A note on Hardy spaces on quadratic CR manifolds

M. Calzi

Abstract. Given a quadratic CR manifold M embedded in a complex space, and a holomorphic function f on a tubular neighbourhood of M, we show that the L^p-norms of the restrictions of f to the translates of M is decreasing for the ordering induced by the closed convex envelope of the image of the Levi form of M.

CONTENTS

1. Introduction 1498
2. Preliminaries 1499
3. A property of Hardy spaces 1500
4. Examples 1502
References 1504

1. Introduction

Let f be a holomorphic function on the upper half-plane $C_+ = \mathbb{R} + i\mathbb{R}_+^*$. If f belongs to the Hardy space $H^p(C_+)$, that is, if $\sup_{y>0} \|f_y\|_{L^p(\mathbb{R})}$ is finite, where $f_y : x \mapsto f(x + iy)$, then it is well known that the function $y \mapsto \|f_y\|_{L^p(\mathbb{R})}$ is decreasing on \mathbb{R}_+^*, for every $p \in [0, \infty]$. Nonetheless, if f is simply holomorphic, then the lower semicontinuous function $y \mapsto \|f_y\|_{L^p(\mathbb{R})}$ need not be decreasing. Actually, the set where it is finite may be any interval in \mathbb{R}_+^*, or even a disconnected set.

Now, replace the upper half-plane C_+ with a Siegel upper half-space $D := \{(\zeta, z) \in \mathbb{C}^n \times \mathbb{C} : \text{Im} z - |\zeta|^2 > 0\}$, and define $f_h : \mathbb{C}^n \times \mathbb{R} \ni (\zeta, x) \mapsto f(\zeta, x + i|\zeta|^2 + h)$.
for every \(h > 0 \) and for every function \(f \) on \(D \). This definition is motivated by the fact that

\[
bD := \{ (\zeta, x + i|\zeta|^2) : (\zeta, x) \in \mathbb{C}^n \times \mathbb{R} \}
\]

is the boundary of \(D \), and the sets \(bD + (0, ih) \), for \(h > 0 \), foliate \(D \) as the sets \(\mathbb{R} + iy \), for \(y > 0 \), foliate \(\mathbb{C} \). If \(f \) is holomorphic on \(D \), then the mapping \(h \mapsto \|f_h\|_{L_p(\mathbb{C}^n \times \mathbb{R})} \) is always decreasing (though not necessarily finite), in contrast to the preceding case (cf. Theorem 3.1). This fact is closely related with the fact that every holomorphic function defined in a neighbourhood of \(bD \) automatically extends to \(D \). More precisely, if one observes that \(bD \) has the structure of a CR submanifold of \(\mathbb{C}^n \times \mathbb{C} \), one may actually prove that every CR function (of class \(C^1 \)) is the boundary values of a unique holomorphic function on \(D \) (cf. [2, Theorem 1 of Section 15.3]).

In this note, we show that an analogous property holds when \(bD \) is replaced by a general quadratic, or quadric, CR submanifold of a complex space, and then discuss some examples of Šilov boundaries of (homogeneous) Siegel domains.

2. Preliminaries

We fix a complex hilbertian space \(E \) of dimension \(n \), a real hilbertian space \(F \) of dimension \(m \), and a hermitian map \(\Phi : E \times E \to F_C \). Define

\[
\mathcal{M} := \{ (\zeta, x + i\Phi(\zeta)) : \zeta \in E, x \in F \} = \{ (\zeta, z) \in E \times F_C : \Im z - \Phi(\zeta) = 0 \}
\]

where \(F_C \) denotes the complexification of \(F \), while \(\Phi(\zeta) := \Phi(\zeta, \cdot) \) for every \(\zeta \in E \). We define

\[
\rho : E \times F_C \ni (\zeta, z) \mapsto \Im z - \Phi(\zeta) \in F.
\]

