Kakeya-type sets for geometric maximal operators

Anthony Gauvan

Abstract. We establish an estimate for arbitrary geometric maximal operators in the plane: we associate to any family \mathcal{B} composed of rectangles and invariant by translations and central dilations a geometric quantity $\lambda_{\mathcal{B}}$ called its analytic split and satisfying

$$\log(\lambda_{\mathcal{B}}) \lesssim \| M_{\mathcal{B}} \|^p_p$$

for all $1 < p < \infty$, where $M_{\mathcal{B}}$ is the Hardy-Littlewood type maximal operator associated to the family \mathcal{B}.

1. Introduction

In [3], Bateman classified the behavior of directional maximal operators in the plane on the L^p scale for $1 < p < \infty$. Here, we study geometric maximal operators which are more general than directional maximal operators: in particular, their study requires to focus on the interactions between the coupling eccentricity/orientation for a given family of rectangles. Our main result is the construction of so-called Kakeya-type sets for an arbitrary geometric maximal operator which gives an a priori bound on their L^p norm in the same spirit than in [3].
We work in the Euclidean plane \mathbb{R}^2: if U is a measurable subset we denote by $|U|$ its Lebesgue measure. We also denote by \mathcal{R} the family containing all rectangles of \mathbb{R}^2: for $R \in \mathcal{R}$, we define its orientation as the angle $\omega_R \in [0, \pi)$ that its longest side makes with the x-axis and its eccentricity as the ratio $\varepsilon_R \in (0, 1]$ of its shortest side by its longest side. We will also denote by R' the rectangle R translated in its own direction by its length.

A family \mathcal{B} contained in \mathcal{R} is said to be geometric if it is invariant by translations and central dilations i.e. if for any $R \in \mathcal{R}$, any $x \in \mathbb{R}^2$ and $\lambda > 0$, we have

$$x + \lambda R \in \mathcal{B}.$$

Given any geometric family \mathcal{B}, we define the associated geometric maximal operator $M_\mathcal{B}$ as

$$M_\mathcal{B}f(x) := \sup_{x \in R \in \mathcal{B}} \frac{1}{|R|} \int_R |f|$$

for any $f \in L^\infty$ and $x \in \mathbb{R}^2$. We are interested in the relation between the geometry exhibited by the family \mathcal{B} and the regularity of the operator $M_\mathcal{B}$ on the L^p space for $1 < p < \infty$.

A lot of research has been done in the case where \mathcal{B} is equal to

$$\mathcal{R}_\Omega := \{R \in \mathcal{R} : \omega_R \in \Omega\}$$

where Ω is an arbitrary set of directions in $[0, \pi)$. In other words, \mathcal{R}_Ω is the set of all rectangles whose orientation belongs to Ω. We say that \mathcal{R}_Ω is a directional family and to alleviate the notation we denote

$$M_{\mathcal{R}_\Omega} := M_\Omega.$$

Naturally, the operator M_Ω is said to be a directional maximal operator. The study of those operators goes back at least to Cordoba and Fefferman’s article [6] in which they use geometric techniques to show that if $\Omega = \left\{ \frac{\pi}{2^k} \right\}_{k \geq 1}$ then M_Ω has weak-type $(2, 2)$. A year later, using Fourier analysis techniques, Nagel, Stein and Wainger proved in [8] that M_Ω is actually bounded on $L^p(\mathbb{R}^2)$ for any $p > 1$. In [1], Alfonseca has proved that if the set of direction Ω is a lacunary set of finite order then the operator M_Ω is bounded on $L^p(\mathbb{R}^2)$ for any $p > 1$. Finally in [3], Bateman proved the converse and so characterized the L^p boundedness of directional operators in the plane.

Theorem 1.1 (Bateman). Fix an arbitrary set of directions $\Omega \subset [0, \pi)$. We have the following alternative:

- if Ω is finitely lacunary, then M_Ω is bounded on L^p for any $p > 1$.
- if Ω is not finitely lacunary, then M_Ω is not bounded on L^p for any $p < \infty$.

