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1. Introduction and Preliminaries

Since the formulation of Banach’s contraction principle, a number of fixed
point theorems for single-valued and multi-valued mappings in metric spaces
and probabilistic metric spaces have been proved by many authors ([2], [3],
(5], [7]-[10], [16], [22]-[24], [30], [34]-[37]). Every metric space is a probabilis-
tic metric space and so we can use many results in probailistic metric spaces
to prove some fixed point theorems metric spaces.

The purpose of this paper is, firstly, to prove some common fixed point
theorems in metric spaces and probabilistic metric spaces and, secondly, to
extend Caristi’s fixed point theorem and Ekeland’s variational principle in
metric spaces to probabilistic metric spaces. From our main results, we
can obtain many fixed point theorems for commuting, weakly commuting,
compatible and compatible mappings of type (A) in metric spaces and prob-
abilistic metric spaces ([2], [10], [14], [15], [19], [26], [27], [31], [33], [35]).

Let R denote the set of real numbers and R* the set of non-negative real
numbers. The mapping F : R — R* is called a distribution function if it is
a nondecreasing and left continuous function with inf 7 = 0 and sup F = 1.
We will denote by L a set of all distribution functions.

Definition 1.1. A probabilistic metric spaces (briefly, a PM-space) is
a pair (X, F) where X is a nonempty set and F is a mapping from X x X
to L. For (u,v) € X x X, the distribution function F(u,v) is denoted by
Fyy. The function F,, is assumed to satisfy the following conditions:

(PM-1) F,,(z)=1 for every z > 0 if and only if u = v,

(PM-2) F,,(0)=0 for every u,v € X, :

(PM-3) Fy.(z)= F,.(z) for every u,v € X,

(PM-4) If Fy.(z)=1 and F,,(y) =1,

then Fy, w(z +y) =1 for every u,v,w € X.

Definition 1.2. A mapping A : [0,1] — [0,1] is called the t-norm if it
satisfies the following conditions: For all a,b,c,d € [0,1]
(T-1) A(a,1)=a,
(T-2) A(a,b) = A(b,a),
(T-3) A(c,d) > A(a,b) forc > a and d > b,
(T"U A(A(a7b)7c) = A(a7A(b7 C))

every a € [0,1].

Definition 1.3. A Menger space is a triple (X, F,), where (X, F) is a
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PM-space, and A\ is a t-norm with the following condition:
(PM-5) Fyu(z+y) 2 A(Fuu(2), Fou(y))
for every u,v,w € X and z,y € R*.

Definition 1.4. A non-Archimedean Menger PM-space (N.A. Men-
ger PM-space) is a triple (X,F,), where A is a t-norm and the space
(X, F) satisfies the conditions (PM-1)~(PM-3) and (PM-6):
(PM-6) F,,(max{t;,t2}) > A(Fu(t1), Fouw(t2))
for all u,v,w € X and 1,13 > 0.

The concept of neighbourhoods in PM-spaces was introduced by B. Sch-
weizer and K. Sklar [28], [29]. If v € X, € > 0 and A € (0,1), then the
(e, A)-neighbourhood of u is denoted by Uy,(e,A) = {v € z: F,,(€) > 1-A}.
If (X,F,A) is a Menger space with the continuous f-norm A, then the
family {U.(e,A) : v € X,e > 0,A € (0,1)} of neighbourhoods induces a
Hausdorff topology on X, which is denoted by (¢, A)-topology.

Definition 1.5. A PM-space (X,F) is said to be of type (C),r if there
ezist elements g, h € Q such that h(t) < g(¢) for all t € [0,1] and

9(Fzy(1)) < h(Fz,2(1)) + h(F4(1))

forallz,y,2 € X andt > 0, where @ = {g: [0,1] — [0,00]} is continuous,
strictly decreasing, g(1) = 0 and g(0) < oo}.

Definition 1.6. An N.A. Menger PM-space (X, F, /) is said to be of type
(D)g,n if there exist elements g,h € Q such that h(t) < g(t) for all t € [0,1]
and

9(A(s,1)) < h(s) + h(?)
for all s,t € [0,1].

