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Abstract

In this paper we study the sets of good, very good, Hoare good and
Smyth good relations on an algebra. In particular, we give a necessary
and sufficient condition for the C-ordered set of good relations on an
algebra to be a lattice. Also, we investigate the sets of very good,
Hoare good and Smyth good relations in respect to various ways of
powering.
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1. Introduction

The notion of a generalized quotient algebra and the corresponding notion of
a good (quotient) relation has been introduced in [4] and [5] as an attempt to
generalize the notion of a quotient algebra to relations on an algebra which
are not necessarily congruences. It follows from the definition of a good
quotient relation (Definition 2) that, for example, any partial order on 4 is
a good relation on any algebra A with the universe A. Hence, every non-
trivial algebra has good relations which are not congruences. Some other
examples of good relations are: compatible quasi-orders, structure preserv-
ing relations (Definition 3(b)) and quasi-congruences (Definition 3(d)). On
the other hand, there are good relations on A which are neither reflexive,
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nor symmetric, nor transitive, which are not compatible and which are not
argument preserving (see [5]).

As a justification for the name ”generalized quotient algebra” we can
quote the following ”extended” homomorphism theorem (which can be pro-
ved easily by the definition of a good quotient relation):

Theorem. Let A and B be algebras of the same type. Then B is a homo-
morphic image of A if and only if there is a good relation R on A such that
B2 A/R. O '

Although the well-known isomorphism theorems cannot be proved for
the whole class of good relations, there are some special classes of good
relations for which they hold.

The most of the results on good relations has been obtained in the con-
text of power algebras (Definition 4). The concept of a power algebra P(A)
originates with Frobenius in group theory. Since any subset of a group was
referred to as a complez, power algebras are also sometimes known as com-
plez algebras. We refer to the paper [2] for an overview on power structures.

Since for any algebra A and any relation R C A?, the generalized quo-
tient set A/R (see Definition 1a) is a subset of the power set P(A), one of
the most natural questions is whether the generalized quotient algebra A/R
is a subalgebra of the power algebra P(A).

Theorem. ([3]) Let R be a good quotient relation on an algebra A. Then
A/R is a subalgebra of the power algebra P(A) if and only if R preserves
the structure of A. O

The concept of a power relation has been introduced for some special
relations (such as < or C), independently, in one form or another, by various
authors. The general definition of n-ary power relation R* (see Definition
5) was introduced in [7]. The motivation for the definition of relations R™
and R (Definition 5) comes from theoretical computer science. These two
power relations, in general form, were introduced in [2]. In that paper the
following "power” version of the homomorphism theorem was proved.

Theorem. If § is a congruence on A, then 8% is a congruence on P(A)
and

P(A/6) = P(A)/6T. O
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It is natural to ask whether this theorem can be extended to the general-
ized quotient algebras and/or for "weak” power relations R~ and R*. The
answer is not simple, because the ”lifted” power relations Rt, R~ and R*
are not necessarily good on the power algebra. This fact was the motivation
for introducing the corresponding notions of a very good relation ([4], [5])
and Hoare good and Smyth good relations ([3]). In [3], the following versions
of the "power” homomorphism theorems were proved.

Theorem. Let A be an algebra and R C A?.

(a) If R is Hoare good on A, then P(A)/R™ is a homomorphic image of

P(A/R).

(b) If R is Smyth good on A, then P(A)/R*" is a homomorphic image of
P(A/R).

(¢) If R is very good on A, then P(A)/R*t is a homomorphic image of
P(A/R). O

In [1], the relationships between Hoare good, Smyth good and very good
relations were described.

In the present paper wé study the sets of good, very good, Hoare good
and Smyth good relations it respect to the set-theoretical operations and
various ways of powering. Alsd, we give a necessary and sufficient condition
for C-ordered set of good relatidns to be a lattice.

2. Basic notions

It is well known that the notion of a quotient algebra A/R is defined for
any universal algebra A = (A4, F) and any congruence R C A? on A in the
following way:

A/R=(A/R{If1: fe F}),
where A/R is the corresponding guotient set (i.e. the set of all equivalence
classes a/R = {b€ A :bRa},a € A), and for any f € F of arity n, operation
[f1:(A/R)" — A/R is defined by

(1) [f1(a1/R,... ,an/R) = f(a1,...,a,)/R.

