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HITCHIN'S AND WZW CONNECTIONS ARE THE

SAME

YVES LASZLO

1. Introduction

Let X be an algebraic curve over the �eld C of complex numbers,
which is assumed to be smooth, connected and projective. For simplic-
ity, we assume that the genus of X is > 2. Let G be a simple simply
connected group and MG(X) the coarse moduli scheme of semistable
G-bundles on X. Any linear representation determines a line bundle �
on M and some nonnegative integer l (the Dynkin index of the repre-
sentation, cf [12], [13]). It is known that the choice of a (closed) point
x 2 X(C) (and, a priori, of a formal coordinate near x) of X determines
an isomorphism (see 5) between the projective space of conformal blocks
PBl(X) (for G) of level l and the space PH0(MG(X);�) of generalized
theta functions (see [3], [7],[12], [13]). In fact, it is observed in [20] that
there is a coordinate free description of Bl(X).

When the pointed curve (X;x) runs over the moduli stack Mg;1 of
genus g pointed curve, these 2 projective spaces organize in 2 projective
bundles P� and PBl. We �rst explain (see 5.7) how to identify these 2
projective bundles (this is a global version of the identi�cation above).
The projective bundle P� has a canonical at connection: the Hitchin
connection [9] and PBl has a at connection, which we call the WZW
connection coming from the conformal �eld theory (see [21] or [18]). In
the rest of the paper, we prove that this canonical identi�cation 5.7

� : P�
�
! PBl
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is at (Theorem 9).

1.1. Let me roughly explain how to prove the atness. Let M be
the smooth open subvariety of MG(X) parameterizing regularly stable
bundles E (such that AutG(E) = Z(G), the center of G). The cup-
product

H1(X;TX )
H0(X; ad(E)
 !X)! H1(X; ad(E))

de�nes a morphism T[X]Mg ! S2 T[E]M which globalizes in

(�) T[X]Mg ! H0(M;S
2 TM):

Let s be a generalized theta function, and dis the length 1 complex

dis : D
i(�)

D 7!Ds
�! �;

which evaluates the di�erential operator D of order � i on s. The
symbol exact sequence

0! d1s! d2s! S
2 TM ! 0

de�nes a Bockstein operator � : H0(S2 TM)! H1(d1s). Let ws be the
composite morphism

ws = H1(X;TX )! H0(S
2 TM)! H1(d1s):

Let �t be the image of a tangent vector on MG by ws. The main in-
gredient in the computation of Hitchin's connection is the computa-
tion of ws(�t). If (U�) is an a�ne cover of M , the class ws(�t) can be
represented by a pair (D� � D� ;�D�s) where s is some second order
di�erential operator de�ned on U�. It is well known that G-bundles
trivialized on punctured curve X� = Xnx are parameterized by an in-
�nite dimensional homogeneous ind-scheme Q = G(Frac(Ôx))=G(Ôx)
(see [13]). Let Q0 be the open sublocus of Q parameterizing regularly
stable G-bundles. The crucial point (cf. [6]) is that Q0 !M is a locally
trivial torsor (for the �etale topology). The idea of the paper is to use
the cover Q0 �!�! M to compute some representative of ws(�t), even
though the author does not control all second order di�erential opera-
tors on Q0. Let t be a meromorphic tangent vector on D� projecting
on �t, 7.3. To avoid too much abstract nonsense on di�erential operators
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on ind-schemes, we use an �etale quasi-section (cf. 8)

Q0

� %

N
r

�!�! M

of Q0 ! M to construct a second order di�erential operator �(t) 2
H0(N;D2(r��)) computing ws(�t). In a certain sense, �(t) is the "pull-
back" of the Sugawara tensor T (t) (see de�nition 8.12). The theorem
follows easily, because the only nontrivial term in the formula de�ning
the WZW connection is the Sugawara tensor (9.1).

1.2. Under the hypothesis codimMG
(MGnM

0
G) > 2, Hitchin con-

structs the connection not only for the bundle P� of theta functions
coming from determinantal line bundles on MG, but also for the bun-
dle Pp�L where L is any line bundle on M0, and p : M0 ! Mg is
the universal family of coarse moduli spaces of regularly stable bun-
dles. The codimension assumption is used to identify Hi(MG; F ) with
Hi(M0

G; F ); i = 0; 1 for any vector bundle F onMG. This identi�cation
shows that the formation of the direct image p�L commutes with the
base change. The atness result is written in this context.

1.3. For completeness, we compute the Picard group of the uni-
versal moduli stack of G-bundles over Mg;1. This allows us to compare
a determinantal line bundle and the line bundle L (Section 5).

Notation. We work over the �eld C of complex numbers, and �x
a simple Lie algebra g with a Borel subalgebra b. Let � be the longest
root (relative to b), and sl2(�) = (X�;X��;H�) a corresponding sl2-
triple. Finally ( ; ) will be the Cartan-Killing form normalized such that
(�; �) = 2. If � is half of the sum of the positive roots, the dual Coxeter
number is h_ = 1+ < �; �_ >. Let G be the simply connected algebraic
group of Lie algebra g. The symbol X (resp. x) will always de�ne a
smooth, connected and projective complex curve of genus g > 2 (resp.
a point of X(C)). If X ! S is a family of genus g pointed curve, we'll
denote by X̂ the formal neighborhood of the marked section S ! X .

Conformal blocks and theta functions over Mg;1

We want to identify over Mg;1 the projective bundle of conformal
blocks P� and the projective bundle generalized theta function PBl as
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done in [3] in the absolute case. The precise statement is in 5.7.

2. Residues

We denote by K the �eld of fractions of O = OX̂;x. The dualizing

sheaf $ of X̂ is the biggest quotient of 
X̂=C which is separated for the
x-adic topology. Let me denote by d : O �!�! $ the projection of the
universal derivation O ! 
X̂=C on $. If z is a formal coordinate at x,

the O = C[[z]]-module $ is the free module C[[z]]:dz, and ! = K
O$
is C((z)):dz. Recall that there exists a residue map res : ! ! C which
is given in coordinates by res(

P
n�N anz

ndz) = a�1.

2.1. Let � : (X ; x)! S be a pointed curve over an a�ne C-scheme
S = Spec(R), and $� (resp. !�) be the relative dualizing sheaf of
X̂ ! S (resp. X̂ � ! S). Because formal coordinates along x exists
Zariski locally in S, the residue is de�ned as a (functorial) R-morphism
res : !� ! R. Let AX be the algebra �(S; ��OXnx) which is embedded
in K = �(S; ��OX̂ �) by the Taylor expansion.