Remark 1.1. ([11]) (1) If an N.A. PM-space (X, F,A) is of type (D)4,
then (X, F,A) is of type (C)g .

(2) If (X,F,A) is an N.A..PM-space and A > A,,, where A, (s,t) =
max{s + ¢t — 1,0}, then (X, F,A) is of type (D), for g,h € Q defined by
g(t) =1—1t and h(t) = (1 — t)?, respectively.
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(3) If a PM-space (X, F) is of type (C)g h, then it is metrizable, where
the metric d on X is defined by

() d(z,y) = /O " h(E, (1))t

forall z,y € X.

(4) If an N.A. Menger PM-space (X,F,A) is of type (D),,5, then it is
metrizable, where the metric d on X is given by (). On the other hand, the
(e, A)-topology coincides with the topology induced by the metric d defined
by (#).

(5) If (X,F,A) is an N.A. Menger PM-space with the t-norm A such
that A(s,t) > An(s,t) = max{s+t—1,0} for s, € [0, 1], then the assertion
(4) is also true. .

2. Compatible Mappings of Type (P)

In this section we introduce the concept of compatible mappings of type (P)
in metric space (X, d) and compare it with the compatible and compatible
mappings of type (A). We also recall the following definitions and properties
of compatible mappings and compatible mappings of type (A) ([26], [27]).

Definition 2.1. Let S,T : (X,d) — (X,d) be mappings. S and T are said
to be compatible if
lim d(ST:cn,TS:vn) =0

whenever {z,} is a sequence in X such that lim,,_,oc STp = lim, oo Tz, =1t
for somet in X.

Definition 2.2. Let S,T : (X,d) — (X,d) be mappings. S and T are said
to be compatible of type (A) if

lim d(TSzn,SSz,)=0 and lirgo d(STz,,TTz,) =0

whenever {x,} is a sequence in X such that lim, o Sz, =limy0o Tz, = 2
for some z in X.
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Definition 2.3. Let S,T : (X,d) — (X,d) be mappings. S and T are said
to be compatible of type (P) if

lim d(SSz,,TTz,) =0

whenever {z,} is a sequence in z such that lim,,_, o, Sz, = lim,,_,o, Tz, = 2
for some z in X.

The following propositions show that Definitions 2.1 and 2.2 are equivalent
under some conditions:

Proposition 2.1. Let S,T: (X,d) — (X,d) be continuous mappings. If S
and T are compatible, then they are compatible of type (A).

Proposition 2.2. Let 5,7 : (X,d) — (X,d) be compatible mappings of
type (A). If one of S and T is continuous, then S and T' are compatible.

The following is a direct consequence of Propositions 2.1 and 2.2:

Proposition 2.3. Let 5, T : (X,d) — (X, d) be continuous mappings. Then
S and T are compatible if and only if they are compatible of type (A).

Remark 2.1. In [27], we can find two examples that Proposition 2.3 is not
true if § and T are not continuous on X.

We can also show that S and T are continuous, then S and T are com-
patible if and only if they are compatible of type (P) as follows:

Proposition 2.4. Let S,T : (X,d) — (X, d) be continuous mappings. Then,
S and T are compatible if and only if they are compatible of type (P).

Proof Let {z,} be a sequence in X such that lim, o, Sz, = Tz, = z for
some 2 € X. Since S and T are continuous,

lim $Sz, = lim STz, = Sz,

n—00 n—00

and
lim TSz, = lim TTz, = T=.

n—0o0 n—00
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Suppose that S and T are compatible. Then we have
lim d(STz,,TSz,) = 0.
n—oo
Now, since we have

d(SSzn, TTz,) < d(SSz,,S5Tz,)+ d(STz,,TTz,)
< d(§Szn,STz,)+ d(STzy, TSzyn) + d(TSt0, TTx,),

it follows that lim, e, d(SSzy, TTz,) = 0. Thus, S and T are compatible
of type (P).

Conversely, suppose that § and T are compatible mappings of type (P),
that is,
lim d(SSz,,TTz,) = 0.
n—oo

We then have

d(STzn, TSz) d(STzn,SS,) + d(SSzp, TSzs)

d(ST2n,552,) + d(SSzp, TTx,) + d(TTzs, T Szy).

