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. Abstract

In this paper we give a complete classification of all planar curves
in Minkowski 3-space E}, which are of type 3. A correspouding clas-
sification of all non-planar curves of type 3 in the same space will be
given in the part 11 of this paper.

1. Introduction

The notion of submauifolds of finite type was introduced by B. Y. Chen in
[2]. A submanifold M in the Euclidean space E™ is said to be of finite type
if each component. of its position vector field x can be written as a finite suin
of eigenfunctions of the Laplacian A of M. This means that

k
X =Xp -+ Z Xg  Ax = Ax, (1.1)

t=1

where 0 = A\p < Ap < ... < Ag are mutually different eigenvalues of A. When
M is compact, the component xg in (1.1) is constant vector. However, when
M is non-compact, the component xy is not necessary a constant vector.
In particular, a submanifold M is said to be of k-type if all eigenvalues
A, Ag, ..., Ap are different from zero. If one of the A;’s is equal to zero
(1t =1,2,...,k), M is said to be of null k-type.

Finite type curves in Euclidean space E™ were studied intensively in [2],
[3] and [4]. The classification of all 2-type curves in E™ is given in [6].
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. Abstract

In this paper we give a complete classification of all planar curves
in Minkowski 3-space E}, which are of type 3. A corresponding clas-
sification of all non-planar curves of type 3 in the same space will be
given in the part 11 of this paper.

1. Introduction

The notion of submauifolds of finite type was introduced by B. Y. Chen in
[2]. A submanifold M in the Euclidean space E™ is said to be of finite type
if each component. of its position vector field x can be written as a finite sum
of eigenfunctions of the Laplacian A of M. This means that

k
X=X+ Z Xg  Axp = Xy, (1.1)
t=1

where 0 = A\p < Ap < ... < At are mutually different eigenvalues of A. When
M is compact, the component xq in (1.1) is constant vector. However, when
M is non- compact, the component xy is not necessary a constant vector.
In particular, a submanifold M is said to be of k-type if all eigenvalues
A1, A2, ..., A are different from zero. If one of the A;’s is equal to zero
(1 =1,2,...,k), M is said to be of null k-type.

Finite type curves in Euclidean space E™ were studied intensively in [2],
[3] and [4]. The classification of all 2-type curves in E™ is given in [6].
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2. Preliminaries

Minkowski 8 space E? is a manifold R* equipped with a metric tensor g of
index 1. Define the metric tensor g with

g = —dz} + dad + duj. (2.1)

Let v be a curve in E} parameterized by an pseudo-arclength parameter
5. Then the Laplace operator A of « is given by .
d2
db'z ( )
Its cigenfunctions are s,cos(as),sin(as), cosh(as) and sinh(as). Follow-
ing the definition of Chen, every finite type curve o in E} can be written

as
ki

a(s) = ap + bys+ Z (ap cos(pys) + besin(pes))+  (2.3)
t=1
ka2

+ Z (¢t cosh(qs) + dy sinh(ges)),
=1

where ag, by, a;,b;, ¢;,d; € R3 arc constants, i = 1,...,k, 5 =1,..., ks and
0<pr < ... <pg, 0< g1 <...< gy, are mutually different cigenvalues
of A. In particular, a curve « in E} is said to be of k—type if there are k
mutually different eigenvalues A, ..., \x of A and they are all different from
zero. If one of the A;’s (1 = 1,..., k), is equal to zero, « is said to be of null
k-type.

Recall that an arbitrary vector v in E} can have one of three causal
characters: it can be spacelike if g(v,v) > 0 or v = 0, timelike if g(v,v) <0,
and null if g(v,v) = 0 and v # 0. The norm of a vector v is given by

o]l = Vg(v,v)l. (2.4)

The unit vectors, orthogonality and orthonormality are defined as in
the Euclidean spaces. An arbitrary, unit—speed curve «(s) can localy be
spacelike, tunelike or null curve if respectively all of its velocity vectors
@ (s) are spacelike, timelike or null vectors. An arbitrary plane 7 in E}
can be spacelike plane, if g|, is positive definite, timeclike plane, if g|; is
nondegenerate of index 1, or isotropic (lightlike) plane, if g, is degenerate.