Lemma 2.2. Let f 2 AX . Then, res(f) = 0.

Proof. Because Mg;1 is a smooth C-stack, one can assume that S
is a least reduced of �nite type over C. The residue theorem says that
res(f)(r) = 0 for all r 2 S(C) which implies that res(f) = 0. q.e.d.

3. Loop algebras

We start with our pointed curve (X;x) and the simple algebra g.
Let l be a positive integer. We would like to give an explicit coordinate
free description of the vector spaces Bl(X) of conformal blocks of level
l on (X;x), which coincide with the usual one, once a coordinate has
been chosen and which globalizes when the pointed curve moves.

3.1. The loop algebra cLg = Lg � C:c of g is the universal central
extension of Lg = g
K by C = C:c with bracket

[X 
 f; Y 
 g] = [X;Y ]
 fg + (X j Y )res(gdf):

Let me denote by dL+g the Lie subalgebra L+g � C:c of Lg, where
L+g = g
O.

Let � be a dominant weight of level l (ie (�; �) � l), and M be the
simple g-module with highest weight � and highest weight vector v�.
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Let Ml be the dL+g-module structure on M where the action of L+g

(resp. c) is induced by L+g ! g (resp. is the multiplication by l). We
denote by V�;l the Verma module of weight (�; l)

V�;l = U(cLg)

U(dL+g)

Ml;

and by v�;l the highest weight vector 1
 v�.

Lemma 3.2. Let z be a formal coordinate of X at x. Then the line

C:(X� 
 z�1)l+1�(�;�)vl of V�;l does not depend on the choice of z.

Proof. Let u(z) (with u(0) = 0 and u0(0) 6= 0) be another coordi-
nate (set a = 1

u0(0) ). Then

X� 
 u(z)�1 = aX� 
 z�1 mod CX� � L>0g;

where L>0g is the kernel of g
O ! g. Thus,

(X� 
 u(z)
�1)l+1�(�;�)

= al+1�(�;�)(X� 
 z�1)l+1�(�;�) mod U(cLg)(CX� � L>0g);

(because l + 1 � (�; �) is positive) and the lemma follows because X�

kills v� and L>0g kills even the whole M . q.e.d.

In the most interesting case for us, namely when � = 0 (i.e.,M = C),
we denote V(�;l) simply by Vl.

De�nition 3.3. We denote by Zl the U(cLg)-submodule generated
by C:(X� 
 z�1)l+1 (z is any formal coordinate at x) and by Hl the
quotient Vl=Zl.

The usual theory of representation of a�ne algebras says that Hl

is the fundamental representation of level l of cLg (see [1]). In partic-
ular, the canonical embedding of g-modules C ,! Hl has image the
annihilator of L+g.

By the residue theorem, the embedding LXg = g 
 AX ,! Lg lifts
canonically to an embedding LXg ,! cLg.

De�nition 3.4 ([21]). The (�nite dimensional) vector space

Bl(X) = HomLXg(Hl;C) = (Hl=LXgHl)
�

is the space of vacua (or conformal blocks) of level l.
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3.5. Let � : (X ; x) ! S = Spec(R) be a family of genus g pointed
curve. One has the relative version

(dL�g;dL+
� g; LX g;Vl(�))

of (cLg;dL+g; LXg; Vl) is exactly the same as before. Now, because formal
coordinates along x exists Zariski locally in S, one de�nes as in de�nition
3 the submodule Zl(�) of Vl(�) and correspondingly the dL�g-modules

Hl(�) = Vl(�)=Zl(�):

The Lie algebra LX g embeds canonically in cLg, 2.2. One de�nes the
module (which is in fact a projective R-modules by [21]) of covacua by
the equality

Bl
�(�) = Hl(�)=LX g:Hl(�);

and the module of vacua by

Bl(�) = HomR(Bl(�); R):

The construction � 7�! Bl
�(�) (resp. � 7�! Bl(�)) is functorial in �;

this de�nes two vector bundles Bl
� and Bl on Mg;1 which are dual to

each other. If � is the �xed curve (X;x)! Spec(C), the �ber Bl(�) is
Bl(X) [21].

4. Loop groups

Let us �rst recall the construction of the Kac-Moody groupdLG (of

Lie algebra cLg) in the absolute case, and of the corresponding generator
L of the Picard group of Q =dLG=[L+G (see [13]).

4.1. The adjoint action of Lg on cLg can be integrated explicitly
as follows. Let LG be the loop group of G (whose R-points are G(X̂�

R)
or simply G(R((z))) once a formal coordinate z at x has been chosen).
Let  be a point of LG(R); the cotangent morphism of the morphism

 : X̂�
R ! G

de�nes a morphism

g� 
H0(X̂�
R;OX̂�

R
)! 
X̂�

R=R
! !�:

Let me denote by �1d the corresponding element of g
 !�.
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Remark 4.2. Suppose that G is embedded in some GLN and that
a coordinate z has been chosen. Then,  is some invertible matrix (z)
of rank N with coe�cients in R((z)), and �1d is the matrix product
(z)�10(z)dz 2 !� = g
C R((z))dz.

Let � 2 Lg(R) and r 2 R. Then,  acts on �+ r:c 2 cLg(R) by
(4:1) Ad():(� + r:c) = Ad():� + (s+ res(�1d j �)):c:

4.3. Let me recall the following integrability property (result
which is due to Faltings, see [3, Lemma A.3]) of the basic integrable

representation � : cLg! End(H1):

Proposition 4.4 (Faltings). Let R be a C-algebra and  2 LG(R).
Then locally over Spec(R), there exists an automorphism u of H1 
R,
uniquely determined up to R�, satisfying

u�R(�)u
�1 = �R(Ad():�)

for any � 2\Lg(R).

This proves that the representation cLg ! End(H1)=C:Id is the
derivative of an algebraic (i.e., morphism of C-groups) representation
�� : LG! PGL(H1).

4.5. Let
1! Gm !dLG! LG! 1

be the pull back of the extension

1! Gm ! GL(H1)! PGL(H1)! 1:

The corresponding central extension of Lie algebras

(4:2) 0! C! Lie(dLG)! Lg! 0

is the pull-back pull-back of

0! C! End(H1)! End(H1)=C:Id! 0

by d��.