Therefore, it follows that lim,—,c d(STzs,TSz,) = 0. This completes the
proof.0

<
<

Proposition 2.5. Let 5,T : (X,d) — (X,d) be compatible mappings of
type (A). If one of S and T is continuous, then S and T are compatible of
type (P).

Proof. Let {z,} be a sequence in X such that

lim,_ o0 ST, = lim, o, Tz, = 2z for some z € X. Suppose that S and T are
compatible mappings of type (A). Assume, without loss of generality, that
S is continuous. We then have

d(S5z,,TTz,) < d(SSzy,STz,) + d(STz,, TTx,),
and so, since S and T are compatible of type (A), we have

lim d(SSz,,TSz,)=0 and ]Ln;od(STzn,TTzn) = 0.

n—oo

Therefore, it follows that
lim d(SSz,,TTz,) = 0.

n—oo

This completes the proof.0

As a direct consequence of Propositions 2.3~2.5, we have the following:
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Proposition 2.6. Let 5, T : (X,d) — (X,.d) be continuous mappings. Then

(1) S and T are compatible if and only if they are compatible of type (P).

(2) S and T are compatible of type (A) if and only if they are compatible
of type (P).

Next, we give several properties of compatible mappings of type (P) for
one main theorems.

Proposition 2.7. Let §,T : (X,d) — (X,d) be mappings. If S and T are
compatible of type (P) and Sz = Tz for some z € X, then S§z = STz =
TSz =TT-=.

Proof. Suppose that {z,} is a sequence in X defined by z,, = 2,n = 1,2,- -,
and Sz = T2 for some z € X. Then we have Sz,,Tz, — Sz as n — ooc.
Since S and T are compatible of type (P), we have

d(5Sz,TTz) = lim d(SSz,, TTx,) = 0.

Therefore, S§z = TT2. But Sz = Tz implies SSz = STz =TS8z =TT=z.
This completes the proof.0

Proposition 2.8. Let S,T : (X,d) — (X, d) be mappings. Let S and T are
compatible mappings of type (P) and let Sz, Tz, — 2 as n — oo for some
z € X. Then we have the following:

(1) impoo TTx, = Sz if S is continuous at z,

(2) limp 0o SSz, = Tz if T is continuous at z,

(3) STz=TSz and Sz=Tz if S and T are continuous at z.
Proof. (1) Suppose that S is continuous at z. Since we have lim, o, Sz, =
lim, . Tz, = z for some 2z € X, §5z, —» Sz as n — oo. Again, since S

and T compatible of type (P), we have lim, ., d(TTz,,SSz,) = 0 and so
we have

d(TTzn,Sz) L d(TTzn,SSzn) + d(SS2n, S2),
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it follows that TTz, — Sz as n — .

(2) The proof of limy,_.o SSz, = Tz follows on the similar lines as
argued in (1).

(3) Suppose that S and T are continuous at z. Since Tz, — z as n — 00
and S is continuous at z, by (1), Tz, — Sz asn — oo. On the other hand,
Since Tz, — 2 as n — oo and T is also continuous at z, TTz, — Tz. Thus,
we have Sz = T2z by the uniqueness of the limit and by Proposition 2.7,
TSz = ST=z. This completes the proof.0

3. Fixed Point Theorems in Metric Spaces

In this section, we give several fixed point theorems for compatible mappings
of type (P) in metric spaces (X, d).

Let G be the family of all mappings ¢ : (RT)5 — R* such that ¢ is
upper semicontinuous, non-decreasing in each coordinate variable, and for
any t > 0,

#(t,t,0,at,0) < Bt and ¢(t,t,0,0,at) < B,
where f=1fora=2and f < 1 fora <2,
v(t) = #(t,t, a1, ast,ast) < t
where v : Rt — Rt is a mapping and a; + a3 + a3 = 4.

First we have some lemmas for our main theorems:

Lemma 3.1. (/33]) For anyt > 0, v(t) < t, if and only iflim,_,, 7"(¢t) = 0
where ¥ denotes the n-times composition of ~.