We invite the reader to look at [3] for more details and also [4] where Bateman and Katz introduced their method.
2. Results

Our main result is an *a priori* estimate in the same spirit than one of the main result of [3]. Precisely, to any family \mathcal{B} contained in \mathcal{R} we associate a geometric quantity

$$\lambda_\mathcal{B} \in \mathbb{N} \cup \{\infty\}$$

that we call *analytic split* of \mathcal{B}. Loosely speaking, the analytic split $\lambda_\mathcal{B}$ indicates if \mathcal{B} contains a lot of rectangles in terms of orientation and eccentricity. We prove then the following Theorem.

Theorem 2.1. For any geometric family \mathcal{B} and any $1 < p < \infty$ we have

$$\log(\lambda_\mathcal{B}) \lesssim_p \|M_\mathcal{B}\|_p^p.$$

An important feature of this inequality is that we do not make any assumption on the family \mathcal{B}. In regards of the study of geometric maximal operators, Theorem 2.1 gives a concrete and *a priori* lower bound on the $L^p(\mathbb{R}^2)$ norm of $M_\mathcal{B}$. We insist on the fact that this estimate is concrete since the analytic split is not an abstract quantity associated to \mathcal{B} but has a strong geometric interpretation. No such result was previously known for geometric maximal operators and we give an application in order to illustrate it.

Theorem 2.2. Fix any set of directions $\Omega \subset [0, \frac{\pi}{4})$ which is not finitely lacunary and let $\mathcal{B} \leq \mathcal{R}_\Omega$ be a geometric family satisfying for any $\omega \in \Omega$

$$\inf_{R \in \mathcal{B}, \omega R = \omega} e_R = 0.$$

In this case, the operator $M_\mathcal{B}$ is not bounded on L^p for any $p < \infty$.

Observe that since we have $\mathcal{B} \subset \mathcal{R}_\Omega$ we have the trivial pointwise estimate

$$M_\mathcal{B} \leq M_\Omega.$$

Hence, we have $\|M_\mathcal{B}\|_p < \infty$ if $\|M_\Omega\|_p < \infty$. Surprisingly, Theorem 2.2 states that the converse is also true *i.e.* we have $\|M_\mathcal{B}\|_p = \infty$ if $\|M_\Omega\|_p = \infty$.

3. The family T

Given a geometric family $\mathcal{B} \leq \mathcal{R}$, we can always suppose, without loss of generality, that it is of the form

$$\mathcal{B} = \{\vec{t} + \lambda R : \vec{t} \in \mathbb{R}^2, \lambda > 0, R \in B\}$$

where the family B is contained in the family T defined as

$$T = \{R_n(k) : n \geq 0, 0 \leq k \leq 2^n - 1\}.$$

Here, for $n \geq 1$ and $k \leq 2^n - 1$, $R_n(k)$ is the parallelogram whose vertices are the points $(0, 0), (0, \frac{1}{2^n}), (1, \frac{k}{2^n})$ and $(1, \frac{k+1}{2^n})$. The parallelogram $R_n(k)$ should be thought as a rectangle whose eccentricity and orientation are

$$\left(e_{R_n(k)}, \omega_{R_n(k)}\right) \simeq \left(\frac{1}{2^n}, \frac{k \pi}{2^n \cdot 4}\right).$$
In the rest of the text, we always identify a geometric family
\[\mathcal{B}, \mathcal{R}_\Omega \text{ or } \mathcal{F} \leq \mathcal{R} \]
with the family that generates it
\[B, T_\Omega \text{ or } F \subset T. \]