Lemma 4.6. The central extension (4.2) is the universal central

extension

0! C! cLg! Lg! 0

of 3.1.
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Proof. As a vector space, cLg = Lg�C:c. Let � be the morphism
� : Lg! Lie(dLG) de�ned by �(a; b:c) = [a;d��(a) + b:c] for a 2 cLg and
b 2 C. By construction, � is a Lie algebra isomorphism. q.e.d.

With the identi�cation of the above lemma, the derivative of

�� : dLG! GL(H1)

is �.

4.7. Let L+G ,! LG be the C-space whose R-points are G(X̂R).
Notice that L+G is an (in�nite dimensional) a�ne C-scheme.

Lemma 4.8. There exists a unique splitting � :[L+G! Gm of

1! Gm !dLG! LG! 1

over L+G.

Proof. By construction, the line C:v1 of H1 is stable by[L+G and
therefore de�nes the character � which is a splitting. Because every
character of LG is trivial, this splitting is unique. q.e.d.

4.9. If now we allow the pointed curve (X;x) to move, i.e.,
if we consider our family � of pointed curve over a �nite type basis
S = Spec(R) (which is possible because Mg;1 is locally of �nite type),

one can construct the relative version dL�G ofdLG by integration of the
representation Hl(�) as in Lemma 4.4. First of all, by unicity of the
representation ��, the problem is local in S. One can therefore assume
that a formal coordinate z 2 �(X̂R;O) identi�es X̂ with X̂R and Hl

with Hl 
C R, reducing the problem to the absolute case. The details
are left to the reader.

5. The universal Verlinde's isomorphism

Let us �rst recall in the absolute case how loop groups allow to
uniformize the moduli stack MG of G-bundle over X and accordingly
to describe generalized theta functions in terms of conformal blocks (see
[13]).

5.1. Let Q = LG=L+G be the grassmannian parameterizing fami-
lies of pairs (E; �), where E is a G-bundle over X and � is a trivializa-
tion of E over X�. Let LXG ,! LG be the ind-group parameterizing



hitchin's and wzw connections are the same 555

automorphisms of the trivial G-bundle X� � G. Then, the forgetful
morphism �

Q ! MG

(E; �) 7�! E

is a LXG-torsor. The character � :[L+G ! Gm of Lemma 4 de�nes adLG-linearized line bundle L on Q =dLG=[L+G which is a generator of
Pic(Q) (see [13]).

The line bundle L is associated to ��1 (cf. Example 3.9 of [3]).

Sections of L are functions f ondLG such that

f(gh) = �(h)f(g); g 2dLG(R); h 2[L+G(R):

With this section, L is the positive generator of Q.

5.2. Let us recall the argument of [19] proving that LXG is a

subgroup ofdLG. The �bred product

[LXG =dLG�LG LXG

certainly acts on the �nite dimensional vector space of level-1 conformal
blocks

B1(X) = (H1=LXgH1)
�:

The di�erential at the origin of the projective action

LXG! PGL(B1(X))

is the natural morphism

LXg! End(B1(X))=C:Id

and is therefore trivial. Because LXG is integral (see [13]), [LXG acts

by a character on B1(X) de�ning the embedding LXG ,!dLG.
5.3. In particular, L is LXG-linearized and de�nes a line bundle still

denoted by L on MG = LXGnQ which generates Pic(MG). Let M0
G

be the open substack of MG parameterizing regularly stable bundles
(bundles E such that AutG(E) = Z(G), the center of G). Because Z(G)
acts trivially on V1, the center Z(G) acts trivially on the restriction of
L to Q0, and L is therefore LXG=Z(G)-linearized. Thus, L comes from
a line bundle, still denoted by L, on the smooth and quasi-projective
coarse moduli spaceM =M0

G of regularly stable bundles since Q0 !M
is an isotrivial LXG=Z(G)-torsor.
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5.4. The space of generalized theta functions of level l is by de�ni-
tion

H0(MG;L
l) = H0(Q;Ll)LXG:

By a codimension argument, it is also H0(M0
G;L

l) which is in turn
H0(M0

G;L
l) (see [3], [12], [13]). By [11], [14], the Lg-module H0(Q;Ll)

is the (algebraic) dual H�
l of Hl, the isomorphism being unique up to

nonzero scalar by Schur's lemma. Let us explicit by give the associated
Verlinde isomorphism (see [3], [7], [12], [13])

� : PBl(X)
�
! PH0(MG;L

l) = PH0(M0
G;L

l):

Let u 2 Bl(X) be a LXG-invariant form on Hl. After an eventual �etale
base change, any smooth morphism S !M0

G can be de�ned by a family
of bundles. Therefore, let us consider S ! MG a smooth morphism
where S is a C-scheme of �nite type de�ned by a family of G-bundles
E. �Etale locally in S, let us choose a formal cocycle  2 LG(S) de�ning
E. The multivalued function uE

(5:1) s 7�! u((s):vl)

de�nes a divisor on the smooth scheme S; E is generic by assumption
and therefore uE is generically nonzero. The gluing of these divisors
de�nes �(u).

5.5. If now the curve � : (X ; x) ! S = Spec(R) is nonconstant,
the family of ind-groups (LXsG)s2S glues to give an ind-group LXG over

S, which is a subgroup of L�G. As in 5.2, the action of[LXG on the
vector bundle of level-1 vacua B1 de�nes a character[LXG! Gm;S and
therefore an embedding (over S)

LXG ,! dL�G
& .