Let A, B, S and T be mappings from a metric space (X, d) into itself such
that

(3.1) A(X) C T(X) and B(X) C §(X),
(3.2) there exists ¢ € G such that

d(Az, By) < ¢(d(Az, Sz),d(By,Ty),d(Az,Ty),d(By, Sz),d(5z,Ty))
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for all z,y € X.

Then, by (3.1), since A(X) C T(X), for any point zo € X, there exists a
point 1 € X such that Azg = T'z;. Since B(X) C §(X), for this point z;,
we can choose a point z; € X such that Bz; = Sz, and so on. Inductively,
we can define a sequence {y,} in X such that

(33) Yon = T12n+1 = AzZn and Yonty1 = Sz2n+2 = B12n+1

forn=0,1,2,---.

Lemma 3.2. lim,_, o d(Yn, Ynt1) = 0, where {yn} is the sequence in X
defined by (3.3).

Proof. Let dp, = d(Yn, Ynt1) = 0,7 =0,1,2,---. Now, we shall prove that the
sequence {d,} is non-increasing in R*, that is, d,,41 < d, forn =0,1,2,---.
By (3.2), we have

(3.4) dany1 = d(Yan+1, Y2n+t2)

= d(AZan+2, BTant1)

< ¢(d(Az2n+2, STan+42), (BZony1, TTon41),
d(Azany2, TTont1), d(Br2ont1, STong2),
d(Stons2, TZont1))

= ¢(d((Y2n+2: Yon+1), A(Y2n+1, Y2n)s
d(Yan+2, Y2n)> A(Y2n+1, Y2nt1) A Y2nt1, Y2n))

< ¢(dant1, don, dang1 + dan, 0,d2n).

Suppose that d,, < d,,+1 for some n. Then, for some a < 2, d, + dypy1 =
ady4+1. Since ¢ is non-decreasing in each coordinate variable and g < 1 for
some a < 2, by (3.4), we have

dont1 < H(d2nt1, don, @dony1,0,dony1) < Bdang1 < danyi-
Similary, we have
dant2 < ¢(d2n42,d2n42, 0d2n42,0,d2n42) < Bdanya < donya.

Hence, for every n = 0,1,2,--+, d,, < f8d, < d,, which is a contradiction.
Therefore, {d2.} is a non-increasing sequence in R*. Now, again, by (3.2),
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we have

B
[

d(y1,92)

d(Azy, Bz,)

d(d(Azo, Sz3),d(Bzy,Tzy),d(Aze, Txy),
d(Bzq,5232),d(Sz2,Txy))

(d((y2, 1), d(y1, %0), d(y2, ¥0), d(y1, ¥1), d(¥1, Y0))

#(dy,do, do + d1,0,do)

@(do, do, 2dy, do, do)

7¥(do)-

fl IA I

IA A

In general, we have d, < 9™(do) for n = 0,1,2,---, which implies that, if
do > 0, then, by Lemma 3.1, we have

lim d, < lim ¥™(dy) = 0.

n—oo

Therefore, it follows that

lim d, = lim d(yn,¥n+1) = 0.

n—oo

For dg = 0, since {d,} is non-increasing, we have clearly lim, . d, = 0.
This completes the proof.O

Lemma 3.3. The sequence {y.} defined by (3.3) is a Cauchy sequence in
X.

Proof. By Lemma 3.2, it is sufficient to prove that {y2,} is a Cauchy se-
quence in X. Suppose that {y2,} is not a Cauchy sequence in X. Then,
there is an € > 0 such that for each even integer 2k, there exist even integers
2m(k) and 2n(k) with 2m(k) > 2n(k) > 2k such that

(3.5) d(Yam(k)> Yan(k)) > €

For each even integer 2k, let 2m(k) be the least even integer exceeding 2n(k)
satisfying (3.5), that is,

(3.6) d(Yan(k)> Yam(k)-2) < € and  d(Yan(k), Yam(k)) > €-
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Then for each even integer 2k, we have

€ < d(Yan(k)> Yam(k))
< d(Y2n(k)s Yam(k)—2) + A(Yam(k)=2 Yam(k)-1) T €(Y2m(k)=1> Y2m(k))-