Curves of finite type in Minkowski space-time have been investigated
in [5] and also in [7], independently. The following classification theorem is
obtained in [7].
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where p? — 12ae = 0, p,e,a € Ry;
(viii) «(s) = (esinh s 4+ asinh3s, ecosh s + acosh 3s, psinh s),
where p? — 12ae = 0, p,e,a € Ry.

All closed 3-type curves in Euclidcan 3-space E? were classified by D.
E. Blair in [1]. He obtained the following classification theorem.

Theorem 2.5. A closed 3-type curve in E® is cither a curve which lies
on a quadric of revolution or a curve whose frequency ratio is 1 : 3 : 7 and
the curve belongs to a 3—parameter family of such curves or the frequency
ratio is 1 : 3 : 5 or the curve belongs to a b-parameter family of such curves.
Some curves with frequency ratiol : 3:5 or 1 : 3 : 7 also lie on quadrics of
revolution.

3. A classification of planar 3—type curves in E}

Tn this part we will classify all planar 3—type curves in Minkowski 3—space
E3}. Main results are contained in Theorems 3.1 and 3.2.

Theorem 3.1. A planar 3—type curve, lying in an isotropic plane of E:f,
is a null 3 type spacelike curve.

Proof. Let a be a 3—type curve in B3, parametrized by an pseudo-
arclength parameter s. Then « can have one of the following forms:

a(s) =a + bs + ccos(ps) + dsin(ps) + ecosh(ts) + fsinh(ts), (1)
a(s) =a + bs + ccos(ps) + dsin(ps) + e cos(ts) + f sin(ts), (ii)
afs) =a + bs + ccosh(ps) + dsinh(ps) + e cosh(ts) + fsinh(ts),  (iii)
a(s) =a + beos(ps) + csin(ps) + dcos(ts) + esin(ts)+ | (iv)

+f cosh(qs) + hsinh(gs),

afs) =a + beos(ps) + esinps) + dcos(ts) + esin(ts)+ (v)
+f cos(gs) + hsin(gs),

a(s) =a + beosh(ps) + ¢sinh(ps) + d cosh(ts) + esinh(ts)+ (vi)
+f cos(gs) + hsin{gs),

a(s) =a + beosh(ps) + csinh(ps) + d cosh(ts) + esinh(ts)+ (vii)
+ f cosh(gs) + hsinh(qgs),



A classification of 3—type curves in Minkowski 3-space E}, I 359

Theorem 2.1. Every curve of finite type in Minkowski plane E? is of
1-type and hence an open part of an orthogonal hyperbola or an open part
of a straight line.

Curves of Chen-type 2 in E} are investigated in [8]. The following result
is obtained there.

Theorem 2.2. A planar 2-type curve, lying in an isotropic plane of £},
is a null 2 type spacelike curve.

Theorem 2.3. Up to a rigid motions of F3, a non-planar curve « in
E} is a null 2—type curve if and only if « is a part of one of the following
curves:

(i) «a(s) = (as,beos s, bsins), a,b € Ry, |a|] # |b];

(i) «(s) = (acoshs,asinhs,bs), a,b € Ry,|a| # ||

(iii) «fs) = (asinhs,acoshs,bs), a,b € Ry, la| # |bl;

Theorem 2.4. Up to a rigid motions of E}, a non-planar curve « in

E} is a 2-type curve with both eigenvalues different from zero if and only if
«v is a part of one of the following curves:

(1) «as) = (psins,ecos s + acos3s, esins + asinds),
where p? — 12a¢ = 0, a,€,p € Ry;

(i) o(s) = (acoshs + Absinhs — dce?? |~ bcosh s — Aasinh s 4 4ee?*,
2de??),

where d? — 6(a — b)e =0, a,b,c,d € Ry, A€ {—1,1};

(iii)  «(s) = (e’ 4+ bcosh 3s,ae® + bsinh 3s, ce ™),
where ¢? + 6ab =0, a,b,c € Ry; .