S

Recall that the action of[L+
�G on the trivial line bundle OS :v1 ,!H1(�)

de�nes a character

� :

8><
>:
[L+
�G ! Gm;S

& .
S

Of course, this construction is functorial in �, and all the above con-
structions are universal over Mg;1.
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5.6. The relative version of 5 goes as follows. Consider the relative

grassmannian Q� = dL�G=[L+
�G over S and the line bundle L on Q�

de�ned by ��1. Because LXG embeds in dL�G, the line bundle L is
LXG-linearized and therefore de�nes a line bundle L on the universal
moduli stack LXGnQ. The projection

q� : Q� ! S

is locally trivial for the Zariski topology; the choice of a formal coor-
dinate along x de�nes such a trivialization. Formula (5.1) de�nes a
morphism

�� : Hl(�)
� ! q�;�L

l:

Because q is locally trivial, it follows that �� is an isomorphism and
therefore that �� 
 C(s) is so for every s 2 S(C), which is the above
theorem of [11], [14]. As in 5, let me consider the LXG-torsor

r� : Q� ! LXGnQ� =MG;�:

If p� denotes the projection MG;� ! S, the sheaf p�;�L
l of global

sections of Ll is the invariant sheaf

(q�;�L
l)LXG = (Hl(�)

�)LXG:

5.7. These constructions are functorial in �. Let M0
G (resp. M0

G)
be the universal coarse moduli space (resp. moduli stack) of regularly
stable bundles. Let p : M 0

G !Mg;1 be the projection, X be the uni-
versal curve and Hl the universal family of basic level l representations.
As in the absolute case, the restriction of L toM0

G de�nes a line bundle
L on M0

G. By the above discussions, the global Verlinde's isomorphism
is the isomorphism

� : PBl = P(H�l )
LXG �

! Pp�L
l;

which is explicitly described by formula (5.1).

Computation of the connections

We choose a positive integer l. We denote byM the regularly stable
locus of MG(X), and by � the line bundle Ll on M , 5.3. As explained
above, the line bundle � exists over Mg;1.
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6. Deformations of global sections and connections

Let Ui; i 2 I be an a�ne open cover of any smooth variety V . Let
s be a global section of the line bundle L on V . For the convenience
of the reader, let me �rst recall some deformation theory of the triple
(V;L; s) (see [22]). We denote by (V�; L�; s�) a deformation of (V;L; s)
over the length 2-scheme D� = Spec(C[�]) with �2 = 0.

6.1. The restriction Ui;� of V� to Ui is trivial, because Ui is smooth
and a�ne. Let us choose an isomorphism

�i : OUi [�] = OUi �C[�]
�
! OUi;� ;

which restricts to Id when � = 0. The matrix of ��1j � �i is of the form�
Id 0
�i;j Id

�
;

where �i;j is a derivation of OUi\Uj . The image of the cocycle (�i;j)
in H1(V; TV ) is the Kodaira-Spencer class of the deformation V�. One
checks that this procedure identi�es isomorphism classes of in�nitesimal
deformations of V and H1(V; TV ).

6.2. As above, the restriction LUi;� of L� to Ui is trivial. Let us
therefore choose a morphism

�i : LUi [�] = LUi �C[�]! LUi;�;

which restricts to Id when � = 0. The morphism �i is an isomorphism,
and the matrix of ��1j � �i is of the form�

Id 0
�i;j Id

�
m

where �i;j is a �rst order di�erential operator of symbol �i;j of LUi\Uj .
Let Di(L); i 2 N be the sheaf of di�erential operators of order � i on L.
The image of the cocycle (�i;j) in H

1(V;D1(L)) is the Kodaira-Spencer
class of the deformation (V�; L�). One checks that this procedure iden-
ti�es isomorphism classes of in�nitesimal deformations of (V;L) and
H1(V;D1(L)).

6.3. There exists a (uniquely de�ned) section �i of LUi such that
the restriction sUi;� of s� to Ui can be written,

sUi;� = �i(sUi + ��i):
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One has the tautological relation sUi = sUj on Ui\Uj and, by de�nition
of �, one has the equality

(�) �j � �i = �i;j(s):

Let dis; i 2 N be the complex:

dis =

�
Di(L)

evs�! L
deg(0) deg(1):

The equality (*) means that

(�i;j; �i) 2 C
1(fUig; d1s) = C1(fUig;D

1(L))� C0(fUig; L)

is a cocycle and therefore de�nes a class inH1(d1s). One checks that this
procedure identi�es isomorphism classes of in�nitesimal deformations of
(V;L; s) and H1(d1s).

7. How to compute Hitchin's connection

Let us �rst explain why it is enough to compute the covariant deriva-
tive.

7.1. Let E be a vector bundle on a (smooth) variety V , and r
be a connection on the projective bundle PE of lines of E. Let �v be a
vector �eld de�ned on some open subset U of V , and let s be a section
of E on U . Let u be a point of U(C), and v be the tangent vector �v(u).
Let us denote by (u; �v(u))r the tangent vector of PE at s(u), which is
the horizontal lifting of v. Then, the di�erence

(7:1) r�v(s)[u] = ds(v)� (u; �v(u))r 2 Ts(u)PE

is tangent to the �ber PEu and therefore lives in Ts(u)PEu = E 

C(u)=C:s(u). Because the space of connection is an a�ne space under
H0(V;
V
End(E)=OV :Id), and V is reduced, the collectionr�v(s)[u]; u 2
U(C) determines the connection r.

7.2. Let �t 2 H1(X;TX) and �t� : D� ! Mg be the corresponding
morphism. Let us denote the pull-back �t�� (M

0
G;X ;�) of the universal

data simply by (X�;M�;��), and its restriction to (� = 0) by (X;M;�).

Remark 7.3. Recall that for any vector bundle F on X, the Cech
complex CF

H0(D;F )�H0(X�; F )
�F�! H0(D�; F )
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associated to the at cover D tX� �!�! X of X calculates the coho-
mology H�(X;F ). In particular, the complex CTX de�nes a projection
from the vector space of meromorphic vector �elds TD� on D� onto
H1(X;TX). If t is a meromorphic vector �eld on D, which projects to
�t, then the in�nitesimal deformation X� of X over D� can be described
in the following manner: one glues the 2 trivial deformations X�[�] and
D[�] of X� and D respectively along D�[�] thanks to the automorphism
of D�[�] de�ned by 8><

>:
OD� [�]! OD� [�]

f 7�! f + � < t;df > ;

In particular, a formal coordinate z on X lifts canonically to a formal
coordinate on X�.

7.4. Let s be a global section of �. To construct Hitchin's connec-
tion, one has to lift s to a global section sr of ��. The basic observation
of Hitchin's construction is that the cup-product pairing

H1(X;TX)
H0(X;Ad(E)
 !X)! H1(X;Ad(E));

where E is a regularly stable bundle on X, induces by Serre duality a
morphism

(7:2) � : H1(X;TX )! S
2H1(ad(E)) = (S

2 TM )[E];

which globalizes when [E] runs over M(C) to give the quadratic di�er-
ential

(7:3) � : H1(X;TX)! H0(M;S2 TM ):

The short exact sequence of complexes

(7:4) 0! d1s! d2s! S
2 TM [0]! 0

gives a morphism

� : H0(M;S2 TM )! H1(d1s):

Let
ws : H

1(X;TX )! H1(d1s)

be the composition � � � .
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Lemma 7.5 ([9]). The deformation of (M;�) de�ned by the pro-

jection of �ws(�t)=(2l + 2h_) in H1(D1(�)) is isomorphic to (M�;��).