Definition 1. Let R be an arbitrary binary relation on A.
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(a) For any a € A we define a/R = {b: bRa}. The corresponding gener-
alized quotient setis A/R = {a/R :a € A}.
(b) Relation e(R) C A? is defined by:

(a,b) € e(R) < a/R=10/R.

Of course, if R C A? is not a congruence on A = (A, F), then the
operations [ fl (f € F) are not necessarily well defined by (1). It is easy to
see that Definition 1 is "good” (for every f € F) if and only if ¢(R) is a
congruence on A.

Definition 2. Let A = (4, F) be an algebra and R C A”.

(a) We call R a good (quotient) relation on A if ¢(R) is a congruence on
A. Tha set of all good relations on A we denote by G(.A).

(b) f R is a good quotient relation on A, the corresponding generalized
quotient algebra A/ R is

A/R=(A/RATS : e FY,

where the operations [ f1 (f € F) are defined by (1).

Definition 3. ([3], [3]) Let A = (A, F) be an algebra and R C A%

(a) R is argument preserving on A if for any n-ary operation f € F', and
any zi,...,Zn,2 € A we have

ZRf(ﬁEl,...,zn) =

= (3z1,...,2, € A)(z1Rz1 & ... & z, Rz, & 2= f(z1,...,2,)).

(b) R is structure preserving on A if R is compatible and argument pre-
serving on A.

(¢) R is a quasi-equivalence on A if for all 2,y € A z/R = y/R <+~
(zRy & yRz).

(d) A compatible quasi-equivalence on A is called a quasi-congruence (on

A).

It is not hard to verify ([5], [3]) that any structure preserving relation
and any quasi-congruence on an algebra are good quotient relations.



Good quotient relations and power algebras 75

Definition 4.

(a) Let f: A™ —» A. We define the power operation f+ : P(A)" — P(A)

in the following way:

f+(X1,...,Xn):{f(zl,...,a:n):zl € X1,..-,Zn € Xp}.

(b)) f A = (A, {f : f € F}) is an algebra, the power algebra P(A) is
defined to be |
P(A) = (P(A),{f*: fe F}).

Definition 5. For any set A and any binary relation R on A the power
relations R~, R~ and R* on P(A) are defined in the following way: for

any X,Y € P(A)

XR™Y < (Vze X)3yeY)zRy

XR™Y < (VyeY)(dz € X)zRy

Rt =R NR".

Note that there are examples of good relations over an algebra A, such
that the ”lifted” power relations R~, R~ and R* are not good over the

power algebra P(A).

Definition 6. Let A be an algebra and R C A%

(a) We call R a very good relation on A if Rt is good on P(A).

(b) We say that R is Hoare good on A if R~ is a good relation on P(.A);
R is Smyth good on A if R~ is a good relation on P(A).

It is not hard to see that every very good (or Hoare good, or Smyth good)
relation is good on A. But the converse is not true. Note that the names
"Hoare” and ”Smyth” point at the origins of these relations in theoretical

computer science.
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3. The set of good relations

In this section we study the set of all good relations on an algebra. In

particular, we give a necessary and sufficient condition for the partially
ordered set G(A) = (G(A),C) to be a lattice.

Definition 7. Let R C A? and ¢ : A/R — P(A). The relation R, C A?
we define as
aR,b <= a€ ¢(b/R).

Theorem 1. Let A be an algebra and R C A%. Then R is a good quotient
relation if and only if there is a congruence 8 on A and an injection ¢ :
A/8 — P(A) such that R =19,,.

Proof. (<) Let 8 € ConA and ¢ : A/§ — P(A) be an injection. Then it
can be proved that ¢(6,) = 6. Hence £(8,,) is a congruence on A and 6, is
a good relation on A.

(=) Let R be a good relation on A. If we put § = ¢(R) then 6 is a
congruence on A. Define ¢ : A/8: P(A) by ¢(a/0) = a/R,a € A. Then it
is easy to prove that ¢ is an injection and R =6,. O

Theorem 2. Let A be an algebra. The following conditions are equivalent:

(1) Any R C A? is good on A.
(2) EquA = ConA.

Proof. (<) Let R C A? and 6 = ¢(R). Define ¢ : A/6 — P(A) as ¢(a/8) =
a/R, a € A. By the assumption, 8 is a congruence. It is easy to prove that
@ is an injection. Hence, according to Theorem 1, 6, is a good relation on
A. On the other hand, 8, = R. Consequently, R is a good relation on A.