The family \(T \) has a natural structure of binary tree and we develop a vocabulary adapted to this structure: for any \(R \in T \) of scale \(n \geq 1 \), there exist a unique \(R_f \in T \) of scale \(n - 1 \) such that \(R \subset R_f \). We say that \(R_f \) is the parent of \(R \). In the same fashion, observe that there are only two elements \(R_h, R_l \in T \) of scale \(n + 1 \) such that \(R_h, R_l \subset R \). We say that \(R_h \) and \(R_l \) are the children of \(R \). Observe that \(R \in T \) is the child of \(R' \in T \) if and only if \(R \subset R' \) and \(2|R| = |R'| \) : we will often use those two conditions. We say that a sequence (finite or infinite)
\[n \in \mathcal{R} \]
with the family that generates it
\[R \]
isadapted to this structure: for any
\[i \]
that any
\[R \]
is the parent of \(R \). If
\[R \]
is a first element
\[\mathcal{B} \]
that
\[\mathcal{F} \]
is a last element
\[R \]
that
\[\mathcal{B} \]
is contained in
\[\mathcal{F} \]
and
\[\mathcal{B} \]
is called a leaf of \(\mathcal{F} \). Observe that for any
\[P, R \subset \mathcal{R} \]
we have
\[\mathcal{P} \]
and
\[\mathcal{R} \]
for any
\[i \]
and
\[i \]
if it satisfies
\[R_{i+1} \subset R_i \text{ and } 2|R_{i+1}| = |R_i| \text{ for any } i \text{ i.e. if } R_i \text{ is the parent of } R_{i+1} \text{ for any } i. \]
Different situations can occur. A finite path \(P \) has a first element \(R \) and a last element \(R' \) (defined in a obvious fashion) and we will write \(P_{R,R'} := P \). On the other hand, an infinite path \(P \) has no endpoint. For any family \(B \) contained in \(T \), there is a unique parallelogram \(R \in T \) such that any \(R' \in B \) is included in \(R \) and \(|R| \) is minimal. We say that this element \(R_B := R \) is the root of \(B \) and we define the set \([B]\) as
\[[B] := \{ R \in T : \exists R' \in B, R' \subset R \subset R_B \}. \]
A subset of \(T \) of the form \([B]\) is called a tree generated by \(B \). We define the set \(L_B \) as
\[L_B = \{ R \in B : \forall R' \in B, R' \subset R \Rightarrow R' = R \}. \]
An element of \(L_B \) is called a leaf of \(B \). Observe that for any \(B \) in \(T \) we have \([B] = [L_B]\) and also \(L_B = L_{[B]} \). The first identity says that the leaves of a tree \([B]\) can be seen as the minimal set that generates \([B]\). The second identity states that \([B]\) is not bigger than \(B \) in the sense that it does not have more leaves. If \(P \) is an infinite path, we have by definition \(L_P = \emptyset \).

4. Analytic split

We associate to any family \(B \) included in \(T \) a natural number \(\lambda_{[B]} \in \mathbb{N} \cup \{ \infty \} \) that we call analytic split. For any tree \([B]\), we define its boundary \(\partial[B] \) as the set of path in \([B]\) that are maximal for the inclusion \(i.e. P \in \partial[B] \) if and only if \(P \) is a path included in \([B]\) such that if \(P' \subset [B] \) is a path that contains \(P \) then \(P = P' \). For any tree \([B]\) and path \(P \in \partial[B] \) we define the splitting number of \(P \) relatively to \([B]\) as
\[s_{P,[B]} := \# \{ R \in [B] \setminus P : \exists R' \in P, R \subset R', 2|R| = |R'| \}. \]
We say that a tree \([F]\) is a fig tree of scale \(n \) and height \(h \) when
- \([F]\) is finite and \(\# \partial[F] = 2^n \)
- for any \(P \in \partial[F] \) we have \(s_{P,[F]} = n \) and \(\#P = h \).
Observe that by construction we always have \(h \geq n \). We define the analytic split \(\lambda_{[B]} \) of a tree \([B]\) as the integer \(n \) such that \([B]\) contains a fig tree \([F]\) of scale \(n \) and do not contains any fig tree of scale \(n + 1 \). In the case where \([B]\) contains fig trees of arbitrary high scale, we set \(\lambda_{[B]} = \infty \). More generally for any family \(B \) contained in \(T \) (i.e. when \(B \) is not necessarily a tree), we define its analytic split as

\[
\lambda_B := \lambda_{[B]}.
\]

Hence by definition, the analytic split of a family \(B \) is the same as the analytic split of the tree \([B]\). Observe that thanks to Theorem 2.1 this definition is pertinent.

