A note on Hardy spaces on quadratic CR manifolds

M. Calzi

Abstract. Given a quadratic CR manifold M embedded in a complex space, and a holomorphic function f on a tubular neighbourhood of M, we show that the L^p-norms of the restrictions of f to the translates of M is decreasing for the ordering induced by the closed convex envelope of the image of the Levi form of M.

Contents

1. Introduction 1498
2. Preliminaries 1499
3. A property of Hardy spaces 1500
4. Examples 1502
References 1504

1. Introduction

Let f be a holomorphic function on the upper half-plane $C_+ = \mathbb{R} + i\mathbb{R}_+^*$. If f belongs to the Hardy space $H^p(C_+)$, that is, if $\sup_{y>0}\|f_y\|_{L^p(\mathbb{R})}$ is finite, where $f_y : x \mapsto f(x + iy)$, then it is well known that the function $y \mapsto \|f_y\|_{L^p(\mathbb{R})}$ is decreasing on \mathbb{R}_+^* for every $p \in [0, \infty]$. Nonetheless, if f is simply holomorphic, then the lower semicontinuous function $y \mapsto \|f_y\|_{L^p(\mathbb{R})}$ need not be decreasing. Actually, the set where it is finite may be any interval in \mathbb{R}_+^*, or even a disconnected set.

Now, replace the upper half-plane C_+ with a Siegel upper half-space

$$D := \{ (\zeta, z) \in \mathbb{C}^n \times \mathbb{C} : \text{Im} z - |\zeta|^2 > 0 \},$$

and define

$$f_h : \mathbb{C}^n \times \mathbb{R} \ni (\zeta, x) \mapsto f(\zeta, x + i|\zeta|^2 + h)$$
for every $h > 0$ and for every function f on D. This definition is motivated by the fact that

$$bD := \{ (\xi, x + i|\xi|^2) : (\xi, x) \in \mathbb{C}^n \times \mathbb{R} \}$$

is the boundary of D, and the sets $bD + (0, ih)$, for $h > 0$, foliate D as the sets $\mathbb{R} + iy$, for $y > 0$, foliate \mathbb{C}_+. If f is holomorphic on D, then the mapping $h \mapsto ||f_h||_{L^p(\mathbb{C}^n \times \mathbb{R})}$ is always decreasing (though not necessarily finite), in contrast to the preceding case (cf. Theorem 3.1). This fact is closely related with the fact that every holomorphic function defined in a neighbourhood of bD automatically extends to D. More precisely, if one observes that bD has the structure of a CR submanifold of $\mathbb{C}^n \times \mathbb{C}$, one may actually prove that every CR function (of class C^1) is the boundary values of a unique holomorphic function on D (cf. [2, Theorem 1 of Section 15.3]).

In this note, we show that an analogous property holds when bD is replaced by a general quadratic, or quadric, CR submanifold of a complex space, and then discuss some examples of Šilov boundaries of (homogeneous) Siegel domains.

2. Preliminaries

We fix a complex hilbertian space E of dimension n, a real hilbertian space F of dimension m, and a hermitian map $\Phi : E \times E \rightarrow F_C$. Define

$${\mathcal{M}} := \{ (\xi, x + i\Phi(\xi)) : \xi \in E, x \in F \} = \{ (\xi, z) \in E \times F_C : \text{Im } z - \Phi(\xi) = 0 \},$$

where F_C denotes the complexification of F, while $\Phi(\xi) := \Phi(\xi, \cdot)$ for every $\xi \in E$. We define

$$\rho : E \times F_C \ni (\xi, z) \mapsto \text{Im } z - \Phi(\xi) \in F.$$

We endow $E \times F_C$ with the product

$$(\xi, z)(\xi', z') := (\xi + \Phi(\xi', \cdot), z + z' + 2i(\Phi(\xi'), \cdot))$$

for every $(\xi, z), (\xi', z') \in E \times F_C$, so that $E \times F_C$ becomes a 2-step nilpotent Lie group, and \mathcal{M} a closed subgroup of $E \times F_C$. In particular, the identity of $E \times F_C$ is $(0, 0)$ and $(\xi, z)^{-1} = (-\xi, -z + 2i(\Phi(\xi)))$ for every $(\xi, z) \in E \times F_C$. It will be convenient to identify \mathcal{M} with the 2-step nilpotent Lie group $\mathcal{N} := E \times F$, endowed with the product

$$(\xi, x)(\xi', x') := (\xi + \xi', x + x' + 2\text{Im } \Phi(\xi, \xi'))$$

for every $(\xi, x), (\xi', x') \in \mathcal{N}$, by means of the isomorphism

$$\iota : \mathcal{N} \ni (\xi, x) \mapsto (\xi, x + i\Phi(\xi)) \in E \times F_C.$$