We endow \(E \times F_C \) with the product

\[
(\zeta, z)(\zeta', z') := (\zeta + \zeta', z + z' + 2i\Phi(\zeta', \zeta))
\]

for every \((\zeta, z), (\zeta', z') \in E \times F_C\), so that \(E \times F_C \) becomes a 2-step nilpotent Lie group, and \(\mathcal{M} \) a closed subgroup of \(E \times F_C \). In particular, the identity of \(E \times F_C \) is \((0, 0)\) and \((\zeta, z)^{-1} = (-\zeta, -z + 2i\Phi(\zeta)) \) for every \((\zeta, z) \in E \times F_C \). It will be convenient to identify \(\mathcal{M} \) with the 2-step nilpotent Lie group \(\mathcal{N} := E \times F \), endowed with the product

\[
(\zeta, x)(\zeta', x') := (\zeta + \zeta', x + x' + 2\Im \Phi(\zeta, \zeta'))
\]

for every \((\zeta, x), (\zeta', x') \in \mathcal{N}\), by means of the isomorphism

\[
t : \mathcal{N} \ni (\zeta, x) \mapsto (\zeta, x + i\Phi(\zeta)) \in E \times F_C.
\]

In particular, the identity of \(\mathcal{N} \) is \((0, 0)\) and \((\zeta, x)^{-1} = (-\zeta, -x) \) for every \((\zeta, x) \in \mathcal{N} \). Notice that, in this way, \(\mathcal{N} \) acts holomorphically (on the left) on \(E \times F_C \). Given a function \(f \) on \(E \times F_C \), we shall define

\[
f_h : \mathcal{N} \ni (\zeta, x) \mapsto f(\zeta, x + i\Phi(\zeta) + ih) \in C
\]

for every \(h \in F \).
Observe that the preceding group structures show that, if we define the complex tangent space of \mathcal{M} at (ζ, z) as

$$H_{(\zeta, z)} \mathcal{M} := T_{(\zeta, z)} \mathcal{M} \cap (iT_{(\zeta, z)} \mathcal{M})$$

for every $(\zeta, z) \in \mathcal{M}$, where $T_{(\zeta, z)} \mathcal{M}$ denotes the real tangent space to \mathcal{M} at (ζ, z), identified with a subspace of $E \times F_{\mathbb{C}}$, then

$$H_{(\zeta, z)} = dL_{(\zeta, z)} H_{(0, 0)} \mathcal{M},$$

where $L_{(\zeta, z)}$ denotes the left translation by (ζ, z) (in $E \times F_{\mathbb{C}}$), and $dL_{(\zeta, z)}$ its differential at $(0, 0)$. Therefore, $\dim_C H_{(\zeta, z)} = n$ for every $(\zeta, z) \in \mathcal{M}$, so that \mathcal{M} is a CR submanifold of $E \times F_{\mathbb{C}}$ (cf. [2, Chapter 7]), called a quadratic or quadric CR manifold (cf. [2, Section 7.3] and [10, 11]).

We observe explicitly that \mathcal{M} is generic (that is, $\dim_R \mathcal{M} - \dim_R H_{(0, 0)} \mathcal{M} = \dim_R E \times F_{\mathbb{C}} - \dim_R \mathcal{M}$, cf. [2, Definition 5 and Lemma 4 of Section 7.1]) and that its Levi form may be canonically identified with Φ (cf. [2, Chapter 10] and [11]).

3. A property of Hardy spaces

We denote by C the convex envelope of $\Phi(E)$.

Theorem 3.1. Let Ω be an open subset of F such that $\Omega = \Omega + \overline{C}$, and set $D := \rho^{-1}(\Omega)$. Then, for every $f \in \text{Hol}(D)$, for every $p \in [0, \infty)$, for every $h \in \Omega$ and for every $h' \in \overline{C}$,

$$\|f_{h + h'}\|_{L^p(\Omega)} \leq \|f_h\|_{L^p(\Omega)}.$$

The proof is based on the ‘analytic disc technique’ presented in [2, Section 15.3].

Observe that the assumption that $\Omega = \Omega + \overline{C}$ is not restrictive. Indeed, if Ω is connected and C has a non-empty interior $\text{Int} C$, then every function which is holomorphic on $\rho^{-1}(\Omega)$ extends (uniquely) to a holomorphic function on $\rho^{-1}(\Omega + \text{Int} C \cup \{0\})$ by [2, Theorem 1 of Section 15.3], and $\Omega + \text{Int} C \cup \{0\} = \Omega + \overline{C}$ since Ω is open and $\overline{C} = \text{Int} C$ by convexity. The case in which $\text{Int} C = \emptyset$ may be treated directly using similar techniques.