5. Bateman’s construction and Kakeya-type set

In [3], Bateman proves the following Theorem.

Theorem 5.1 (Bateman’s construction [3]). Suppose that \([F]\) is a fig tree of scale \(n \) and height \(h \): there exists a finite family \(\{R_i : i \in I\} \) included in the geometric family \(\mathcal{F} \) defined as

\[
\mathcal{F} = \{ \vec{t} + \lambda R : \vec{t} \in \mathbb{R}^2, \lambda > 0, R \in [F] \}
\]

such that

\[
\log(n) \left| \bigcup_{i \in I} R_i \right| \lesssim \left| \bigcup_{i \in I} R'_i \right|.
\]

If \(R \) is a rectangle, we denote by \(R' \) the parallelogram \(R \) but shifted of one unit length on the right along its orientation. We fix a \(2^h \) mutually independent random variables

\[
R_i : (\Omega, \mathbb{P}) \to L_{[F]}
\]

who are uniformly distributed in the set \(L_{[F]} \). We consider also the deterministic vectors

\[
\{ \vec{t}_i = (0, \frac{i - 1}{2^h}) : i \leq 2^h \}
\]

is a deterministic vector. Bateman’s main result in [3] reads as follow

Theorem 5.2. We have

\[
\mathbb{P} \left(\log(n) \left| \bigcup_{i \in I} \vec{t}_i + R_i \right| \lesssim \left| \bigcup_{i \in I} T(\vec{t}_i + R_i) \right| \right) > 0.
\]

The proof of this Theorem involves fine geometric estimates, percolation theory and the use of the so-called notion of stickiness of thin tubes of the euclidean plane, see [3] and [4]. Those kind of geometric estimate leads, more generally, to lower bound on maximal operators.
Lemma 5.3. Fix $N > 0$ such that there exists a finite family $\{R_i : i \in I\}$ included in a geometric family \mathcal{B} such that

$$N \left| \bigcup_{i \in I} R_i \right| \leq \left| \bigcup_{i \in J} R_i \right|.$$

In this case, for any $p \in (1, \infty)$, we have

$$N \lesssim_p \|M_\mathcal{B}\|_p^p.$$

6. Geometric estimates

We need different geometric estimates in order to prove Theorem 2.1. We start with geometric estimates on \mathbb{R} which will help us to prove geometric estimates on \mathbb{R}^2. Finally we prove a geometric estimate on \mathbb{R}^2 involving geometric maximal operators that is crucial.

If I is a bounded interval on \mathbb{R} and $\tau > 0$ we denote by τI the interval that has the same center as I and τ times its length i.e. $|\tau I| = \tau |I|$. The following lemma can be found in [2].

Lemma 6.1 (Austin’s covering lemma). Let $\{I_\alpha\}_{\alpha \in A}$ a finite family of bounded intervals on \mathbb{R}. There is a disjoint subfamily

$$\{I_{\alpha_k}\}_{k \leq N}$$

such that

$$\bigcup_{\alpha \in A} I_\alpha \subset \bigcup_{k \leq N} 3I_{\alpha_k}.$$

We apply Austin’s covering lemma to prove two geometric estimates on intervals of the real line. The first one concerns union of dilated intervals.

Lemma 6.2. Fix $\tau > 0$ and let $\{I_\alpha\}_{\alpha \in A}$ a finite family of bounded intervals on \mathbb{R}. We have

$$\left| \bigcup_{\alpha \in A} I_\alpha \right| \simeq \tau \left| \bigcup_{\alpha \in A} \tau I_\alpha \right|.$$

Proof. Suppose that $\tau > 1$. We just need to prove that

$$\left| \bigcup_{\alpha \in A} \tau I_\alpha \right| \leq \tau \left| \bigcup_{\alpha \in A} I_\alpha \right|.$$