(=) Let 8 € EquA. Then 8 = ¢(6) and since 6 is good, we conclude that
() is a congruence. So, 8 € ConA. O

Corollary 1. Let A = (A, F) be an algebra. The following conditions are
equivalent:

(1) G(A) = P(4?),
(2) All fundamental operations of A are projections or essentially nullary,
or |A| £ 2.



Good quotient relations and power algebras 77

Proof. It follows from Theorem 2 and from the well-known characterization
of algebras which satisfy condition (2) of Theorem 2. O

Now we are able to find a necessary and sufficient condition for G(A) to
be a lattice.

Lemma 1. Let A be an algebra such that E = EquA\ ConA # 0. Then

(F,C) has a minimal element.

Proof. Let A = (A, F) and 8§ € E. Then for some f € F of arity n >
1 and some ay,...,8n,b1,...,b, € A we have (Vi < n) a;6b;, but not
flay,...,a,)0f(b1,...,b,). Let us define p C A? as the smallest equiva-
lence relation on A which contains {(a;,b;) | ¢ < n}. Of course, p C 6,
p € F and there are only finitely many relations o € FqvA such that o C p.
Hence, the set {o € E | ¢ C p} has a minimal element. O

Theorem 3. Let A be an algebra. The following conditions are equivalent:

(1) G(A) is a lattice,
(2) EquA = ConA.

Proof. (=) Suppose that EquvA # ConA and let £ = FquA\ ConA. Since
E # 0, according to Lemma 1, (£, C) has a minimal element 6. As 6 # Ay,
there exist distinct elements z,,2, € A such that z,;6z,. Since § # A2,
there exists an element ¢ € A such that —z,8c. Let us define an equivalence
relation p C 6 in the following way:

zpy = (w0y&c#r, &y#z) or z=y=u1.

Since € is minimal in £ and p C 0, we have p € ConA. According to
Theorem 1, for any injection ¢ : A/p — P(A) relation p, is a good relation
on A. Let us define injections o1, : A/p — P(A) such that p, Np,, = 6:

23/0 if ﬁ:z:0:1:2
o1(z/p) =< z2/0U{c} if z =12,

z2/6 if z6zy & z #

.’l)/0 if —|CI:01L‘2
wo(z/p) = z2/0 if 2=,

22/0U{c} if zfzy &z # 24
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It is easy to see that ¢, and ¢, are injections, so p,, and p,, are good
relations such that p,, N p,, = #. Similarly, we define injections 3,4 :
A/p — P(A) such that for good relations p,, and p,, it holds p,,, Up,, = 8:

z/0 if —zfz,
ps(z/p) = { ©2/0\{z2} i z=1,

IL‘2/9 if .’1591'2&1'741'1

z/0 if —z0z,
wa(z/p) = z2/0 if 2 =14

To/0\ {z2} if z02;& z # 24

Then good relations p,, and p,, do not have an infimum in G(.A) because

inf(pwuptpz) C poy Npy, =8,

Py U Py = 0 Cinf(py,,py, )
Thus, we would have 8 = inf(py,, p,,), which is a contradiction with 6 ¢
G(A).
(<) According to Theorem 2, if EquA = ConA, then G(A) = P(A?),
so G(A) is a lattice. O

4. Very good, Hoare good and Smyth good rela-
tions

It is clear from the proof of Theorem 3 that the set of good relations of an
algebra is not necessarily closed under union and intersection. The same is
true for the sets of all very good, Hoare good and Smyth good relations.

Notation. In the sequel, we will use the notation G*(A), G7(A) and
G (A) for the sets of all very good, Hoare good and Smyth good relations
on an algebra A, respectively.

Example 1. The sets GT(A), G~ (A) and G (A) are not necessarily closed
under N and U. Namely, let A = (A, F') be a simple algebra on A = {a,b, c},
R = {(a,b),(b,¢),(c,a)}, S = {(a,b),(b,a),(c,c)}. Then R and S are very
good, Hoare good and Smyth good relations, but RN.S and RU .S are neither
very good nor Hoare good nor Smyth good.
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On the other hand, using only the definition of a good relation, we can
prove that G(A) is closed under complementation (in respect to A?). It
is not a surprising fact that both G*(A) and G~ (A) are not closed under
complementation.

Example 2. Let A = ({a,b,c}, f), where ar(f) = 1 such that f(a) = a,
f(b) = b, f(c) = a. If we define R = {(c,a),(b,0),(a,c)}, then R is Hoare
good on A, but R is not Hoare good on A.