Proof. Let � be the integer de�ned by !MG
= O(��) where O(1)

is the determinant bundle. One has the equality � = 2h_ (see [12] for
instance). By Theorem 3.6 of [9], the projection �ws(�t)=(2l + �) in
H1(M;TM ) is the Kodaira-Spencer class of M�. Because the codimen-
sion of the nonregularly stable locus is at least 2 (see the appendix),
H1(M;OM ) is zero and the symbol map H1(M;D1(�))! H1(M;TM )
is injective. Because the image of (M�;��) in H

1(M;TM ) is (tautologi-
cally) the Kodaira-Spencer class of M�, the lemma follows. q.e.d.

Remark 7.6. Strictly speaking, only the case where G = SLr is
treated in [9]. But the proof in [9] can be straightforwardly adapted to
the general case if � is de�ned by the equality !MG

= O(��) as above.

7.7. By the lemma, �ws(�t)=(2l + 2h_) de�nes a section over �t of
�� denoted by (s; �t)r well-de�ned up to Ker(Aut(��) �!�! Aut(�)) =
1 + �C which is the horizontal lifting (for Hitchin's connection) of �t
through s. If s� is a section of �� restricting on s when � = 0, the
di�erence s� � (s; �t)r lives in �H0(M;�)=C:s and one has the equality
(cf. (7.1))

(7:5) �(r�ts�)(0) = s� � (s; �t)r:

7.8. The explicit Cech calculation (relative to the covering Ui) of
ws(�t) goes as follows. Choose second order di�erential operators Di on
�Ui whose symbols are �(�t) on Ui. The di�erential of fDig 2 C

0(d2s) is

(Dj �Di;Dis) 2 C
1(d2s) = C1(D2�)� C0(�):

Because the symbol of Dj �Di vanishes, Dj � Di is of order one and
(Dj � Di;Dis) is a cocycle of C1(d1s) (as it has to be). By de�nition
of the connecting homomorphism, in H1(d1s) one has the equality one
has the equality

(7:6) ws(�t) = [Dj �Di;Dis]

(compare with (3.17) of [9] and [22, p. 187]). With the notation above,
one has

�i;j = symbol(Dj �Di) and �i = Dis:
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7.9. Suppose that the diagram

N �M N = ti;jUi \ Uj =) N = tUi �!�!M

is replaced by

N1 = N �M N
q

=)
p
N

r
�!�!M;

where N �!�! M is any �etale epimorphism such that r�(M�;��) is
trivial. We suppose also that the pull-back of the quadratic di�er-
ential �(�t) is the image of a second order di�erential operator �(t) 2
H0(N;D2(r��)) by the composite

H0(N;D2(r��))
symbol
�! H0(N;S

2 TN )
r��! H0(N; r� S

2 TM ):

The degree-one piece C1(r; d1s) of the Cech complex of r is

C1(r; d1s) = H0(N1; �
�D1(�))�H0(N; r��);

where � = r � p = r � q. Because the coherent cohomology can be
calculated using the �etale topology, one has a canonical morphism

C1(r; d1s)! H1(d1s):

Then, as in (7.6), one has the equality in H1(d1s)

(7:7) ws(t) = [p�r��(t)� q�r��(t); �(t):r
�s];

and the in�nitesimal lifting (s; �t)r de�ned by the class�ws(�t)=(2l+2h
_)

is given on N by

(7:8) (s; �t)r = r�s�
�

(2l + 2h_)
�:(t)r�s:

Suppose that the global section s� of �� is given on N by

s� = u+ �v; u; v 2 H0(N; r��):

Then, the formula (7.5) gives

(7:9) r�ts�(0) = v +
�(t):u

2l + 2h_
in H0(N; r��)=C:u:
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8. Sugawara tensors and di�erential operators

Recall that r�� is the homogeneous line bundle L� where � is the

character ��l of[L+G. IfdLG were �nite dimensional, one would have a
morphism

U(cLg)opp ! H0(Q;D(L�));

and the Sugawara tensor T (t) would de�ne a second order di�erential

operator on L�, a natural candidate for �(�t) (see 7.9). Let dLG0
(resp.

Q0) be the regularly stable locus ofdLG (resp. Q). To avoid too much
abstract nonsense about di�erential operators on ind-schemes, one uses
quasi-section

Q0

� %

N
r

�!�! M

(cf. [6]) of � : Q0 ! M to construct the di�erential operator �(t)
using T (t) (formally, one just pull-back T (t) by �). By convention, all
cohomology groups of any coherent sheaf on N are endowed with the
discrete topology.

8.1. Let us �rst de�ne the "di�erential"

��d� : cLg! H0(N; r�TM)
�
! H0(N;TN):

Let n 2 N(R) and x be an element of cLg. The image of
exp(�x):�(n(�)) 2 Q0(R[�])

by � is a point m(�) of M [�] which restricts to r(n) when � = 0 (recall
that Q0 is open in Q). Because r is �etale, there exists a unique point
�(�) of N [�] such that �(0) = n and r(�(�)) = m(�). If f is a regular
function de�ned near n, the expansion

f(�(�)) = f(n) + �x:f(n)

de�nes a regular function near n. The corresponding vector �eld is
denoted by ��d�(x). One checks that

��d� : cLgopp ! H0(N;TN )

is a morphism of Lie algebras and therefore induces a morphism of
�ltered algebras

(8:1) U(cLg)opp ! H0(N;D(ON )):
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8.2. We want to extend (8.1) to a completion of �U(cLg) in which

lives the Sugawara tensors. Let U be the enveloping algebra of\g
K.
For n � 0, let Un be the subspace of u 2 U which is of order � n. We
de�ne a �ltration F iUn; i > 0 by

F iUn = U:gi \ U
n;

where gi is the kernel of the projection g
O �!�! g
Oix. The fam-
ily F iUn; i > 0 de�nes a topology of Un; let �Un be the corresponding
completion, and �U = [n2N �Un be our completion of U . It is a complete
associative algebra which is �ltered by de�nition and acts on every in-
tegrable representation. Let us choose a formal coordinate z at x. For
x 2 g and i 2 Z, let me denote the vector X 
 zi by x(i).