We also mention that, if $p < \infty$ and either Φ is degenerate or the polar of $\Phi(E)$ has an empty interior (that is, the closed convex envelope of $\Phi(E)$ contains a non-trivial vector subspace), then either $f_h = 0$ or $f_h \not\in L^p(\mathcal{N})$ (at least for $p \geq 1$ when Φ is non-degenerate). Cf. [6] for more details in a similar case.

Proof. For every $v = (v_j) \in E^m$, consider

$$A_v : C \ni w \mapsto \left(\sum_{j=1}^m v_j w^j, i \sum_{j=1}^m \Phi(v_j) + 2i \sum_{k<j} \Phi(v_j, v_k) w^{j-k} \right) \in E \times F_{\mathbb{C}},$$

and

$$\Psi(v) := \sum_{j=1}^m \Phi(v_j) \in C,$$
and observe that the following hold:

- \(A_v(0) = (0, i\Psi(v)) \);
- \(\Psi(E^m) \) is the convex envelope \(C \) of \(\Phi(E) \), thanks to \[12, \text{Corollary 17.1.2}]\;
- \(\rho(A_v(w)) = 0 \) for every \(w \in T \);
- the mapping \(A : E^m \ni v \mapsto A_v \in \text{Hol}(C; E \times F_C) \) is continuous (actually, polynomial).

Now, take \(h \in \Omega \). By continuity, there is \(\varepsilon > 0 \) such that \(A_v([0,0]) + ih \subseteq D \) for every \(v \in B_{E^m}(0, \varepsilon) \), where \(U \) denotes the unit disc in \(C \), and \(\overline{U} \) its closure. Then, \(A_v([0,0]) + ih' \subseteq D \) for every \(v \in B_{E^m}(0, \varepsilon) \) and for every \(h' \in h + \overline{C} \). For every \(h' \in \Psi(B_{E^m}(0, \varepsilon)) \), denote by \(\nu_{h'} \) the image of the normalized Haar measure on \(T \) under the mapping \(\pi \circ A_v \), for some \(v \in B_{E^m}(0, \varepsilon) \cap \Psi^{-1}(h') \), where \(\pi : E \times F_C \ni (\zeta, z) \mapsto (\zeta, \Re z) \in N \). Observe that, for every \((\zeta, \chi, \zeta, \chi') \in N \) and for every \(h'' \in h + \overline{C} \), the mapping

\[
\overline{U} \ni w \mapsto f((\zeta + i\Phi(\overline{\zeta})), [A_v(w) + (0, i\overline{h''})]) \in C
\]

is continuous and holomorphic on \(U \), so that, by subharmonicity (cf., e.g., \[13, \text{Theorem 15.19}],

\[
|f(\zeta, x + i\Phi(\xi) + i(h' + h''))|^{1\min(1, p)} \leq \int_T |f((\zeta, x + i\Phi(\xi)) \cdot [A_v(w) + (0, i\overline{h''})])|^{1\min(1, p)} \, dw
\]

\[
= \int_N |f_{h''}(\zeta, x)(\xi, \chi')|^{1\min(1, p)} \, d\nu_{h'}(\zeta', \chi')
\]

\[
= (|f_{h''}|^{1\min(1, p)} \ast \tilde{\nu}_{h'})(\zeta, \chi),
\]

where \(\tilde{\nu}_{h'} \) denotes the reflection of \(\nu_{h'} \), while \(v \) is a suitable element of \(B_{E^m}(0, \varepsilon) \cap \Psi^{-1}(h') \). Since \(\nu_{h'} \) is a probability measure, by Young’s inequality (cf., e.g., \[4, \text{Chapter III, \S 4, No. 4}]\) we then infer that

\[
\|f_{h' + h''}\|_{L^p(N)} = \|f_{h' + h''}|^{1\min(1, p)}\|_{L^{\max(1, p)}}^{1/\min(1, p)}
\]

\[
\leq \|f_{h''}|^{1\min(1, p)}\|_{L^{\max(1, p)}(N)}^{1/\min(1, p)} = \|f_{h''}\|_{L^p(N)}
\]

for every \(h' \in \Psi(B_{E^m}(0, \varepsilon)) \) and for every \(h'' \in h + \overline{C} \). Since every element of \(C \) may we written as a finite sum of elements of \(\Psi(B_{E^m}(0, \varepsilon)) \), the arbitrariness of \(h'' \) shows that

\[
\|f_{h + h'}\|_{L^p(N)} \leq \|f_h\|_{L^p(N)}
\]

for every \(h' \in C \), hence for every \(h' \in \overline{C} \) by lower semi-continuity. The proof is complete. \(\square \)

