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Abstract

In this paper we investigate some reciprocity conditions of the first
type ahnost geodesic mappings of the general affine connection spaces.
Also we counsider the first type (N — 2)-projective spaces and get some
relations characterizing the first type (N — 2)-projective spaces.
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1 Introduction

Let GAy be an N-dimensional space with an affine connection L given with
the aid of components LY, in each local map V' on a differentiable manifold.
Gencrally it is L;k # Lf‘.j.
Geueralizing conception of a geodesic mappings for Riemannian and
afline spaces Sinyukov iutroduced [6] following notations:
The curve 1 : 2" = z"(t) is called the almost geodesic line if its tangential
vector Ni(t) = da™/dt # 0 satisfies the equations
~h I8 T/ \h Stk yo <xh  Jh -
A(Z) = (L(f))\ + b(f))\(l), A(l) = AHCYA s A(Z) — A(J)HQA ,
where @(t) and b(t) arc functions of a parameter ¢, and || denotcs the covari-
ant derivative with respect to the connection in Ap.
A mapping f of the affine space Ax onto a space Ay is called the alinost
geodesic mapping if any geodesic line of the space Ay turns into ahnost
geodesic line of the space Ay .
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Sinjukov [6] singled out the three types of the almost geodesic mappings,

T, Ty, T3 for spaces without torsion. In the present work we investigate the

mappings of the type m; for spaces with torsion. In a differentiable manifold

with nonsymmetric affine connection L’Ik for a vector exist two kinds of
covariant derivative:

P L

L R am

’\av ’\Z m o ’\fm + LZL(!/\Q'

Thus, in the case of the space with nonsynunetric affine conncction we
can define two kinds of almost geodesic lines and two kinds of almost geodesic
mappings.

In an affine space G Ay (with nonsymmetric affine connection coefficients
L’Ik [4]) one can define four kinds of covariant derivative [1,2]. Signify by
L g a covariant derivative of the kind 8 (8 = 1,...,4) in GAy and GAy
respectively.

A curve in an affine space GAy is called almost geodesic line of the first
kind, if its tangential vector \'(#) = da’/dt # 0 satisfies the equations

~h = h AR ~h _ yh [} ~h _ xh o
A = GEAT 000 Ay =212 A = At ()
where q(f) and pH(t) are functions of a paramecter £. A curve is called the
1

second kind almost geodesic line if its tangential vector M (¢) = dz"/dt # 0
satisfies the equations

~h — I T\ ~h h 2 3h ~h fo3
'y = alt f \ = X R A
A2) a(t)A +12)(f){2\(1)1 A ga)\ r A2 T Al (2)

“where g(f) and §(f) are functions of a paramecter ¢.

A mapping f of the space GAn onto a space with nonsynunetric affine
connection GAp is called almost geodesic mapping of the first kind if any
geodesic line of the space GAn turns into the almost geodesic line of the
first kind of the space GAy. A mapping f is called almost geodesic mapping
of the second kind T if any geodesic line of the space GAp turns into almoss

geodesic line of the second kind of the space GAy (For spaces Ay with
symmetric affine connection see [6]).
We can put
= V; A .

Lyj(x) = L (x) + P (=), (3)

_h . . _—
where Lf:"j(:z;), L;;(x) are connection coefficients of the space GAx and GAy
respectively (N > 2), and Pj}(z) is a deformation tensor. Then the next
theorem is valid:
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Theorem 1. The mapping f of the space GAyn onto GAn is almost
geodesic mapping of the first kind of and only if the deformation tensor P"( )
satisfies identically the conditions

(Ph,

of "y “ftpb’"/))‘a WA= bPh ATAP ”)‘h (4)
I

where a and [ are invariants.
1

1
Proof. By almost geodcsic mapping m geodesic line

=¥ = g

of the space GAp turns into the almost geodesic line of the first kind of the
space GAx. In this case from (1), (3) and (5) we have

d/\’L

%):A’l,] A= A

d)\h
==+ (Lhﬁ + P’/,))\“ 2P

dx" h h o h h
==+ Lagh™ W 4 Pagh® X = ALy + Pagh® X,

i.e.