In particular, the identity of \mathcal{N} is $(0, 0)$ and $(\xi, x)^{-1} = (-\xi, -x)$ for every $(\xi, x) \in \mathcal{N}$. Notice that, in this way, \mathcal{N} acts holomorphically (on the left) on $E \times F_C$. Given a function f on $E \times F_C$, we shall define

$$f_h : \mathcal{N} \ni (\xi, x) \mapsto f(\xi, x + i\Phi(\xi) + ih) \in C$$

for every $h \in F$.

A NOTE ON HARDY SPACES ON QUADRATIC CR MANIFOLDS 1499
Theorem 3.1. Let \(\Omega \) be an open subset of \(F \) such that \(\Omega = \Omega + \overline{C} \), and set \(D := \rho^{-1}(\Omega) \). Then, for every \(f \in \text{Hol}(D) \), for every \(p \in]0, \infty[\), for every \(h \in \Omega \) and for every \(h' \in \overline{C} \),

\[
\| f_{h+h'} \|_{L^p(\Omega)} \leq \| f_h \|_{L^p(\Omega)}.
\]

The proof is based on the ‘analytic disc technique’ presented in [2, Section 15.3].

Observe that the assumption that \(\Omega = \Omega + \overline{C} \) is not restrictive. Indeed, if \(\Omega \) is connected and \(C \) has a non-empty interior \(\text{Int} \ C \), then every function which is holomorphic on \(\rho^{-1}(\Omega) \) extends (uniquely) to a holomorphic function on \(\rho^{-1}(\Omega + \text{Int} C \cup \{ 0 \}) \) by [2, Theorem 1 of Section 15.3], and \(\Omega + \text{Int} C \cup \{ 0 \} = \Omega + \overline{C} \) since \(\Omega \) is open and \(\overline{C} = \text{Int} C \) by convexity. The case in which \(\text{Int} C = \emptyset \) may be treated directly using similar techniques.

We also mention that, if \(p < \infty \) and either \(\Phi \) is degenerate or the polar of \(\Phi(E) \) has an empty interior (that is, the closed convex envelope of \(\Phi(E) \) contains a non-trivial vector subspace), then either \(f_h = 0 \) or \(f_h \not\in L^p(\Omega) \) (at least for \(p \geq 1 \) when \(\Phi \) is non-degenerate). Cf. [6] for more details in a similar case.

Proof. For every \(v = (v_j) \in E^m \), consider

\[
A_v : C \ni w \mapsto \left(\sum_{j=1}^m v_j w^j, i \sum_{j=1}^m \Phi(v_j) + 2i \sum_{k<j} \Phi(v_j, v_k) w^{j-k} \right) \in E \times F_C,
\]

and

\[
\Psi(v) := \sum_{j=1}^m \Phi(v_j) \in C,
\]
and observe that the following hold:

- $A_v(0) = (0, i\Psi(v))$;
- $\Psi(E^m)$ is the convex envelope C of $\Phi(E)$, thanks to [12, Corollary 17.1.2];
- $\rho(A_v(w)) = 0$ for every $w \in T$;
- the mapping $A : E^m \ni v \mapsto A_v \in \text{Hol}(C ; E \times F_C)$ is continuous (actually, polynomial).

Now, take $h \in \Omega$. By continuity, there is $\epsilon > 0$ such that $A_v(U) + ih \subseteq D$ for every $v \in B_{E^m}(0, \epsilon)$, where U denotes the unit disc in C, and U its closure. Then, $A_v(U) + ih' \subseteq D$ for every $v \in B_{E^m}(0, \epsilon)$ and for every $h' \in h + \overline{C}$. For every $h' \in \Psi(B_{E^m}(0, \epsilon))$, denote by $\nu_{h'}$ the image of the normalized Haar measure on T under the mapping $\pi \circ A_v$, for some $v \in B_{E^m}(0, \epsilon) \cap \Psi^{-1}(h')$, where $\pi : E \times F_C \ni (\zeta, z) \mapsto (\zeta, \text{Re} z) \in \mathcal{N}$. Observe that, for every $(\zeta, x) \in \mathcal{N}$ and for every $h'' \in h + \overline{C}$, the mapping

$$\overline{U} \ni w \mapsto f((\zeta, x + i\Phi(\zeta)) \cdot [A_v(w) + (0, ih'')]) \in \mathbb{C}$$