Corollary 3.2. Assume that \(C \) has a non-empty interior \(\Omega \), and set \(D := \rho^{-1}(\Omega) \). Then, for every \(p \in [0, \infty) \) and \(f \in \text{Hol}(D) \),

\[
\sup_{h \in \Omega} \|f_h\|_{L^p(N)} = \lim \inf_{\eta \to 0, h \in \Omega} \|f_h\|_{L^p(N)}.
\]
In particular, if we define the Hardy space $H^p(D)$ as the set of $f \in \text{Hol}(D)$ such that $\sup_{h \in \Omega} \|f_h\|_{H^p(D)}$ is finite, the preceding result states that $H^p(D)$ may be equivalently defined as the set of $f \in \text{Hol}(D)$ such that $\liminf_{h \to 0, h \in \Omega} \|f_h\|_{L^p(\Omega)}$ is finite. This result should be compared with [3], where the boundary values of the elements of $H^p(D)$ are characterized as the CR elements of $L^p(\Omega)$, for $p \in [1, \infty]$. In particular, Corollary 3.2 could be deduced from the results of [3], when $p \in [1, \infty]$, though at the expense of some further technicalities.

This result extends [7, Corollary 1.43].

4. Examples

We shall now present some examples of homogeneous Siegel domains $D = \rho^{-1}(\Omega)$ for which $\bar{\Omega}$ is the closed convex envelope of $\Phi(E)$, so that Corollary 3.2 applies.

We recall that D is said to be a Siegel domain if Ω is an open convex cone not containing affine lines, Φ is non-degenerate, and $\Phi(E) \subseteq \bar{\Omega}$. In addition, D is said to be homogeneous if the group of its biholomorphisms acts transitively on Δ.

It is known (cf., e.g., [5, Proposition 1]) that D is homogeneous if and only if there is a triangular Lie subgroup T_+ of $GL(F)$ which acts simply transitively on Ω, and for every $t \in T_+$ there is $g \in GL(E)$ such that $t\Phi = \Phi(g \times g)$.

If T'_+ is another Lie subgroup of $GL(F)$ with the same properties as T_+, then T_+ and T'_+ are conjugated by an automorphism of F preserving Ω. Thanks to this fact, we may use the results of [7] even if a different T_+ is chosen. In particular, there is a surjective (open and) continuous homomorphism of Lie groups

$$\Delta : T_+ \rightarrow (\mathbb{R}_+^r)'$$

for some $r \in \mathbb{N}$, called the rank of Ω, so that

$$\Delta^s = \Delta_1^{s_1} \cdots \Delta_r^{s_r},$$

$s \in \mathbb{C}^r$, are the characters of T_+. Once a base point $e_\Omega \in \Omega$ has been fixed, Δ^s induces a function Δ^s_Ω on Ω, setting $\Delta^s_\Omega(t(e_\Omega)) = \Delta^s(t)$ for every $t \in T_+$.

Up to modifying Δ, we may then assume that the functions Δ^s_Ω are bounded on the bounded subsets of Ω if and only if $\text{Re} \ s \in \mathbb{R}_+$ (cf. [7, Lemma 2.34]). In particular, there is $b \in \mathbb{R}_+$ such that $\Delta^{-b}(t) = |\det_{C,E} g|^2$ for every $t \in T_+$ and for every $g \in GL(E)$ such that $t\Phi = \Phi(g \times g)$ (cf. [7, Lemma 2.9]), and one may prove that $b \in (\mathbb{R}_+)^r$ if and only if $\Phi(E)$ generates F as a vector space, in which case Ω is the interior of the convex envelope of $\Phi(E)$ (cf. [7, Proposition 2.57 and its proof, and Corollary 2.58]). Therefore, we are interested in finding examples of homogeneous Siegel domains for which $b \in (\mathbb{R}_+)^r$.