It follows from Lemma 3.2 and (3.6) that
(3.7) JIm d(Yzn(k), Yam (k) = €
By the triangle inequality,
|d(Y2n(k) Yomk)-1) — @(Y2n(k) Y2m@)] < d(Y2mk)-15 Y2m (k)
and
1d(Y2n(k)+15 Yom)-1) —  A(Y2n(k) Y2m(k))l
< d(Yom(k)-15Y2m (k) T U Yzn(k)» Yan(k)+1)-

From Lemma 3.2 and (3.7), as k — oo, it follows that

(3.8) d(yZn(k)-f-la yZm(k)—l) — ¢ and d(?hn(k), yzm(k)—l) — €
Therefore, by (3.2) and (3.3), we have

(3.9) d(Y2n(k)s Yam(k)) < d(Y2n(k)> Yon(k)+1) + A Y2n(k)+1> Y2m(k))

= d(Y2n(k)> Y2n(k)+1) + A(AZ2mk)s BTon(k)+1)

< d(Yan(k)> Yan(k)+1) + (A(AZom(k)> STam(k))s
d(Bzan(ky+1, TT2n(k)+1)» A(AT2m(k), T T2 (k)+1),
d(Bz2m(k)—l’ SIZm(k))’ d(SzZm(k), T-TZn(k)+l))

= d(Yan(k)> Yan(k)+1) + B(A(Y2m(k)s Y2m(k)—1)s
d(yzn(k)+1 ) yzn(k))a d(?lzm(k), yZn(k)),
d(y2n(k)+lv yZm(k)—l)'A d(yZm(k)—la yzn(k)))-

Since ¢ is upper semicontinuous, as k — oo in (3.9), by Lemma 3.2, (3.7)
and (3.8), we have ) -

which is a contradiction. Therefore, the sequence {y2,} is a Cauchy sequence
in X and so is {y»}. This completes the proof.O

Now, we are ready to prove the main theorem:
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Theorem 3.1. Let A, B,S andT be mappings from a complete metric space
(X, d) into itself satisfying the conditions (3.1), (3.2), and

(3.10) one of A, B, S, and T is continuous,
(3.11) the pairs A, S and B,T are compatible of type (P).

Then A, B, S, and T have a unique common fized point z in X.

Proof. By Lemma 3.3, the sequence {y,} defined by (3.3) is a Cauchy
sequence in X and so, since (X,d) is complete, it converges to a point z
in X. On the other hand, subsequences {Az2n}, {BZ2nt1}, {ST2n} and
{Tz3n41} of {yn} also converge to the point z.

Now, suppose that T is continuous. Since B and T are compatible of
type (P), by Proposition 2.8, BBza,41, T Btany1 — Tz as n — oco. Putting
T = 29, and ¥y = T'zyy4 in (3.2), we have

(312) d(AIgn,BBI2n+1) S¢(d(AI2n,Sil:zn),d(BBIg.,H_l,TBIQ.,H_l),

d(AIg.n, TBIgn.H ), d(BTIg.,H.l , SI2n),
d(SIQn, TBI2n+1)).

Taking n — oo in (3.12), since ¢ € G, we have

d(z,Tz) < ¢(0,0,d(2,Tz),d(z,Tz),d(2,Tz))

< 7(d(z,T2))

< d(z,Tz),
which is a contradiction. Thus, we have Tz = 2. Similarly, if we replace
z by z3, and y by z in (3.2), respectively, and taking n — oo, then we

have Bz = z. Since B(X) C §(X), there exists a point u in X such that
Bz = Su = z. By using (3.2) again, we have

d(Au,z) = d(Au,Bz)

< ¢(d(Au, Su),d(Bz,Tz),d(Au,Tz),d(Bz, Su),d(Su,Tz))
= ¢(d(Au, Su),0,d(Au, 2),0,0)

< 7v(d(Au,z))

< d(Au,z),

which is a contradiction and, so Au = 2. Since A and § are compatible
mappings of type (P) and Au = Su = z, by Proposition 2.7, d(ASu,SSu) =
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0 and hence Az = ASu = §S5u = Sz. Finally, by (3.2), we have again

d(Az,z) = d(Az, Bz)
< ¢(d(Az,S2),d(Bz,Tz),d(Az,Tz),d(Bz,5z),d(SzTz))
= ¢(d(Azz),0,d(Az,z),0,0)
< (d(Az,2)
< d(Az,z),

which implies that Az = z. Therefore, we have Az = Bz = Tz = z, that
is, z is a common fixed point of the given mappings A, B, S, and T'. The
uniqueness of the common fixed point z follows easily from (3.2).