My = Ay + Fapd® X (6)
From (5) and (6) the next relation follows
Moy = pA" + Pgd® A7 (7)
By covariant derivation of the first kind in (6) in the spacc GAn we get
o = 0 TR+ P NN 4 PTE O RAT
wherefronn, with respect to (6), we get
5'("2) = p’ il XCNINT + PlLsy PEANINT + p' N 4 p(pA" + Plgh* M) (9)
Crossing in (9) from the covariant derivative of the first kind in GAy to the
covariant derivative of the first kind in GAx we have
Pl =Fly+ Ty Pl E;’kp,g - T}, Pl
=P" .+ Pi.Py — Py Pl — PPk,
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From here in this case for (9) we have

Ty = (Ph, 4 PRELIX N AT 4 3pPlsxe M + (0" = p)A" . (10)

By substitution (10) and (7) in (1) we get

(P(IV,‘H{"‘; + P()h(} Pg",’))‘n }‘H }"Y - (? - 3[))1)!:[3 }\(t )\ﬁ + (? + §p . ,UI - pz))\/“ )
We can put
(;:?—3;}, (]L:?AF?p_pl_pz‘ (11)

Then we get (4). The theorem is proved.
Aunalogously, for the alinost geodesic mapping of the second kind we have

Theorem 2. The mapping [ of the space GAyn onto GAy is almost
geodesic mapping of the second kind if and only if the deformation tensor
PL»I;(:I:) satisfies identically the conditions

(P/L

h 1 a8\ — h ya h ¢
(“,jlw‘kpmgljﬂ,),)/\ AP A *gPaﬁ/\ A +g/\ , (12)
where LZI and b are invariants.

: 2
According to the dependence of invariants ¢ and p there cxist three

1
types of almost geodesic mappings of the first kind, and according to the

dependence of invariants a and p there exist three types of almost geodesic

mappings of the second kind.

2 Almost geodesic mappings of the first type of
affine spaces

In [6] Sinyukov introduced almost geodesic mapping of the first type m, for
affine spaces without torsion by condition:

b=Db,\".

Analogously, the almost geodesic mappings of the first kind is the first
type T if the function ) in the relation (4) is a linear and homogeneous
1
form with respect to A A% AN e,

b=bA". (13)
1 1
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Signify by Sy a symmetrization with respect to 4,7, k. Then the following
theorem is satisfied

Theorem 3. The almost geodesic mapping of the first kind f : GAny —
GAp is the first type if the deformation tensor of the connection satisfics
the condition

Sy P

|, T Sym P ik = Sym b,;lD_;',‘C + Sym a,;j6,': (14)
ijk Y1 isk ijk | ijk 1

where b; is a covariant vector and tll,;]' a covariant tensor.
i

Proof. From (13) the function G5 in (4) must be homogencous quadratic

form with respect to AL, A2, .., AV | ie.

= (ll,a/j ('I‘)AO Aﬁ .

-8

Substituting (13) and (6) in (4) we have

" h NI
(I)(!)ﬁi P Pﬁ"y’ ll)(!P[)"y—(ll'a[)‘(S,;)AaA A'Y =0

1.e.
ij

The theorem is proved.

Almost geodesic mappings of the second kind is the first type T if for

the function p satisfied the condition:
2

b=bA". (15)
2

I\J“"

Analogously, for the almost geodesic mapping of the second kind the next
theorem is valid

Theorem 4. The almost geodesic mapping of the second kind f : GAy —

GApy is the first type if the deformation tensor of the connection satisfied

Sy_;n. PL_"‘. e T Sym h k= Symb k + S_yl?w %ijéﬁ (16)
gk i

2

where b; is a covariant vector and a;; is a covariant tensor.
2 2

In the case when GAy is a flat space then GAy is called (N — 2)-
projective space of the first type. In affine coordinate system y', y2, ...,y
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when GAy is a flat space we have f?j(y) = (0. Then the next theorem is
satisfied:

Theorem 5. In affine coordinate system the basic equations of (N — 2)-
projective space of the first type with respect to the mapping T are

Sym LY\ (y) = Sym Lo (y) Li(y )+57/mbz(1/) o (y) — Symai;(y)dg (17)
ik 4k ijk ijk ijk 1

where b;(y) is a covariant vector and (llij(?/) a covariant tensor.
1

The proof follows from the Theorem 3.