Lemma 8.3. There exists an integer i such that

��d�(x(j)) = 0

for all x 2 g and j � i.

Proof. Because N is of �nite type, there exists i such that

Ad(): exp(�x(j)) 2 L+G(R[�]=(�
2)) for all j � i and  2 �(N(R)):

The lemma follows since � is right L+G-invariant. q.e.d.

In particular, we get continuous morphisms (see 8.2 for the de�nition

of the completion �Un;opp(cLg))
(8:2) �Un;opp(cLg)! H0(N;Dn(ON )):

8.4. Let n be a point of N . Let us consider �(n) as a pair (E; �)
where � is a trivialization of EjX� . The geometric interpretation of

��d�n : cLg! TnN = H1(X;Ad(E))

goes as follows. Let x 2 cLg and let E� be the underlying G-bundle on
X[�] of exp(�)�(n). The family E� de�nes a Kodaira-Spencer map

T0D� ! H1(X;Ad(E)):

Then, the image of d=d� 2 T0D� is �
�d�n(x) by the Kodaira-Spencer

map.
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8.5. One can of course explicitly calculate this map. The trivializa-
tion � de�nes an isomorphisms between CAd(E) (cf. 7.3) and

H0(D;Ad(E)) � g
AX ! g
K:

The corresponding surjection

(8:3) cLg �!�! g
K �!�! H1(X;Ad(E))

is the di�erential ��d�n.

8.6. Let t 2 TD� which projects to �t 2 H1(X;TX ) 7.3 and
�(�t) 2 H0(M;S2 TM ) the corresponding quadratic tensor (7.3). One
can compute the value

r��(�t)n 2 S
2 TnN = S

2H1(X;Ad(E))

of r��(�t) 2 H0(S2TN) at n as follows. The Killing form of g de�nes
an isomorphism between Ad(E) and its dual. The residue theorem says
that the residue res : 
D� ! C factors through


D�=(
X� �
D) = H1(C!X )
�
! H1(X;!X)

to give the canonical isomorphismH1(X;!X)
�
! C de�ned by the mero-

morphic form dt=t. By Serre duality, r��(�t)n is therefore a quadratic
form on H0(X;Ad(E) 
 !X). By 7, r��(�t)n is induced by the cup-
product

H1(X;TX)
H0(X; ad(E) 
 !X)! H1(X;Ad(E)):

The trivialization � de�nes an injection

H0(X;Ad(E)
 !X) ,! g
 
X� :

The Killing form de�nes a pairing

(8:4) tr : [g
 
X� ]
 [g
K]! K 
 
X�

�
! 
D� :

The tensor �(�t)n 2 S2H1(X;Ad(E)) of 7 is characterized by the
formula

(8:5) �(�t)(�
 �) = res tr(��
 t:��)

for every � 2 H0(X;Ad(E)
!X) mapping to �� 2 g

X� and t 2 TD� ;
the contraction t:�� is thought as an element of g
K.
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8.7. The twisted version is analogous. Consider the commutative
diagram with a cartesian square

N̂ �! dLG0??y �

??y
N

�
�! Q0

&r �
??y
M

The morphism of C-space N̂ ! N is a [L+G-torsor, and sections of
r�� = ��L� are functions on N̂ which are �-equivariant. Let f be such
a function, and let n̂ = (n; ) be a point of N̂(R). With the notation
above,

exp(�x)n̂ := (�(�); exp(�x))

is a point of N̂(R[�]) restricting to n̂ when � = 0. The expansion

f(exp(�x)n̂) = f(n̂) + �x:f(n)

de�nes a morphism of Lie algebras�cLgopp ! H0(N; r��);
x 7�! (f 7�! x:f):

As above, Lemma 8 allows us to de�ne continuous morphisms

(8:6) �Un;opp(cLg)! H0(N;Dn(r��)):

The arrows (8.6) and (8.2) are compatible, meaning that the symbol
diagram

(8:7)

H0(N;Dn(r��))
% & symbol

�Un;opp(cLg) H0(N;Sn TN )
& % symbol

H0(N;DnON )

is commutative.

8.8. Let me recall the de�nition of Tn 2 �U (see [10, (12.8.4)]). Let
xi be an orthonormal basis of g (for the Killing form). The sequence of
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operators

T0 =
X

i
xixi + 2

1X
n=1

xi(�n)xi(n);

Tn =
X

m2Z

X
i

xi(�m)xi(m+ n) if n 6= 0

(8.8)

is well de�ned and does not depend on the choice of the xi's.

Remark 8.9. The notation is not standard. Usually, 1=(2l+2h_)Tn
is denoted by Ln and the formal power series

P
Lnu

�n�2 is denoted by
T (u) (for instance in [21]); notice the opposite convention in [18], giving
a change of sign in the de�nition of the WZW connection.

8.10. Suppose that n is positive. Because xi(�m) and xi(n+m)

commute in U(cLg), one then has xi(�n)xi(n +m) 2 F[n=2]U2(cLg) for
every integer m. Therefore,

Tn 2 F
[n=2]U2(cLg) and lim

n2N
Tn = 0:

Let dn be the meromorphic tangent vector zn+1 d
dz .

De�nition 8.12. Let t =
P

n��N tndn be a meromorphic vector

�eld on D�. The Sugawara tensor T (t) 2 �U2(cLg) is de�ned by the
equality

T (t) =
X

n��N

tnTn:

The second order di�erential operator �(t) 2 H0(N;D2(r��) is the im-
age of T (t) by the morphism

�U2;opp(cLg)! H0(N;D2(r��))

of (8.6).

8.12. Let � 2 H0(X;Ad(E) 
 !X) be a mapping to �� 2 g
 
X� ,
and t 2 TD� . The seriesX

m2Z

X
i

< ��; xi(�m) >< ��; xi(m+ n) >

has �nite support which allows us to de�ne

< ��
 ��; Tn >=
X

m2Z

X
i

< ��; xi(�m) >< ��; xi(m+ n) > :(8.9)
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One de�nes < ��
 ��; T0 > by the analogous formula. By (8.3) and 8.7,
the symbol of �(t) evaluated at

�
 � 2 S
2 T �nN = S

2H0(X;Ad(E)
 !X)

is equal to the �nite sumX
n2Z

tn < ��
 ��; Tn >=
X

n�2jval(��)j

tn < ��
 ��; Tn > :

Proposition 8.13. The symbol of �(t) is the quadratic di�erential
�(�t) of (7.3).