Simply observe that we have

$$\bigcup_{\alpha \in A} \tau I_\alpha \subset \left\{ M I_{\bigcup_{\alpha \in A} I_\alpha} > \frac{1}{\tau} \right\}$$

and apply the one dimensional maximal Theorem. □

Now that we have dealt with union of dilated intervals we consider union of translated intervals.
Lemma 6.3. Let $\mu > 0$ be a positive constant. For any finite family of intervals $\{I_\alpha\}_{\alpha \in A}$ on \mathbb{R} and any finite family of scalars $\{t_\alpha\}_{\alpha \in A} \subset \mathbb{R}$ such that, for all $\alpha \in A$

$$|t_\alpha| < \mu \times |I_\alpha|$$

we have

$$\left| \bigcup_{\alpha \in A} I_\alpha \right| \simeq \mu \left| \bigcup_{\alpha \in A} (t_\alpha + I_\alpha) \right|.$$

Proof. We apply Austin's covering lemma to the family $\{I_\alpha\}_{\alpha \in A}$ which gives a disjoint subfamily $\{I_{\alpha k}\}_{k \leq N}$ such that

$$\bigcup_{\alpha \in A} I_\alpha \subset \bigcup_{k \leq N} 3I_{\alpha k}.$$

In particular we have

$$\left| \bigcup_{k \leq N} I_{\alpha k} \right| \simeq \left| \bigcup_{\alpha \in A} I_\alpha \right|.$$

We consider now the family

$$\{(1 + \mu)I_{\alpha k}\}_{k \leq N}$$

which is a priori not disjoint. We apply again Austin's covering lemma which gives a disjoint subfamily that we will denote $\{(1 + \mu)I_{\alpha k_i}\}_{i \leq M}$ who satisfies

$$\bigcup_{k \leq N} (1 + \mu)I_{\alpha k} \subset \bigcup_{i \leq M} 3(1 + \mu)I_{\alpha k_i}.$$

In particular we have

$$\left| \bigcup_{i \leq M} (1 + \mu)I_{\alpha k_i} \right| \simeq \left| \bigcup_{k \leq N} (1 + \mu)I_{\alpha k} \right|.$$

To conclude, it suffices to observe that for any $\alpha \in A$ we have

$$t_\alpha + I_\alpha \subset (1 + \mu)I_\alpha$$

because $|t_\alpha| \leq \mu \times |I_\alpha|$. Hence the family

$$\{t_{\alpha k_i} + I_{\alpha k_i}\}_{i \leq M}$$

is disjoint and so finally

$$\left| \bigcup_{i \leq M} (t_{\alpha k_i} + I_{\alpha k_i}) \right| = \sum_{i \leq M} |I_{\alpha k_i}| \geq \frac{1}{3(1 + \mu)} \left| \bigcup_{i \leq M} 3(1 + \mu)I_{\alpha k_i} \right| \simeq \mu \left| \bigcup_{\alpha \in A} I_\alpha \right|$$

where we have used lemma 6.2 in the last step. \qed
We denote by \mathcal{P} the family containing all parallelograms $R \subset \mathbb{R}^2$ whose vertices are of the form $(p, a), (p, b), (q, c)$ and (q, d) where $p - q > 0$ and $b - a = d - c > 0$. We say that $L_R := p - q$ is the length of R and that $W_R := b - a$ is the width of R. For $R \in \mathcal{P}$ and a positive ratio $0 < \tau < 1$ we denote by $\mathcal{P}_{R, \tau}$ the family defined as

$$\mathcal{P}_{R, \tau} := \{S \in \mathcal{P} : S \subset R, L_S = L_R, |S| \geq \tau |R| \}.$$

For $R \in \mathcal{P}$ define the parallelogram $\hat{R} \in \mathcal{P}$ as the parallelogram who has same length, orientation and center than R but is 5 times wider i.e. $W_{\hat{R}} = 5W_R$.