is continuous and holomorphic on U, so that, by subharmonicity (cf., e.g., [13, Theorem 15.19]),

$$|f(\zeta, x + i\Phi(\zeta) + i(h' + h''))|^{\min(1, p)}$$

$$\leq \int_T |f((\zeta, x + i\Phi(\zeta)) \cdot [A_v(w) + (0, ih'')]|^{\min(1, p)} \, dw$$

$$= \int_{\mathcal{N}} |f_{h''}((\zeta, x)(\zeta', x'))|^{\min(1, p)} \, d\nu_{h'}(\zeta', x')$$

$$= (|f_{h''}|^{\min(1, p)} \ast \tilde{\nu}_{h'})(\zeta, x),$$

where $\tilde{\nu}_{h'}$ denotes the reflection of $\nu_{h'}$, while v is a suitable element of $B_{E^m}(0, \epsilon) \cap \Psi^{-1}(h')$. Since $\nu_{h'}$ is a probability measure, by Young’s inequality (cf., e.g., [4, Chapter III, § 4, No. 4]) we then infer that

$$\|f_{h' + h''}\|_{LP(\mathcal{N})} = \|f_{h' + h''}|^{\min(1, p)}\|^{1/\min(1, p)}_{L^{\max(1, p)}}$$

$$\leq \|f_{h''}|^{\min(1, p)}\|^{1/\min(1, p)}_{L^{\max(1, p)}} = \|f_{h''}\|_{LP(\mathcal{N})}$$

for every $h' \in \Psi(B_{E^m}(0, \epsilon))$ and for every $h'' \in h + \overline{C}$. Since every element of C may we written as a finite sum of elements of $\Psi(B_{E^m}(0, \epsilon))$, the arbitrariness of h'' shows that

$$\|f_{h + h'}\|_{LP(\mathcal{N})} \leq \|f_h\|_{LP(\mathcal{N})}$$

for every $h' \in C$, hence for every $h' \in \overline{C}$ by lower semi-continuity. The proof is complete. \hfill \square

Corollary 3.2. Assume that C has a non-empty interior Ω, and set $D := \rho^{-1}(\Omega)$. Then, for every $p \in [0, \infty]$ and $f \in \text{Hol}(D)$,

$$\sup_{h \in \Omega} \|f_h\|_{LP(\mathcal{N})} = \lim_{h \to 0} \inf_{h \in \Omega} \|f_h\|_{LP(\mathcal{N})}.$$
In particular, if we define the Hardy space $H^p(D)$ as the set of $f \in \text{Hol}(D)$ such that $\sup_{h \in \Omega} ||f_h||_{H^p(D)}$ is finite, the preceding result states that $H^p(D)$ may be equivalently defined as the set of $f \in \text{Hol}(D)$ such that $\liminf_{h \to 0, h \in \Omega} ||f_h||_{L^p(N)}$ is finite. This result should be compared with [3], where the boundary values of the elements of $H^p(D)$ are characterized as the CR elements of $L^p(N)$, for $p \in [1, \infty]$. In particular, Corollary 3.2 could be deduced from the results of [3], when $p \in [1, \infty]$, though at the expense of some further technicalities. This result extends [7, Corollary 1.43].

4. Examples

We shall now present some examples of homogeneous Siegel domains $D = \rho^{-1}(\Omega)$ for which Ω is the closed convex envelope of $\Phi(E)$, so that Corollary 3.2 applies.

We recall that D is said to be a Siegel domain if Ω is an open convex cone not containing affine lines, Φ is non-degenerate, and $\Phi(E) \subseteq \overline{\Omega}$. In addition, D is said to be homogeneous if the group of its biholomorphisms acts transitively on D. It is known (cf., e.g., [5, Proposition 1]) that D is homogeneous if and only if there is a triangular Lie subgroup T_+ of $GL(F)$ which acts simply transitively on Ω, and for every $t \in T_+$ there is $g \in GL(E)$ such that $t \Phi = \Phi(g \times g)$.

If T'_+ is another Lie subgroup of $GL(F)$ with the same properties as T_+, then T_+ and T'_+ are conjugated by an automorphism of F preserving Ω. Thanks to this fact, we may use the results of [7] even if a different T_+ is chosen. In particular, there is a surjective (open and) continuous homomorphism of Lie groups

$$\Delta : T_+ \rightarrow (\mathbb{R}^*_+)^r$$

for some $r \in \mathbb{N}$, called the rank of Ω, so that

$$\Delta^s = \Delta_{t_1}^{s_1} \cdots \Delta_{t_r}^{s_r},$$

$s \in \mathbb{C}^r$, are the characters of T_+. Once a base point $e_\Omega \in \Omega$ has been fixed, Δ^s induces a function Δ^s_Ω on Ω, setting $\Delta^s_\Omega(t(e_\Omega)) = \Delta^s(t)$ for every $t \in T_+$.