Proof. By (8.5) (keeping the notation above), one has to prove the
equality

res tr(��
 t:��) =< ��
 ��; T symb(t) > :

Observe that the preceding expression still makes sense if �� lives in
g 
 
D� . Now, if the valuation val(��) is big enough, both the scalars
< �� 
 ��; T symb(t) > and res tr(�� � t:��) are zero. One can therefore
assume that �� = xj(l)dz for some l 2 Z, and also that t = dn; n 2 Z.
Now, we compute

< xj(l)dz 
 xj(l)dz; Tn >= �n+2l;�2 = res(zn+1+2ldz)

(even in the case where n = 0), and obtain

res tr(xj(l)dz � dn:xj(l)dz) =res tr(xj 
 zldz � zn+1 d

dz
:xj 
 z

ldz)

=res(zn+1+2ldz):

q.e.d.

8.14. The computation of the Hitchin's covariant derivative
r�ts�(0); s� 2 H0(D�;�) is now easy. Let us choose a local coordinate
on X, which lifts to a local coordinate on X� along x (see Remark 7.3),
identifying the universal pair (Q0;�) over D� to the trivial deformation
(Q0[�];�[�]). We pick quasi-section

Q0

� %

N
r

�!�! M
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of � : Q0 !M . We de�ne �(t) as in 8.12; one is under the hypothesis
of 7.9. By 5.7, there exists 2 linear forms U; V on Hl such that

�(U + �V ) = s�:

With the notation of 8.7, the pull-back ��s� can be decomposed as

��s� = u+ �v;

where the section u of r�� can be thought of as a �-equivariant function
on N̂ de�ned by (5.1)

n̂ = (n; ) 7�! u(n̂) = U(:v�);

v� being the highest weight vector of Hd� . The action 8.7 of x 2 cLg on
u is de�ned by the �-derivative of

u(exp(�x):n̂) = U(:v�)� �x:U(:v�):

Therefore, one has the equality

x:u = ����(x:U) and T (t):u = ���(T (t):U):

Formula (7.9) thus becomes

r�r�ts�(0) =v + T (t)=(2l + 2h_):u

=���(V + T (t)=(2l + 2h_):U) mod u:
(8.10)

9. WZW connection

Let me recall how the WZW connection on Vl can be explicitly
computed (see [21, De�nition 5.1.2]).

9.1. We start with a versal deformation X ! S of the pointed curve
X0. Let t be a meromorphic vector �eld on D, which projects to the
image by the Kodaira-Spencer map of some tangent vector � 2 T0S. If
f is a function on S, and u is a linear form on Hl, theWZW -connection
� on V �l is de�ned by the formula

(9:1) �� (u
 f) = u
 t:f + T (t)=(2l + 2h_)u
 f mod (u
 f)

(see [18, De�nition 2.7.4]) and Remark 8.9.
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9.2. The tangent vector � de�nes a morphism D� ! (S; 0) such
that @=@� maps to � . Let us pull-back the situation by this morphism.
The �rst order expansion of (9.1) then gives

(9:2) �@=@�(u+ �v) = v + T (t)=(2l + 2h_):u modu;

which is precisely r@=@��(u+ �v) (see (8.10). We endow P(Vd�)
� with

the WZW connection, and Pp��� with the Hitchin's connection. Com-
paring (8.10) and 9, we have proved

Theorem 9.3. With the notation of 5.7, the morphism �

PBl
�
! p�L

l

is a at isomorphism of at projective bundles over Mg;1.

Remark 9.4. In fact, the result remains true if g = 2, at least if G
is not SL2 or SP 4 (see the appendix below).

10. The Picard group of Q

We know that the Picard group of each �ber q�1(s) (s a complex
point ofMg;1) is Z:Ls (see the appendix); this de�nes an integer deg(L)
of every line bundle on Q, which is the exponent e such that Ls = L
es
(recall that Mg;1 is connected).

Proposition 10.1. The sequence

0! Pic(Mg;1)
q�
�! Pic(Q)

deg
�! Z! 0

is exact and the morphism

�
Z ! Pic(Q)
e 7�! L
e

is a splitting.

Proof. The grassmannian Q is the direct limit lim�!Qw where w 2

Wa�=W = Q(R_) and Qw is the relative Schubert variety of index
w which can be geometrically described as follows. Let L>0G be the
inverse image of 1 by the evaluation L+G �!�! T , and let �w be the
direct image of the Gm-torsor V (O(�x)) n 0 by w : Gm ! G; because
O(�x) is canonically trivial on X�, the G-bundle �w is trivialized on
X� and therefore de�nes a point of Q. The Schubert variety Qw is
as usual the union Qw = [w0�wL

>0G �w0:1 where 1 is the class of the
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trivial (trivialized) G-bundle). The choice of a local coordinate near the
marked point trivializes the restriction qw of q to Qw proving that qw
is at. Each Schubert variety Qw(s) over s 2 Mg;1(C) is projective,
and integral. Moreover, the natural morphism Pic(Q) ! Pic(Qs;w) is
an isomorphism. By construction, the restriction of M = Ldeg(L)
L�1

to Qw(s) is trivial. Because Mg;1 is reduced, the base change theorem
implies that the direct image q�;wMw of the restrictionMw toQw is a line
bundle �Mw onMg;1 and that the morphism q�wqw;�M = q�w �Mw !Mw is
surjective and therefore an isomorphism. The isomorphisms (Mw)Qw0

�
!

Mw0 for w0 � w induces isomorphisms �Mw0

�
! �Mw; let �M be the direct

limit lim�!
�Mw (which is isomorphic to each of the �Mw). By construction,

L
�
! Ldeg(L) 
 q� �M . q.e.d.

Remark 10.2. In particular, the Picard group of Q is Z3.

Lemma 10.3. Let H be a C-group. Let H1;H2 be 2 C-subgroups of

H and  2 : H2 ! Gm a character de�ning a line bundle L2 on H=H2.

The pull-back L1;2 on H1=H1;2 (where H1;2 = H1\H2) of L2 is the line

bundle associated to the restriction  1;2 of  2 to H1;2.