Example 3. Let A = ({a,b}, f), ar(f) =1, f(a) = b, f(b) = a and R =
{(a,a),(b,a),(a,b)}. Then R is very good on A, but R is not very good on
A.

However, despite these facts, we can prove that G (A) is closed under
complementation.. To prove this, we need the following lemmas.

Lemma 2. ([1]) Let R be a binary relation on A. Then for any X,Y C A
we have

(a) X/|R-={ZCA:(Vz€ X)ZNz/R +0},

(b) XCY =Y/R-CX/R-,

(¢) (XUY)/R— = X/R—NY/R-,

(d) (Vz,y € A) (z/RCy/R < {z}/R™ C {y}/R"). O

Lemma 3. Let R C A? be a Smyth good relation on an algebra A = (A, F).
Then for any f € F, ar(f)=n>1and X1,..., Xn,Y1,...,Yn C A we have

(Vi <n) X;/R™ CY;/R™ = fH(X1,...,X)/R™ C ft(¥q,...,Yn)/R".

Proof. Let X;/R— C Y;/R" for all ¢« € {1,...,n}. According to Lemma
2(c) we have

(X;UY;)/R™ = X;/R™NnY;/R™ =X;/R™, ie{l,...,n}.
Since R is Smyth good, using Lemma 2(b) we conclude
(X1, X2)/R™ =

= fH(X,UYy,..., X, UY,)/R™C ft(¥4,...,Y,)/R™. O
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Lemma 4. Let A be an algebra and R C A%, If X,Y € P(A) and X/R— C
Y/R" then
(VyeY)3z € X)z/RC y/R.

Proof. Suppose that for every z € X, z/R € y/R. Then we would have
(U{z/R|z e X})\y/Re€ X/R™,

(U{z/R |z e X})\y/RgY/R,

which is a contradiction. O

Theorem 4.

(a) For any algebra A, the set G(A) is closed under complementation.

(b) The sets Gt(A) and G~ (A) are not necessarily closed under comple-
mentation.

(c) For any algebra A, the set G (A) is closed under complementation.

Proof. (a) It follows from the definition of a good relation because e(R) =
e(R).

(b) See examples 2 and 3.

(c)Let A= (A, F),Re G—(A)and f € F, ar(f) = n > 1. We have
to prove that for any Xi,..., X, Y1,...,Y, C A, if X;/R™ =Y;/R", i€
{1,...,n} then '

—

A Xy, L X)/RT = fr(n,... . Y)/R

Let Z ¢ f*(X1,...,Xn)/R™. Using Lemma 2(a), we conclude that there
arezy € X1,...,%, € X, such that ZNf(zq,...,2,)/R = 0,0r, equivalently,

(2) Z C f(z1,...,z,)/R.

On the other hand, because of Lemma 4, there are y1 € Y1,...,9y, € ¥,
such that y;/R C z;/R, i € {1,...,n}, or, equivalently, z;/R C /R,
i€ {l,...,n}. According to Lemma 2(d) this implies {z;}/ R~ C {w}/R",
i€{l,...,n}. Using Lemma 3 we get

A Az )/ RT C P {ds - {wn})/ R,
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and again, because of Lemma 2(d) this implies

fz1,.-,zn)/RC f(y1,.--,4n)/R.

According to (2), we now conclude that Z C f(yi,.. .Yn)/ R or, equivalently,
Z0 f(y1,.-,yn)/ R = 0. According to Lemma 2(a) this means that Z ¢
ffn,... . Y)/R™. O

As we have already mentioned, if R is a good relation on A, then R¥,
R™ and R~ are not necessarily good on the corresponding power algebra.
A similar statement can be proved for very good relations. To verify this,
we need the following results from [1].

Theorem 5. ([1]) Let A be an algebra. If R C A% is a Hoare good relation
on A, then R s a Smyth good relation on A. O

Theorem 6. ([1]) For any non-trivial type F of algebras and any cardinal
X\ > 2, there is an algebra A of type F with X elements and a relation R C A*
such that R is very good on A, but R is not Smyth good on A. 0O

Corollary 2. Let R be a very good relation on A. Then

(a) R~ does not have to be very good on P(A);
(b) R~ does not have to be very good on P(A).

Proof. (a) Suppose that for any algebra A and any very good relation R on
A, R™ is again very good. Then R~ must be good on P(A). But this is a
contradiction with Theorem 5 and Theorem 6.