(iv) «(s) = (ecoshs + acosh 3s, esinh s + asinh 3s, pcosh s),
where p? + 12ae =0, a, p,e € Ro;

(v) «(s) = (ecoshs + acosh3s, esinh s + asinh 3s, psinh s),
where p? + 12a¢ = 0, a, p,€ € Ry;

(vi) (}’(5.) = (ae® + bsinh 3s, ae® + bcosh 3s, ce™7),
where ¢ — 6ab =0, a,b,¢ € Rp;

(vil) oa(s) = (esinh s + asinh 3s, € cosh s + a cosh 3s, pcosh s),
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where p? — 12ae = 0, p,e,a € Ry;
(viil) «a(s) = (esinhs + asinh3s, e cosh s + a cosh 3s, psinh s),
where p? — 12ae = 0, p,e,a € Ry.
All closed 3-type curves in Euclidean 3-space E? were classified by D.

E. Blair in [1]. He obtained the following classification theorcm.

Theorem 2.5. A closed 3 -type curve in E? is either a curve which lies
on a quadric of revolution or a curve whose frequency ratio is 1 : 3 : 7 and
the curve belongs to a 3 parameter family of such curves or the frequency
ratio is 1 : 3 : 5 or the curve belongs to a b—parameter family of such curves.
Some curves with frequency ratiol : 3 :5 or1:3: 7 also lie on quadrics of
revolition.

3. A classification of planar 3—type curves in E}

[n this part we will classify all planar 3—type eurves in Minkowski 3-space
E?}. Main results are contained in Theorems 3.1 and 3.2.

Theorem 3.1. A planar 3~type curve, lying in an isotropic plane of E},
is a null 3 type spacclike curve.

Proof. Let o be a 3—type curve in E}, parametrized by an pseudo-
arclength paramecter s. Then « can have one of the following forms:

a(s) =a + bs + ccos(ps) + dsin(ps) + ecosh(ts) + f sinh(ts), (i

a(s) =a + bs + ccos(ps) + dsin(ps) + ecos(ts) + f sin(ts), (il

a(s) =a + bs + ccosh(ps) + dsinh(ps) + ecosh(ts) + fsinh(ts), (il

a(s) =a + beos(ps) + esin(ps) + dcos(ts) + esin(ts)+ (iv
+f cosh(qs) + hsinh(gs),

a(s) =a + beos(ps) + csin(ps) + dcos(ts) + esin(ts)+ (v)
+f cos(gs) + hsin(¢s),

a(s) =a + beosh(ps) + csiuh(ps) + dcosh(ts) + esinh(ts)+ (vi)
+f cos(qs) + hsin(gs),

a(s) =a + bcosh(ps) + ¢sinh(ps) + d cosh(ts) + esinh(ts)+ (vii)
+f cosh{gs) + hsinh(gs),
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where a,b. ¢,d, e, f € R® and supposc 0 < p < t < gq.

Next, suppose that « lies in an isotropic (lightlike) planc in E?, with
the equation x; = x9. Then the vectors b,c,d,e, f are of the form b =
(b1, b1,b3),¢ = (cr,c1,¢3),d = (dy,dy,d3), e = (e1,e1,e3), f = (f1, f1, ), L.c.
they are spacelike or null vectors. Besides, we can assume that a = (0,0,0),
up to a translation and let g = —dz? + dz + d.’I;%. In the sequel, we shall
consider cases (1)-(vii) separately.

Case (). «(s) = a + bs+ ccos(ps) + dsin(ps) + ecosh(ts) + f sinh(¢s).

Since g(cv, ) = =1, using the linear independence of the functions
sinx, cos ¢, sinh x, cosh z we get the system of equations:

g(0.b) + B (glc,e) + g(dy d)) + 5 (g(f. ) — gle,e) = £1, (1)
g(d,d) - g(c,¢) =0, (2)
g(f, f) +gle,e) =0, (3)
glb,c) = gb,d) = g(b,e) = g(b, ) =0, (4)
glc,d) = g(e.e) = gle, f) =0, (5)
g(d,e) = g(d, f) =0, (6)
gle, f) = 0. (7)

From the equations (1)—(7) follows that b = (by,by,£1),¢ = (¢y,¢,0),
d = (dy,d,0),e = (e1,e1,0), f = (f1, f1,0), so the curve a reads:

afs) = (bys + ¢y cos(ps) + dy sin(ps) + e cosh(ts) + fi sinh(ts),
b1s + ¢y cos(ps) + dy sin(ps) + eq cosh(ts) + fy sinh(ts), £s),
where 01,1, dy,e1, fi € R, ¢, and dy are not both zero, ¢; and f; are not
both zero. Counsequently, « is a null 3- type spacelike curve.