Notice, in addition, that if $b \notin (\mathbb{R}_+)^r$, then $\Phi(E)$ is contained in a hyperplane, so that the interior of its convex envelope is empty.

The Siegel domain D is said to be symmetric if it is homogeneous and admits an involutive biholomorphism with a unique fixed point (equivalently, if for every $(\zeta, z) \in D$ there is an involutive biholomorphism of D for which (ζ, z) is
an isolated (or the unique) fixed point). The domain D is said to be irreducible if it is not biholomorphic to the product of two non-trivial Siegel domains.

It is well known that every symmetric Siegel domain is biholomorphic to a product of irreducible ones, and that the irreducible symmetric Siegel domains can be classified in four infinite families plus two exceptional domains (cf., e.g., [1, §§ 1, 2]). In particular, for an irreducible symmetric Siegel domain, either $b = 0$ (that is, $E = \{0\}$, in which case D is ‘of tube type’), or $b \in (\mathbb{R}^n)'$ (cf., e.g., [7, Example 2.11]). Hence, when D is a symmetric Siegel domain, Ω is the closed convex envelope of $\Phi(E)$ if and only if none of the irreducible components of D is of tube type. Note that these domains can be also characterized as those which do not admit any non-constant rational inner functions, thanks to [8].

We now present some examples of (homogeneous) Siegel domains.

Example 4.1. Let \mathbb{K} be either \mathbb{C} or the division ring of the quaternions. In addition, fix $r, k, p \in \mathbb{N}$ with $p \leq r$, and define

- E as the space of $k \times r$ matrices over \mathbb{K} whose j-th columns have zero entries for $j = p + 1, \ldots, r$;
- F as the space of self-adjoint $r \times r$ matrices over \mathbb{K};
- Ω as the cone of non-degenerate positive self-adjoint $r \times r$ matrices over \mathbb{K};
- $\Phi : E \times E \ni (\zeta, \zeta') \mapsto \frac{1}{2}[(\zeta^* \zeta' + \zeta' \zeta^*) + i(\zeta^* i \zeta' - \zeta' i \zeta)] \in F_\mathbb{C}$;
- T_+^\cdot as the group of upper triangular $r \times r$-matrices over \mathbb{K} with strictly positive diagonal entries, acting on Ω (and F) by the formula $t \cdot h := \det t^*$;
- $\Delta : T_+ \ni t \mapsto (t_{1,1}, \ldots, t_{r,r}) \in (\mathbb{R}^r_+)'$.

Then, Ω is an irreducible symmetric cone\(^1\) of rank r on which T_+^\cdot acts simply transitively by [7, Example 2.6]. In addition, Φ is well defined, since $\zeta^* \zeta + \zeta^* \zeta' + \zeta^* i \zeta' - \zeta' i \zeta \in F$ for every $\zeta, \zeta' \in E$, and clearly $\Phi(\zeta) \in \Omega$ and $t \cdot \Phi(\zeta) = t \cdot (\zeta^* \zeta) = (\zeta t^*)^\cdot(\zeta t^*) = \Phi(\zeta t^*)$ for every $t \in T_+$ and for every $\zeta \in E$ (with $\zeta t^* \in E$), so that D is homogeneous. Then, $b = (b_j)$, with $b_j = -k \dim C \mathbb{K}$ for $j = 1, \ldots, p$ and $b_j = 0$ for $j = p + 1, \ldots, r$. Consequently, Ω is the closed convex envelope of $\Phi(E)$ if and only if $p = r$ and $k > 0$.

Notice that D is irreducible since Ω is irreducible (cf. [9, Corollary 4.8]), and that D is symmetric if $kp = 0$ or if $p = r$ and $\mathbb{K} = \mathbb{C}$ (cf. [7, Examples 2.14 and 2.15]). If $kp(r - p) > 0$, or if $\mathbb{K} \neq \mathbb{C}$, $r \geq 3$, and $k \geq 2$, then D cannot be symmetric.