Theorem 6. In affine coordinate system the basic equations of (N — 2)-
projective space of the first type with respect to the mapping T are

Sym L1 (y) = Sym Leg(y) Lii(y) + Sym bi(y) L (y) — Sym ai;(y)8 (18)
igk M 17k ijk 2 : ijk 2

where b;(y) 4s a covariant vector and czzij(y) a covariant tensor.
g ‘

The proof follows from the Theorem 4.

3 The property of reciprocity of almost geodesic
mappings of the first type

The mapping Ty GAn — GAp has the property of reciprocity if his inverse
mapping, is T type too. Crossing in (14) from the covariant derivative of
the first kind in GAy to the covariant derivative of the first kind in GAy,

we get

S_y_ln, Pi’; Uk + Sym P iy + Sym h ik = Sym b,P’ + Sym (L”(Sk (19)
i ijk

The deformation tensor of the mapping 7lrl—] : GAy — GAp satisfies the
condition of the form (14), i.e

—h =h - ~ =h — <
Sym Py + Sym Po'n-P?k. = Sym b P, + Sym a,;jé;ﬂ. (20)
ijk 1 ijk ijk 1 ijk 1

. B _ h
From P;; = —P;} and (20) we have

—Sl/mP i + Sym P]k = —Sym bz k + SJm a;; 0. (21)
ijk ijk 1
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From (19) and (21) we get

Sym Pr':’,,;P,é‘]'- + Sym P!&PJ‘(;C + Sym P&Pﬁf = Sym dinhk + Sym cij()‘,lg', (22)
tjk tjk ik ijk 1 ijk 1

wherce

On the base of the facts given above, we get

Theorem 7. A necessary and sufficient condition that ¢ mapping T
GAn — G AN has the property of reciprocity, is given by (22).

Theorem 8. If the almost geodesic mapping Ty GAy — GAx has the

property of reciprocity, then a basic equations of this mapping has a form

Sym. P}J’\ = Sym PP, G+ Sym P! oljk + Sym bl k + Sym a”(ik, (23)
gk Ut ijk

where

Hgn
—s
S~
—2l
.

I
»—‘QQ

|
-0
s

The proof follows from (14) and (22).
By the same procedure are proved
Theorem 9. A necessary and sufficient condition that ¢ mapping T

GAy — GAy has the property of reciprocity, is given by

Sy P,;’(f‘yP’ + S't/m 0 i+ Sym Ph = S?/m dL k + Sym c,]dk, (24)
ijk

where

Theorem 10. If the almost geodesic mapping Tyt GAy — GAy has the

property of reciprocity, then a basic equations of this mapping has o form

Sym P’ k= Sy_;n HZP,?]- + Sym P Pl + Sym b7 ]k + Sym auék, (25)
ij ijk
where _
AN GO A LA
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4 Some relations for (N — 2)-projective spaces of
the first type

In the space GAn we have five independent curvature tensors [3]:

7 ) i a 7t a 71

@ jmn L]m n L]n m + LJmLan - L]nLanH
% 7t % o’ i @ 71

]2% jmn Lm] n LTLJ m T LmJLna LnJLma’

7 7Tt o % a 7t o' g 2
jmnmn L]m no LnJ m + LJ"LL L Lam + an(L(U LJ(Y)

1 T 1 « [ a 7t « 1 z
jmn L]m 1) LnJ m + L_}’I!LLIL(Y L L(ym + Lmn(Lw/ LJu)

Am .wbd.

i i i i % « % o
-B jma (L7m nt Lm] n L]n m Ln] m T L]mLan + LmJLna
5

L;'nl/ L?L[]L"am)
Signify by
gjmn (0 =1,. 5)

corresponding curvature tensors of the space GAn.
For the curvature tensors R Gmn and Rimn of the spaces GAn and GAy
is satisfied the relation (see [5,7]
?}m'n:}lzjmn_i_P? | _P? b +Pl Py Pl P, + Ly, }Pju (2())
1

jmln in ant jm am® jn [ren.