Proof. By de�nition, L2 is de�ned by the morphism

H=H2 ! BH2 ! BGm;

where H=H2 ! BH is de�ned by the (H2-equivariant) morphism H �
H=H2 (H being seen as an H2-torsor over H=H2, and BH2 ! BGm

being B 2). The pull-back on H1=H1;2 is de�ned by the composite

H1=H1;2 ! H=H2 ! BH2 ! BGm:

The diagram

H1=H1;2 ! H=H2 ! BH2

& %
BH1;2

is 2-commutative (BH1;2 ! BH2 being the natural morphism deduced
from H1;2 ,! H2). The proposition follows because the composite
BH1;2 ! BH2 ! BGm is B 1;2. q.e.d.

10.4. Let � the section of Q de�ned by the trivial G-bundle (with
its canonical trivialization on the punctured curve) over X �Mg;1. It

corresponds to the unit section of dLG ! Mg;1. The above lemma
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proves that ��L is trivial. We can therefore rewrite Proposition 10 in
the following form: for every L 2 Pic(Q), one has the formula

(10:1) L = Ldeg(L) 
 q�(��L):

10.5. Let � : G ! SLN be a linear representation of G, which
can be assumed to be nontrivial. Let E be the universal G-bundle on
Q�Mg;1 X , and L� the line bundle on Q

(10:2) L� = det(R�E(CN ))�1:

The degree deg(L�) is the Dynkin index d� of the representation �
(see [13]). The formula (10.1) gives therefore an isomorphism of LXG-
linearized bundles

(10:3) L� 
 q� detR�OX
�
! Ld�

well de�ned up to H0(Mg;1;O
�)1.

Remark 10.6. Both sides of (10.3) descends to the universal mod-
uli space. The corresponding projective bundles of global sections

PR�L� and PR�L
d�

have therefore a Hitchin's connection and are isomorphic (as projective
bundles). The construction of Hitchin's connection is certainly functo-
rial and the preceding isomorphism is at.

11. Appendix

For completeness, let me prove a codimension estimate (see [8, The-
orem II.6] for similar statements) which is certainly well known to the
experts.

Lemma 11.1. Let � : E ! S be a (right) G-bundle over a con-

nected C-scheme S with G reductive. Assume that E has a noncentral

automorphism of �nite order N . Then E has an L-structure F where

L is a proper reductive subgroup of G.

1One can show that this group is in fact C�, proving that (10.3) is well-de�ned
up to a non-zero scalar.
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Proof. Let e be a point of E(C) and g the (unique) point of G(C)
such that �(e) = e:g. Let T ! S be an S-scheme and F (T ) be the set

F (T ) = f� 2 HomS(T;E) such that �(�) = �gg:

The obvious functor

F :

�
Schemesopp ! Ens;

T 7�! F (T )

is a formally principal homogeneous space under the centralizer L of
G. This group is reductive (not necessarly conneceted) and proper (g =2
Z(G)). One has to check that F (s) is nonempty for every s 2 S(C).

Let s 2 S(C) and t 2 Es over s. There exists a unique gt 2 G(C)
such that �(t) = t:gt. The conjugacy class of gt depends only on s.
Because gt is of �nite order, it is semisimple and one can de�ne a map
f : S(C) ! T=W (C) which sends s to the conjugacy class of the
semi-simple element gt. Because E is locally trivial, f is algebraic. The
functions on T=W are generated by the characters of the fundamental
representations. Because gt is of order N , the eigenvalues of the corre-
sponding matrices are in �N and therefore the image of f is �nite. Since
S is conneceted, this image is a point, the class of g say. This proves
the lemma. q.e.d.

Remark 11.2. Suppose that S is a smooth complete curve and that
E is semistable. Because L is reductive, the morphism g �!�! g=Lie(L)
has aG-invariant section. The degree-0 vector bundle Ad(F ) is therefore
a direct summand of Ad(E) = F (g) and is semistable.

11.3. Let X be a smooth complete and projective complex curve,
and G a reductive algebraic group.

De�nition 11.4. A regularly stable G-bundle on X is a stable
bundle with Aut(E) = Z(G).

Lemma 11.5. The locus of regularly stable bundles is open in the

moduli space of stable G-bundles M s
G(X).

Proof. By [17], M s
G(X) is the GIT quotient of some smooth polar-

ized quasi-projective scheme S by SLN . Moreover, all points of S(C)
are stable (properly stable in the old terminology) for a suitable lin-
earization (induced by some embedding of S ,! PN�1). Let G be the
S-group scheme de�ned as the inverse image of the diagonal by

(g; x) 7�! (x; gx):
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The geometric �bers of G are automorphisms groups of stable bundles
and therefore are �nite. In particular, G ! S is quasi-�nite. By Corol-
lary 2.5 of [15], the action G � S ! S is proper (all the points are
assumed to be stable), and hence G ! S is �nite (proper and quasi
�nite). By the theorem of formal function, the locus in S where

Z(G)S ,! G

is an isomorphism is open. q.e.d.

Proposition 11.6. The closed subset B of MG(X) parameterizing

semistable bundles E which are not regularly stable is of codimension

� 3 for g � 3 or g = 2, and g has a factor of type A1 or C2.

Proof. One can assume that G is semisimple (divide by the neutral
component of Z(G)). Let E be a semistable bundle which is not regu-
larly stable. If E is not stable, there exist a unique standard parabolic
subgroup P and a P -structure ~F of F such that F = ~F=raduP is stable
(as P=raduP-bundle). If L is a Levi subgroup of P , this shows that
[E] = [F (G)] is in the image of the rational map ML(X) ! MG(X)
in this case. If now E is assumed stable with Aut(E) 6= Z(G), let us
choose a a noncentral automorphism �, necessarly of �nite order. Let
F be the L-structure of gr(E) determined by �. Then, F is semistable
and E is in the image of the rational morphismML(X)!MG(X). We
have therefore to compare

dimML(X) =(g � 1) dim(L) + dimZ(L) and

(g � 1) dim(G) =dimMG(X):

The function

L 7�! (g � 1) dim(L) + dimZ(L)

is increasing; one can assume that L is maximal. In this case, the
dimension of Z(L) is at most 1 and, except that g has a factor of type
A1 or C2, one has dim(G) � dim(L) � 4 (use exercices VIII.3.2 and
VI.4.4 of [2] for instance). q.e.d.
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