Cases (ii) and (iii). The proof in these cases is analogous to the proof of
case (i). So in these cases we get the curves:

a(s)= (b1 s + ¢y cos(ps) + dj sin(ps) + ey cos(ts) + fi sin(ts),
bys + ¢y cos(ps) + dy sin(ps) + eq cos(ts) + f1sin(ts), £s),
B(s)= (b1s + c; cosh(ps) + dj sinh(ps) + e cosh(ts) + fi sinh(ts),
bis + ¢y cosh(ps) + dy sinh(ps) + ey cosh(ts) + fy sinh(ts), £s),
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where b),¢),d;,e1, fI € R, ¢; and d; are not both 0, e; and f; are not both
0. Consequently, o is a null 3-type spacelike curve.

Case (iv). If 0 < p < t < q, we differ the next subcases:
W =t—p<p+t<2U<2gand2pF#t—p<p+t<2<2.

Therefore, we have the following subcases:

(iv.l]) 2p=t—p; (iv2) 2p#t—p;

Since g(&, &) = =1, using the linear independence of the functions
sinx, cos x, sinh z and cosh z, in these subcases we obtain different systems
of the equations.

(iv.1). In this case, the corresponding system reads:

[

2

2 (9(b,0) + g(c, ) + S (g(d,d) + gle,e)) + T(g(h,h) +g(f, ) = +1, (1
2 (gleye) — g(b,b) + pt(g(b,d) + glc,e)) =0, (2
gle,e) —g(d,d) =0, (3
g(h,h) +g(f, f) =0, (4
—p*g(b,c) + pt(g(b,e) — g(c,d)) =0, (5
glc,e) —g(b,d) =0, (6
g(b,e) + g(c,d) =0, (7
g(d,e) =0, (8
g(f,h) =0, (9
(b, f) = g(b,h) = (e, ) = gle, h) = g(d, f) = g(d, h) = (10

Now equations (3) and (8) imply e = (e, €1,0), d = (d1,d1.0), 50 g(b,d) =
= g(b,e) = g(c,d) = g(c,e) = 0. Also equations (4) and (9) imply f =
(f1, f1,0), b = (hy,h1,0), (2) and (5) imply b = (b1,01,0), ¢ = (e1,¢1,0).
All equations (2)-(10) are then satisfied, but equation (1) reads 0 = %1,
thus we obtain a contradiction.

(iv.2). 2p # t —p. Using a similar method as in the case (iv.l), we
obtain a contradiction.

From the cases (iv.1) and (iv.2) we conclude that a curve « of the form
(iv) does not exist.



A classification of 3-type curves in Minkowski 3-space E}, I 363

Case (v). After calculation g(c&, &) = +1, we get that arguments of the
functions sinx and cosz are the numbers 2p, 26, 2q, p+ 4, p+q, t+q, g —
p,q—1t, t—p.

If0 < p <t < q, we find that 2¢ = max{2p, 2t,p+t,p+q,t+q,q—p,q—
t,t — p}, so the coefficients of sin2gs and cos 2¢gs are equal to 0. Therefore,
g(f, f) = glh,h) =0, g(f,h) =0, so f = (f1, f1,0), A = (h1,h1,0). Then
g(b, £) = g(b,h) = glc. ) = g(c,h) = gd, ) = gld,h) = gle, f) = glesh) =
0. Somc of the numbers 2p, 2t, p+ ¢, p+q,t+q, q—p, g—t, t —p can be
mutually equal. Let us look at 2¢t. There are 4 possibilities for 2¢:

(v.) 2t=p+gq; (v.2) 2t=q—t;
(v.3) 2t=q-p; (v4) 2t#p+qq—tq—p.
We shall discuss these cases separately.