Proposition 6.4. Fix $0 < \tau < 1$ and any finite family of parallelograms $\{R_i\}_{i \in I} \subset \mathcal{P}$. For each $i \in I$, select an element $S_i \in \mathcal{P}_{R_i, \tau}$. The following estimate holds

$$\left| \bigcup_{i \in I} S_i \right| \geq \frac{\tau}{54} \left| \bigcup_{i \in I} R_i \right|.$$

Proof. Fix $x \in \mathbb{R}$ and for $i \in I$, denote by R_i^x and S_i^x the segments $R_i \cap \{x \times \mathbb{R}\}$ and $S_i \cap \{x \times \mathbb{R}\}$. For any $i \in I$, observe that there is a scalar t_i satisfying $|t_i| \leq \mu \times |R_i|$ with

$$\mu = 5$$

such that

$$t_i + \tau R_i^x \subset S_i^x.$$

Applying lemma 6.3, we then have (since $9 \times (1 + \mu) = 54$)

$$\left| \bigcup_{i \in I} S_i^x \right| \geq \left| \bigcup_{i \in I} (t_i + \tau R_i^x) \right| \geq \frac{1}{54} \left| \bigcup_{i \in I} \tau R_i^x \right|.$$

We conclude using lemma 6.2

$$\frac{1}{54} \left| \bigcup_{i \in I} \tau R_i^x \right| \geq \frac{\tau}{54} \left| \bigcup_{i \in I} R_i \right|,$$

and integrating on x. \qed

We state a last geometric estimate involving maximal operator: we fix an arbitrary element $R \in \mathcal{P}$ and an element $V \in \mathcal{P}$ included in R such that $L_V = L_u$ and $|V| \leq \frac{1}{2} |R|$. Recall that we denote by R' the parallelogram R translated in its direction by its length.

Proposition 6.5. There is a parallelogram $S \in \mathcal{P}_{R', \frac{1}{2}}$ depending on V such that the following inclusion holds

$$S \subset \left\{ M_{V, \frac{1}{2}} > \frac{1}{16} \right\}.$$
Proof. Without loss of generality, we can consider that we have
\[R := [0, 1]^2. \]
and that the lower left corner of \(V \) is \(O \). The upper left corner of \(V \) is the point \((0, W_V) \) and we denote by \((d, 1) \) and \((d + W_V, 1) \) its lower right and upper right corners. Since \(V \subset R \) we have
\[d + W_V \leq 1. \]
The upper right corner of \(\frac{1}{2} V \) is the point \(\left(\frac{1}{2}(d + W_V), \frac{1}{2} \right) \) and so for any \(0 \leq y \leq 1 - \frac{1}{2}(d + W_V) \) we have
\[(0, y) + \frac{1}{2} V \subset R. \]
This yields our inclusion as follow. Let \(\vec{t} \in \mathbb{R}^2 \) be a vector such that the center of the parallelogram \(\tilde{V} = \vec{t} + 2V \) is the point \((1,0)\). By construction we directly have
\[|\tilde{V} \cap R'| \geq \frac{1}{16} \]
but moreover for any \(0 \leq y \leq \frac{1}{2} \) we have
\[\left| \{(0,y) + \tilde{V} \} \cap R' \right| \geq \frac{1}{16} \]
since the upper right quarter of \(\tilde{V} \) is relatively to \(R' \) in the same position than \(V \) relatively to \(R \). Finally, denoting by \(V^* \) the parallelogram \(\tilde{V} \cap [0,1] \times \mathbb{R} \), the parallelogram \(S \) defined as
\[S := \bigcup_{0 \leq y \leq \frac{1}{2}} ((0,y) + V^*) \]
satisfies the condition claimed. This concludes the proof. \(\square \)

7. Proof of Theorem 2.1

We fix an arbitrary family \(B \) contained in \(T \) and we prove the following Theorem: combined with Lemma 5.3 it yields Theorem 2.1.