Up to modifying Δ, we may then assume that the functions Δ^s_Ω are bounded on the bounded subsets of Ω if and only if $\text{Re} \ s \in \mathbb{R}^*_+$ (cf. [7, Lemma 2.34]). In particular, there is $b \in \mathbb{R}^*_-$ such that $\Delta^{-b}(t) = |\text{det} C_g|^2$ for every $t \in T_+$ and for every $g \in GL(E)$ such that $t \Phi = \Phi(g \times g)$ (cf. [7, Lemma 2.9]), and one may prove that $b \in (\mathbb{R}^*_+)^r$ if and only if $\Phi(E)$ generates F as a vector space, in which case Ω is the interior of the convex envelope of $\Phi(E)$ (cf. [7, Proposition 2.57 and its proof, and Corollary 2.58]). Therefore, we are interested in finding examples of homogeneous Siegel domains for which $b \in (\mathbb{R}^*_+)^r$.

Notice, in addition, that if $b \not\in (\mathbb{R}^*_+)^r$, then $\Phi(E)$ is contained in a hyperplane, so that the interior of its convex envelope is empty.

The Siegel domain D is said to be symmetric if it is homogeneous and admits an involutive biholomorphism with a unique fixed point (equivalently, if for every $(\zeta, z) \in D$ there is an involutive biholomorphism of D for which (ζ, z) is
an isolated (or the unique) fixed point). The domain D is said to be irreducible if it is not biholomorphic to the product of two non-trivial Siegel domains.

It is well known that every symmetric Siegel domain is biholomorphic to a product of irreducible ones, and that the irreducible symmetric Siegel domains can be classified in four infinite families plus two exceptional domains (cf., e.g., [1, §§ 1, 2]). In particular, for an irreducible symmetric Siegel domain, either $b = 0$ (that is, $E = \{0\}$, in which case D is ‘of tube type’), or $b \in (\mathbb{R}^*)^r$ (cf., e.g., [7, Example 2.11]). Hence, when D is a symmetric Siegel domain, $\overline{\Omega}$ is the closed convex envelope of $\Phi(E)$ if and only if none of the irreducible components of D is of tube type. Note that these domains can be also characterized as those which do not admit any non-constant rational inner functions, thanks to [8].

We now present some examples of (homogeneous) Siegel domains.

Example 4.1. Let K be either \mathbb{C} or the division ring of the quaternions. In addition, fix $r, k, p \in \mathbb{N}$ with $p \leq r$, and define

- E as the space of $k \times r$ matrices over K whose j-th columns have zero entries for $j = p + 1, \ldots, r$;
- F as the space of self-adjoint $r \times r$ matrices over K;
- Ω as the cone of non-degenerate positive self-adjoint $r \times r$ matrices over K;
- $\Phi : E \times E \ni (\zeta, \zeta') \mapsto \frac{1}{2}[(\zeta^* \zeta + \zeta^* \zeta') + i(\zeta^* i \zeta' - \zeta^* i \zeta)] \in F_\mathbb{C}$;
- $T_+ \Delta : T_+ \ni t \mapsto (t_{1,1}, \ldots, t_{r,r}) \in (\mathbb{R}^*_n)^r$.

Then, Ω is an irreducible symmetric cone\(^1\) of rank r on which T_+ acts simply transitively by [7, Example 2.6]. In addition, Φ is well defined, since $\zeta^* \zeta + \zeta^* \zeta' + \zeta^* i \zeta' - \zeta^* i \zeta \in F$ for every $\zeta, \zeta' \in E$, and clearly $\Phi(\zeta) \in \overline{\Omega}$ and

$$t \cdot \Phi(\zeta) = t \cdot (\zeta^* \zeta) = (\zeta t^*)^r(\zeta t^*) = \Phi(\zeta t^*)$$

for every $t \in T_+$ and for every $\zeta \in E$ (with $\zeta t^* \in E$), so that D is homogeneous. Then, $b = (b_j)$, with $b_j = -k \dim_c K$ for $j = 1, \ldots, p$ and $b_j = 0$ for $j = p + 1, \ldots, r$. Consequently, $\overline{\Omega}$ is the closed convex envelope of $\Phi(E)$ if and only if $p = r$ and $k > 0$.