(v.1). 2t =p+gq, q—t=1t—p. In this case the coefficients of sin(2¢s) =
sin(p + q)s and cos(2ts) = cos(p + ¢q)s must be 0, i.e. g(d,e) = 0, g(e,e) —
g(d,d) = 0. Hence ¢ = (e1,e1,0), d = (dy,dy,0). In order to find vectors b
and ¢, look at number 2p. There are the following possibilities:

(v.1.1) 2p=q—p; (v.1.2) 2p=q—t;

(v.1.3) 2p#q—p,qg—1.
We shalll again distinguish between all these cases.

(v.1.1). 2p = q — p. Since the coefficients of sin(2ps) = sin(q — p)s and
cos(2ps) = cos(q — p)s must be 0, we have

_ng(bu C) +I)Q(g(b7 h) - g(c,f)) = ()a
2 (g(e,¢) — g(b,b)) + (a(b, f) + g, b)) = 0,

whence ¢(c,c) — g(b,b) = 0,9(b,c) = 0, and thus b = (by,0,,0), ¢ =
(c1,¢1,0). Next the equation

p‘Z t2 q2
5 {9(b,0) +g(c,0)) + 5{g(d, d) + g(e,e) + 5 (g(f, f) +9(h, b)) = £1 (+)

becomes 0 = =1, which is a contradiction.
In cases (v.1.2) and (v.1.3) the equation (*) also implies a contradiction.
(v.2). 2t =q—t. Then we get e = (e, e1,0), d = (dy,dy,0), because
the coeffictents of cos 2ts = cos(q — t)s and sin2¢ts = sin(q — ¢)s must be 0.
In order to find vectors b and ¢, we shall look at the number 2p. Then the
following subcases occure:
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(v.21). 2p=t—p; (v.2.2) 2p#t—p;

In both cases (v.2.1) and (v.2.2), the equation (x) also implies a contra-
diction.

(v.3). 2t =g — p. Differing the subcases 2p =t — p and 2p # ¢ — p, the
cquation (%) implies a contradiction.

(v.4). 2t # p+ q,q —p,q — t. Differing the subcases 2p = ¢—p, 2p = ¢—
t,2p =t—p, 2p # q—p,q— 1 —p, the equation (*) implies a contradiction
again.

So we obtain that in the cases (v.1), (v.2), (v.3) and (v.4) a curve « of
the form (v) does not exist.

Cases (vi) and (vii). By using the same methods as in the cases (iv)
and (v) respectively, it is casily seen that the curve e of forms (vi) or (vii)
does not exist. This completes the proof of Theorem 3.1.  »

Theorem 3.2. There are no planar 3—-type curve lying in an spacelike
or in an timelike plane in Ef

Proof. Firstly, suppose that « is a unit—speed curve lying in an spacelike
plane in £}, with the equation x; = 0. As we have scen in the proof of
Theorem 3.1, the curve « can have one of seven possible forms (i)-(vii),
where the vectors b = (0,b2,b3),¢ = (0,¢2,¢3),d = (0,da,d3),e = (0,e9,¢3)
and f = (0, fo, f3) are all spacelike vectors. We may take o = (0,0,0), up to
_a translation and let the metric tensor g be of the form ¢ = —dz?+dz3+da3.
In the sequel, we shall consider cases (i)—(vii) separately.

Case (i). Since g(c, &) = +1 and using the linear independence of the
functions sin x, cos x, sinh z and cosh z we get the equation g(e, ¢} +g(f, f) =
(). Becausc ¢ and f arc spacelike vectors, it follows that e = f = 0. Conse-
quently, we obtain a contradiction.

Cases (ii) and (iii). We differ the subcases t = 2p, £ = 3p, t # 2p,3p
and obtain a contradiction.

Case (iv). We differ the next subcases (iv.1)4 = 3p and (iv.2) ¢ # 3p.
In both of these subcases, we have the equation g(f, f) + g(h, ) = 0, so we
obtain a contradiction.

Case (v). Since g(é&,&) = +1 and using the linear independence of
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functions sinz and cos z, we get the equations:

g(f k) = g(b, f) = g(b,h) = g(c, ) = g(c,h) =0 (2)

It follows that b and ¢ are spacelike vectors which are orthogonal to the
spacelike plane {f, h}. Thus b = ¢ = 0 implies a contradiction.

Case (vi). As in the previous case (v), we obtain the same equations (1)
and (2), so they imply a contradiction.

