gcd(𝑘, ℎ) = 1 and 𝔽𝜙0 ≃ 𝔽𝑝, then gcd(𝑈(𝑥), 𝑉(𝑥)) = 1.
Therefore, the prime ideal factorization of 𝔞𝔟 contains only prime ideals with
residue degrees 𝑓 > 1 satisfying 𝒫𝑓 < 𝒩𝑓 for every positive integer 𝑓. By [11,
Theorem 4], 𝜈𝑝(𝑖(𝐾)) = 𝑝 − 1. □

Proof of Theorem 2.18.
Since 𝑎 ≡ −1 (mod 𝑝), 𝑏 ≡ 𝑐 ≡ 𝑑 ≡ 0 (mod 𝑝) and 𝑛 − 𝑚 = ℎ(𝑝 − 1),
then 𝐹(𝑥) ≡ 𝑥𝑛 − 𝑥𝑚 ≡ 𝑥𝑚(𝑥ℎ(𝑝−1) − 1) (mod 𝑝). Since ℎ ≢ 0 (mod 𝑝), then

𝑥ℎ(𝑝−1) − 1 is separable over 𝔽𝑝 and 𝑥ℎ(𝑝−1) − 1 ≡
𝑝−1∏

𝑖=1
(𝑥 − 𝑖)𝑈(𝑥) (mod 𝑝)

with gcd(𝑥 − 𝑖,𝑈(𝑥)) = 1 for every 𝑖 = 1, … , 𝑝 − 1. Let 𝜙𝑖 = 𝑥 − 𝑖 with
𝑖 = 0, … , 𝑝 − 1. Then for every 𝑖 = 1, … , 𝑝 − 1, 𝜙𝑖 provides a unique prime
ideal of ℤ𝐾 lying above 𝑝 with residue degree 1. The prime ideals provided by
𝑈(𝑥), which we denote by the unramified ideal 𝔞, have residue degrees 𝑓 > 1
and satisfies𝒫𝑓 < 𝒩𝑓 for every integer 𝑓. For 𝜙0, since 𝜈𝑝(𝑐)−𝜈𝑝(𝑑) < 𝜈𝑝(𝑏)−

𝜈𝑝(𝑐) <
− 𝜈𝑝(𝑏)
𝑚 − 2 , then𝑁+

𝜙0
(𝐹) = 𝑆01+𝑆02+𝑆03 has three sides joining (0, 𝜈𝑝(𝑑)),

(1, 𝜈𝑝(𝑐)), (2, 𝜈𝑝(𝑏)) and (𝑚, 0)with 𝑑(𝑆01) = 𝑑(𝑆02) = 1. Since𝑚−2 = 𝑘(𝑝−1)
divides 𝜈𝑝(𝑏), then 𝑅𝜆03(𝐹)(𝑦) = 𝑎𝑦𝑘(𝑝−1) + 𝑏𝑝 = −𝑦𝑘(𝑝−1) + 1 ∈ 𝔽𝜙0[𝑦]. Since

𝑘 ≢ 0 (mod 𝑝), then𝑅𝜆03(𝐹)(𝑦) is separable over 𝔽𝜙0 and𝑅𝜆03(𝐹)(𝑦) = −
𝑝−1∏

𝑗=1
(𝑦−

𝑗)𝑉(𝑦) ∈ 𝔽𝜙0[𝑦] with gcd(𝑦 − 𝑖, 𝑉(𝑦)) = 1 for every 𝑖 = 1, … , 𝑝 − 1. Thus 𝑦 − 𝑗
provides a unique prime ideal of ℤ𝐾 lying above 𝑝 with residue degree 1 for
every 𝑗 = 1,… , 𝑝 − 1. The prime ideals provided by 𝑉(𝑦), which we denote by
the unramified ideal 𝔟, have residue degrees 𝑓 > 1 and satisfies 𝒫𝑓 < 𝒩𝑓 for

every integer 𝑓. Finally, we get 𝑝ℤ𝐾 = 𝔭011𝔭021
𝑝−1∏

𝑗=1
𝔭03𝑗

𝑝−1∏

𝑖=1
𝔭𝑖11𝔞𝔟 with 𝑓011 =

𝑓021 = 𝑓03𝑗 = 𝑓𝑖11 = 1 for every 𝑖, 𝑗 = 1, … , 𝑝 − 1. Since gcd(𝑘, ℎ) = 1 and
𝔽𝜙0 ≃ 𝔽𝑝, then gcd(𝑈(𝑥), 𝑉(𝑥)) = 1. Therefore, the prime ideal factorization of
𝔞𝔟 contains only prime ideals with residue degrees 𝑓 > 1 satisfying 𝒫𝑓 < 𝒩𝑓
for every positive integer 𝑓. By [11, Theorem 4], 𝜈𝑝(𝑖(𝐾)) = 𝑝. □
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