Theorem 7.1. There exists a finite family \(\{R_i : i \in I\} \) included in the geometric family \(B \) defined as
\[B = \{ \vec{t} + \lambda R : \vec{t} \in \mathbb{R}^2, \lambda > 0, R \in B \} \]
which satisfies
\[\log(n) \left| \bigcup_{i \in I} R_i \right| \lesssim \left| \bigcup_{i \in I} R^t_i \right| \]
where \(n = \lambda_B \).
The family B generates a tree $[B]$; we fix a fig tree $[F] \subset [B]$ of scale λ_B and we denote by $h \in \mathbb{N}$ its height. We apply Bateman’s Theorem to obtain a finite family $\{t_i + R_i : i \leq 2^h\}$ included in

$$\mathcal{F} = \left\{ \vec{t} + \lambda R : \vec{t} \in \mathbb{R}^2, \lambda > 0, R \in [F] \right\}$$

which satisfies

$$\log(n) \left| \bigcup_{i \in I} R_i \right| \lesssim \left| \bigcup_{i \in I} R_i' \right|.$$

We take advantage of those elements but this time using elements of B and not elements of $[F]$. Let us define A_1 as

$$A_1 := \bigcup_{i \in I} R_i$$

and similarly let us define A_2 as

$$A_2 := \bigcup_{i \in I} R_i'$$

Figure 1. Theorem 2.1 shows that we can virtually use the tree $[F]$ for the operator M_B even if B has no structure. On the illustration, B is composed of the red dots which represent rectangles who have very different scale and yet they interact at the level of $[F]$.

We apply apply Proposition 6.5: for any $U \in L[F]$ we fix an element V_U of B such that $V_U \subset U$. To each pair (U, V_U) we apply Proposition 6.5 and this gives a parallelogram $S_U \in S_U$ such that

$$S_U \subset \left\{ M_{V_U} \frac{1}{16} > \frac{1}{16} \right\}.$$
We define then the set B_2 as
$$B_2 := \bigcup_{i \leq 2^h} \vec{t}_i + T S_{R_i}$$
Because $V_U \in B$, we obviously have
$$M_{V_U} \leq M_B$$
and so $S_U \subset \{M_B \geq \frac{1}{16}\}$. We take the union over $i \leq 2^h$ and we obtain
$$B_2 := \bigcup_{i \leq 2^h} \vec{t}_i + T S_{R_i} \subset \{M_B \geq \frac{1}{16}\}$$
and so finally $|B_2| \leq \left| \left\{M_B \geq \frac{1}{16}\right\} \right|$.
Let us compute $|B_2|$: to do so, we observe that we can use Proposition 6.4 with the families $[\vec{t}_i + R_i : i \leq 2^h]$ and $[\vec{t}_i + T S_{R_i} : i \leq 2^h]$. This yields
$$|B_2| \geq \frac{1}{21 \times 4} |A_2|$$
and so we finally have
$$|A_1| \leq \frac{1}{\log(n)} \left| \left\{M_B \geq \frac{1}{16}\right\} \right|.$$
This inequality concludes the proof of Theorem 2.1.

8. Proof of Theorem 2.2

Let Ω be a directions in $[0, \frac{\pi}{4})$ which is not finitely lacunary and let B be a geometric family such that we have $B \subset R_\Omega$ and also
$$\sup_{\omega \in \Omega} \inf_{R \in B, \omega R = \omega} e_R = 0.$$
Let us denote by T_Ω the family included in T such that
$$R_\Omega = [\vec{t} + \lambda R : \vec{t} \in \mathbb{R}^2, \lambda > 0, R \in T_\Omega].$$
Denote also by B the family included in T that generates B and observe that our hypothesis implies that we have
$$[B] = T_\Omega$$
and so in particular we have
$$\lambda_B = \lambda_{T_\Omega}.$$
The following claim will concludes the proof.

Claim. The set of direction Ω is not finitely lacunary if and only if $\lambda_{T_\Omega} = \infty$.

Applying Theorem 2.1, we obtain for any $1 < p < \infty$
$$\infty = \lambda_{T_\Omega} = \lambda_{[B]} \lesssim \|M_B\|_p^p.$$
References

(Anthony Gauvan) Laboratoire de Mathématiques d’Orsay, CNRS UMR 8628, Université Paris-Saclay, Bâtiment 307, 91405 Orsay Cedex, France anthonygauvan@universite-paris-saclay.fr

This paper is available via http://nyjm.albany.edu/j/2024/30-10.html.