(b) Suppose that for any algebra 4 and any very good relation R on A,

R is again very good. Then R must be good on P(A). But this is a
contradiction with Theorem 6. O

Example 4. Let A = {a,b,c}, R = {(a,a),(a,b),(b,b),(a,c),(c,c)} and
fla) = ¢, f(b) =a, f(¢) =b. Then R is very good on A = (A, f) (because
all R*-classes are different), but R* is not very good on P(A).

Corollary 3. Let R be a very good relation on A. Then R* is not neces-
sarily very good on P(A).
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Proof. See Example 4. O

In the sequel, we try to answer the same question for the sets of Smyth
good and Hoare good relations.

Theorem 7. ([1]) Let R C A? be a Hoare good relation on algebra A. Then
R is very good on A. O

Theorem 8. ([1]) For any non-trivial type F of algebras and any cardinal
A > 3, there is an algebra A of type F with X elements and a relation R C A?
such that R is Smyth good on A, but R is not very good on A. O

Corollary 4. Let R be a Smyth good relation on A. Then

(a) R* is not necessarily Smyth good on P(A);
(b) R~ is not necessarily Smyth good on P(A).

Proof. (a) Suppose that for any algebra A and any Smyth good relation R
on A, R* is again Smyth good. Then R* must be good on P(A). But this
is a contradiction with Theorem 8.

(b) Suppose that for any algebra .4 and any Smyth good relation R on
A, R~ is again Smyth good. Then R~ must be good on P(.A). But this is
a contradiction with Theorem 8 and Theorem 7. O

Not all the answers are negative for Smyth good and Hoare good rela-
tions.

Theorem 9. Let R be a Smyth good relation on A. Then R~ is a Smyth
good relation on P(A).

Proof. Let A = (A, F) be an algebra, f € F,ar(f)=n>1and aq,..., 0,
B1,--.,0Bn be subsets of P(A), such that o;/(R™)" = B;/(R™)", i €
{1,...,n}. We have to prove that

(FH) o,y an)/(RT)T = (f5)F(Bry s Bu) [ (RT)

Let vy € (fH)*(a1,-..,ax)/(R7)" and Y € (f*)*(61,...,0n). Then Y =
ff(Y1,...,Y,) for some Y; € By,...,Y, € B,. According to Lemma 4, there
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exists X1 € aig,...,X, € a, such that (Vi < n) X;/R— C Y;/R~. Using
lLemma 3 we conclude

3) SR X/ R € JH (¥, V)[R

As vy € (fH)Y(a1,...,0,)/(R™)7, then (3X € v) X R~ fH(Xy,...,X,)
According to (3), this implies (3X € 7v) X R~ f*(¥1,...,Y,) =Y, and
therefore

v € (Y By, Ba)/(RT)™. D

Lemma 5. ([1]) Let R C A? be a Hoare good relation on an algebra A =
(A, F) and f € F, ar(f) =n > 1. Then for any Xy,..., X, ¥1,..., Y, C A
we have

(Vi<n)X;/R™ CY;/R” =
= fH(Xy,...,Xn)/R™” C ft(1h,...,Y,)/R™. O

Theorem 10. Let R be a Hoare good relation on A. Then R~ is a Hoare
good relation on P(A).

Proof. Let A = (A, F) be an algebra, f € F, ar(f) =n > 1,and ay,...,an,,
B1,-..,0n be subsets of P(A), such that o;/(R™)” =
{1,...,n}. We have to prove that

(F) e, an) [((BT)T = (F5)" (Br, -, Ba) [(RT)

Let v € (fH)*(a1,...,a,)/(R™)™ and X € 7. Then there exists X; €
ap,..., X, € a, such that X R~ f*(Xy,...,X,). For X; € o; we define
X/ as

X/={yeA|(FzeX;|yRz}

Now we have

X: R X; > {X{} € ai/(R_')_' =
> {X}eB/(R")" = (ieB) X; R Y: >
=> @AY, €8)X;CY/=> (i€ p)X;/R™ CY;/R.

Since this holds for an arbitrary 7 € {1,...,n}, using Lemma 5 we get the
following

X;/R™ CY;/R™ = fH(Xy,...,Xn)/R™ C f*(1,...,Y,)/R™ =

= XR™ ff(Yh,....Y) =y (SN By,...,0)/(RT)”. O
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