\(^1\)A cone is said to be homogeneous if the group of its linear automorphisms acts transitively on it. It is said to be symmetric if, in addition, it is self-dual for some scalar product. A convex cone is said to be irreducible if it is not isomorphic to a product of non-trivial convex cones.
Example 4.2. Take \(k, p, q \in \mathbb{N}, p \leq 2 \). Define:

- \(E \) as the space of formal \(k \times 2 \) matrices whose entries of the first column belong to \(\mathbb{C} \) (and are 0 if \(p = 0 \)), and whose entries of the second column belong to \(\mathbb{C}^q \) (and are 0 if \(p \leq 1 \));
- \(F \) as the space of formally self-adjoint \(2 \times 2 \) matrices whose diagonal entries belong to \(\mathbb{R} \), and whose non-diagonal entries belong to \(\mathbb{C}^q \);
- \(\Omega \) as the cone of \(\begin{pmatrix} a & b \\ b & c \end{pmatrix} \in F \) with \(a, c > 0, b \in \mathbb{C}^q \), and \(ac - |b|^2 > 0 \);
- \(\Phi \) so that

\[
\Phi \left(\begin{array}{c} \alpha_1 \\ \vdots \\ \alpha_k \\ b_k \\ \vdots \\ b_1 \end{array} \right) = \left(\begin{array}{c} \sum_j |\alpha_j|^2 \\ \sum_j \overline{\alpha_j} b_j \\ \sum_j |b_j|^2 \end{array} \right)
\]

for every \(\left(\begin{array}{c} \alpha_1 \\ \vdots \\ \alpha_k \\ b_k \\ \vdots \\ b_1 \end{array} \right) \in E \);
- \(T_+ \) as the group of formal \(2 \times 2 \) upper triangular matrices with diagonal entries in \(\mathbb{R}^+ \) and non-diagonal entries in \(\mathbb{C}^q \), with the action\(^2\)

\[
\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \cdot \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix} := \begin{pmatrix} a' a^2 + c'|b|^2 + 2a \text{Re} \langle b, b' \rangle \\ acb' + cc' b \\ c^2 c' \end{pmatrix}.
\]

- \(\Delta : T_+ \ni t \mapsto (t_{1,1}, t_{2,2}) \).

Then, \(\Omega \) is an irreducible symmetric cone of rank 2 on which \(T_+ \) acts simply transitively (cf. [7, Example 2.7]). In addition, \(\Phi(\xi) \in \overline{\Omega} \) for every \(\xi \in E \), and

\[
t \cdot \Phi(\xi) = \Phi(\xi t^*)
\]

for every \(t \in T_+ \) and \(\xi \in E \) (with \(\xi t^* \in E \)), provided that \(p \leq 1 \). Then, \(D \) is an irreducible Siegel domain, and it is homogeneous if \(p \leq 1 \) (it is symmetric if \(p = 0 \)). In addition, \(b = 0 \) if \(p = 0 \), while \(b = (k, 0) \) if \(p = 1 \). Further, if \(p = 2 \), then \(\Phi(E) \) contains the boundary of \(\Omega \), since \(\begin{pmatrix} b \\ c \end{pmatrix} \in C^q \) belongs to

\[
\Phi \left(\begin{array}{c} a^{1/2} \\ 0 \\ 0 \\ 0 \end{array} \right) = \Phi \left(\begin{array}{c} a^{1/2} \\ 0 \\ 0 \\ 0 \end{array} \right)
\]

for every \(a > 0 \), for every \(c \geq 0 \) and for every \(b \in \mathbb{C}^q \) such that \(|b|^2 = ac \) (the case \(a = 0, b = 0, c \geq 0 \) is treated similarly). Then, \(\overline{\Omega} \) is the closed convex envelope of \(\Phi(E) \) if and only if \(p = 2 \).

References

\(^2\)Formally, \(\left(\begin{array}{c} a & b \\ 0 & c \end{array} \right) \cdot \left(\begin{array}{c} a' & b' \\ 0 & c' \end{array} \right) = \left(\begin{array}{c} a & b \\ 0 & c \end{array} \right) \left(\begin{array}{c} a' & b' \\ 0 & c' \end{array} \right)^* \).
A NOTE ON HARDY SPACES ON QUADRATIC CR MANIFOLDS

(M. Calzi) Dipartimento di Matematica, Università degli Studi di Milano, Via C. Saldini 50, 20133 Milano, Italy
mattia.calzi@unimi.it

This paper is available via http://nyjm.albany.edu/j/2022/28-64.html.