Case (vii). Since g(&,d) = +1 and since the coefficients of sinh(2gs)
and cosh(2¢gs) must be 0, we have g(f, f) + g(h,h) = 0, which gives a
contradiction. :

Next, suppose that « is a unit-speed 3 type curve lying in an timeclike
plane in E}, with the equation x3 = 0. Again « can have one of seven pos-
sible forms (i)-(vii), as we have seen in the proof of the Theorem 3.1, where
the vectors b, ¢,d, e and f now can be spacelike, timelike or null vectors. We
may take a = (0,0,0), up to a translation and take g = —dz? + dz? + dz?.
We shall consider cases (1)—(vii) separately.

Case (1). We get the same system of the equatious as in the case (i) of
the Theorem 3.1. If the vectors ¢ and d are different from zero and not null
vectors, then there would be two mutually orthogonal spacelike or timelike
“vectors in a timelike plane, which is impossible. It follows that for ¢ and
d holds g(c,¢) = g{(d,d) = 0. Since ¢ and d are orthogonal to the timelike
planc {e¢, f} and they belong to it, it follows that ¢ = d = (. Consequently,
we obtain a contradiction.

Cases (i1} and (iii). We differ subcases t = 2p, t = 3p, t # 2p,3p and
again obtain a contradiction.

Case (iv). We differ subcases (iv.1) t = 3p and (iv.2) ¢ # 3p.

(iv.1). We get the same system of the equations as in the case (iv.1) of
the Theorem 3.1. This system implies that g(e,e) = ¢g(d,d) = 0 and since d

and e are orthogonal to the timelike plane {f,h}, we have d = e = 0. Thus
we obtain a contradiction.

(iv.2). Since g{¢&, @) = +1 and by using the linear independence of the
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functions sinz, cos z, sinh 2 and cosh z, we obtain the equations

g(c,c) —Q(bab) :07 (1)
g(h, k) +g(f, f) =0, (2)
g(b,c) = g(f, h) = g(b, f) = g(b, k) = g(c, f) = g(¢c,h) =0 (3)
Then {f,h} is a timelike plane and the vectors b and ¢ are lying in it and

are orthogonal to it. Thus we have b = ¢ = 0, which means that « is not a
curve of 3—type. This is a contradiction.

Case (v). After calculating g(&, &) = +1 and using the inequality 0 <
p < t < g, we find that there are 4 subcases:

(v.1). 2t=p+yq; (v.2). 2t=q—t;
(v.3). 2t=q—p; (vd). 2t#p+qq—t,q—rp.

In all of these subcases we obtain the equations:

g(h,h) —g(f, f) =0, (1)
g(C,C) “g(da d) =0, (2)
g(fv h) = g(d’e) = g(d’f) - .(](d'ah) = g(e,f) = g(evh') = (3)

= g(b, f) = g(b;h) = g(c, f) = g(c, h) = 0.
It follows that b,c,d, e, f,h are collinear null vectors, which implies a con-
tradiction.
Case (vi). We differ the subcases (vi.l)t = 3p and (vi.2) ¢ # 3p.

(vi.1). Now, we obtain the equations:

‘(](’L, h) - (}(fy f) = 07 (1)

g(e,e) +g(d,d) =0, (2)

g(d,e) = g(d, f) = g(d,h) = g(e, f) = gle,h) = g(f,h) =0. (3)
Then {d,e} is a timelike plane and the vectors f and A are orthogonal to
{d,e}. Thus we have f = h = 0, whicl implies a contradiction.

(vi.2). This subcase is analogous to the subcase (vi.l) and again we
obtain a contradiction.
Case (vii). As in the case (v), there are 4 subcases:

(vii.1) 2t=p+4+gq; (viL2) 2t=q—t;
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(vii.d) 2t=q—p; (viid) 26#p+qq—1,q—p.
In all of these subcases we obtain the equations:

g(f, f) +g(h,h) =0, (1)
g(d,d) + g(e,e) =0, (2)
g(f,h) =g(d,e) = g(d, f) = g(d,h) = g(e, f) = g(e,h) =0, (3)

which means that {f h} is timelike plane and the vectors d and e are or-
thogonal to {f,h}. Thus d = ¢ = 0, which is a contradiction.

This completes the proof of this theorem.
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