Notice that D is irreducible since Ω is irreducible (cf. [9, Corollary 4.8]), and that D is symmetric if $kp = 0$ or if $p = r$ and $K = \mathbb{C}$ (cf. [7, Examples 2.14 and 2.15]). If $kp(r - p) > 0$, or if $K \neq \mathbb{C}, r \geq 3$, and $k \geq 2$, then D cannot be symmetric.

\(^1\)A cone is said to be homogeneous if the group of its linear automorphisms acts transitively on it. It is said to be symmetric if, in addition, it is self-dual for some scalar product. A convex cone is said to be irreducible if it is not isomorphic to a product of non-trivial convex cones.
Example 4.2. Take $k, p, q \in \mathbb{N}$, $p \leq 2$. Define:

- E as the space of formal $k \times 2$ matrices whose entries of the first column belong to \mathbb{C} (and are 0 if $p = 0$), and whose entries of the second column belong to \mathbb{C}^q (and are 0 if $p \leq 1$);
- F as the space of formally self-adjoint 2×2 matrices whose diagonal entries belong to \mathbb{R}, and whose non-diagonal entries belong to \mathbb{C}^q;
- Ω as the cone of $\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in F$ with $a, c > 0$, $b \in \mathbb{C}^q$, and $ac - |b|^2 > 0$;
- Φ so that

\[
\Phi\left(\begin{array}{c} a_1 \\ \vdots \\ a_k \\ b_1 \\ \vdots \\ b_k \end{array}\right) = \begin{pmatrix} \sum_j |a_j|^2 & \sum_j \overline{a_j} b_j \\ \sum_j a_j \overline{b}_j & \sum_j |b_j|^2 \end{pmatrix}
\]

for every $\left(\begin{array}{c} a_1 \\ \vdots \\ a_k \\ b_1 \\ \vdots \\ b_k \end{array}\right) \in E$;
- T_+ as the group of formal 2×2 upper triangular matrices with diagonal entries in \mathbb{R}_+^k and non-diagonal entries in \mathbb{C}^q, with the action

\[
\left(\begin{array}{cc} a & b \\ 0 & c \end{array}\right) \cdot \left(\begin{array}{cc} a' & b' \\ b & c' \end{array}\right) = \left(\begin{array}{cc} a'a^2 + c' |b|^2 + 2a \text{Re} \langle b, b' \rangle & abc' + cc' b \\ abc' + cc' b & c'c' \end{array}\right).
\]

- $\Delta : T_+ \ni t \mapsto (t_{1,1}, t_{2,2})$.

Then, Ω is an irreducible symmetric cone of rank 2 on which T_+ acts simply transitively (cf. [7, Example 2.7]). In addition, $\Phi(\xi) \in \overline{\Omega}$ for every $\xi \in E$, and

$\Phi(\xi - \Phi(\xi^*))$ for every $\xi \in E$ (with $\xi^* \in E$), provided that $p \leq 1$. Then, D is an irreducible Siegel domain, and it is homogeneous if $p \leq 1$ (it is symmetric if $p = 0$). In addition, $b = 0$ if $p = 0$, while $b = (k, 0)$ if $p = 1$. Further, if $p = 2$, then $\Phi(E)$ contains the boundary of Ω, since

\[
\left(\begin{array}{cc} a & b \\ b & c \end{array}\right) = \Phi\left(\begin{array}{cc} a^{1/2} & 0 \\ 0 & 0 \end{array}\right).
\]

for every $a > 0$, for every $c \geq 0$ and for every $b \in \mathbb{C}^q$ such that $|b|^2 = ac$ (the case $a = 0$, $b = 0$, $c \geq 0$ is treated similarly). Then, $\overline{\Omega}$ is the closed convex envelope of $\Phi(E)$ if and only if $p = 2$.

References

2Formally, $(\begin{array}{cc} a' & b' \\ b & c' \end{array}) \cdot (\begin{array}{cc} a & b \\ b & c \end{array}) = (\begin{array}{cc} a' & b' \\ b & c' \end{array})(\begin{array}{cc} a & b \\ b & c \end{array})^*.$
A NOTE ON HARDY SPACES ON QUADRATIC CR MANIFOLDS

(M. Calzi) DIAPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI MILANO, VIA C. SALDINI 50, 20133 MILANO, ITALY
mattia.calzi@unimi.it

This paper is available via http://nyjm.albany.edu/j/2022/28-64.html.