By symmetrization in (26) with respect to 7 and m and using (14), we obtain

11? bm)n ngm)i + P P(mn) + Pl \1 + P(in P/(:n
: . « x 7
+P[Tnme + PO{TILP[IL]] + L[ 7n]P](y + L[]n]Pmu

:j?é]-m)n + SyTn’ b] mn SU’” Cll’J’”(S

]mn ]’IILTL

where (jm) denotes a symmetrization and [nj] is an antisymmetrization
(without division). If the space GApn is the first type (N — 2)-projective,
i.e. GApn is a flat, then we have

wherefrom
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1 1 2 1 «a i Jat
Plmy T P ln T Pyt T 1 anP Gm) + PajPnn
+P(lwn [a ] + Lft } ﬁn]Pana (27)

:_R(]m)” +Syme +Sym(111m5n

Jgmn aqmn
On the base of the facts given above, we get

Theorem 11. A space GAy is (N — 2)-projective of the first type with

respect to the tensor R]"m if there exists a tensor Ph satisfying the equations

(27) for any tensor aij and vector bi.

For the curvature tensors R jmn and R]mn of the spaces GAy and GAy
is satisfied the relation (see [5, 7])
E;m" - }jlymn * P’rznjl'n, N P71;.j {m + P:mPT%J P:”(YPT?J + Lﬁ”"]PZ (28)

By symmetrization in (28) with respect to 7 and m and using (14), we obtain

R+t

2(jm) (L)\,+PTLLaP((:nj)+P?, 1 +P7 P

nat jm

Py t5 T Fia Pl + L Pag + L Pam

:?'éjm)n + Syrn b P+ Sym Cll'j'm(s:l-

gmn 1 jmn
Using
?j-m" =0
we get
P("ﬁmj) Lt ij | P[?'m"} S+ P,'m Py + P,‘,aPﬁn
+ Pl P + L Paj + L[ i P (29)

== l.'}(jm)n + Sum b, "+ Sym a]mén

jmn
On the base of the facts given above, we get
Theorem 12. A space GAy 1s (N — 2)-projective of the first type with

respect to the tensor ijn if there exists a tensor Ph satisfying the equations

(29) for any tensor @i and vector ?i.
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. . . . ot ol
For curvature tensors l&%jm" and R]mn

of the spaces GAy and GAy is

satisfied the relation

?;'nm = Ig;mn + P]Lm l) n P:I]{ + PTZLULPJO;H PclszrCL’/ + P7{1}m Lfa/] + PI?HLP[L il
Using ‘
Elymn =0,

analogously to previous cases we obtain

Theorem 13. A space GAy 1s (N — 2)-projective of the first type with
respect to the tensor F;-mn if there exists a tensor PI'; satisfying the equation
3
i i i ) @ ) %
(jm)é +ij I t P[m n] | j ; P"“P(j"”) + PanP]m + P P[

P 4+ Lt P2 +P"

[amn]® nj nm

mn)

Blojy + Frj Pam)

[a]] (30)

R(]m)n + SJ’” bj mn + SJTn a_}"ldn
jmn 1

jmn

for any tensor a;; and vector bz-.
1

For curvature tensors R jmn and R] mn Of the spaces GAy and GAy is
satisfied the relation (sec [0,7])
Eijmn - ?;mn + P;m In - P,,ZLJ-{M PrlzaP]am PclmLPn + Pr?mLf(w] + I)r(r:7z [Lry]]

Using ‘
}fﬂrm = (]
analogously to previous cases we have
Theorem 14. A space GAy is (N — 2)-projective of the first type with

respect to the tensor E}mn if there exists a tensor PL}J’ satisfying the equation
4

P 4+ P |+ PraPGmy + PanEs: + PP

P(ij)‘2 t Jjmin [mn] | an= jm [rnm]
+L[a7] mn T Lfam]PﬁL + PrLerP[' 7] + PJC:L [Z m] (31)
=— R(jm)n + Sym b, n T+ Sym ajm5

4 jmn 1 jmn

for any tensor a;; and vector b;.
1 1

In the same manner, using a covariant derivative of the third and the

fourth kind, we can find an analog relation for the tensor R R
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In the casc of the space Ay with symmetric affine connection, the rela-

tions (27, 29, 30, 31) reduce to (see [6])

3P+ PPY) = — Riyjw + S_?,{Zn ?lhpjhk + S_y:n (%ijég (32)
ijk ijk

where R’/k is curvature tensor of the space Ay.
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