Similarly, we can also complete the proof when A or B or T is continuous.
This completes the proof.0

By Theorem 3.1, we have the following:

Theorem 3.2. Let {A,}, {Br}, {Sn} and {Tn} be sequences of mappings
from a complete metric space (X, d) into itself such that {A,}, {Bn}, {Sn}
and {T,} converge uniformly to the self-mappings A,B,S and T on X,
respectively.

Suppose that forn =1,2,---, z, is a common fized point of An, Bpn, Sn
and T,,. Further, let self-mappings A, B, S andT on X satisfy the conditions
(3.1), (3.2), (3.10) and (3.11). If z is a common fized point of A, B,S,T
and sup{d(z,, )} < 0o, then z, — & as n — 0.

Theorem 3.3. Let {A,}, {Br}, {Sn} and {T,.} be sequences of mappings
from a complete metric space (X,d) into itself such that, forn =1,2,3,---,

(3.13) An(X) C To(X) and B,(X) C Sn(X),

(3.14) one of An, By, S, and T,, is continuous,

(3.15') the pairs Ap, Sn and By, T, are compatible of type (P),
(3.16) there ezists ¢ € G such that

d(AniE’ Bny) < ¢(d(Anz1 Snz)vd(BnyaTny)’d(Anz’T“y)’
d(Bny, Sny)d(Sny, Sny))

foral z,ye X.
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If {An}, {Bn}, {Sn} and {T.} converges uniformly to self-mappings A,
B, §, and T on X, respectively, then A, B,S and T satisfy the conditions
(3.1), (3.2), (3.10) and (3.11).

Further, the sequence {z,} of unique common fized points z,, of A, By,
Sy and T,, converges to a unique common fixred point  of A,B,S and T, if
sup{d(zn,2z)} < 0o.

Remark 3.1. Our main theorems extend and improve a number of fixed
point theorems for commuting, weakly commuting, and compatible map-
pings, in metric spaces ([15], [26], [27], [31], [33]).

4. Fixed Point Theorems in PM-spaces

In [6] and [21], K. Caristi and 1. Ekeland proved the following theorems,
respectively:

Theorem 4.1. Let (X,d) be a complete metric space and T be a mapping
from X into itself. If there exists a lower semicontinuous function @ : X —
R* such that

d(z,Tz) < ¥(z) — ®(Tz)

forallz € X, then T has a fized point.

" Theorem 4.2. Let (X,d) be a complete metric space and f be a proper,
bounded below and lower semicontinuous function from X into R. Then, for
each € > 0 and u € X such that f(u) < inf{f(z):z € X} + ¢, there exists
a point v € X such that

(4.1) f(v) < f(u),

(4.2) d(u,v) <1,

(4.3) f(w) > f(v) — ed(v,w) for allw € X, w # v.

Remark 4.1. (1) If &(z) = Ld(z,Tz) for 0 < k < 1, then from Theorem
4.1, we have Banach’s contraction principle.

(2) In fact, in [21}], I. Ekeland proved that Theorems 4.1 and 4.2 are
equivalent. Also, he gave some applications of Theorem 4.2.
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(3) In [12] and [14], S. S. Chang et al. proved that Theorems 4.1 and 4.2
are also equivalent in the setting of probabilistic metric spaces.

(4) The generalizations of Theorems 4.1 and 4.2 in different ways are
given in [1}, [4], {12}, [13], {17], {18}, [20], [25], [32].

In this section, we extend Caristi’s fixed point theorem and Ekeland’s
variational principle in PM-spaces. Also, we prove some common fixed point
theorems in PM-spaces by using the results from Section 2.

First, by using Theorem 4.1, we prove the following;:

Theorem 4.3. Let (X,F) be a PM-space of type (C), 1 and (X,d) be a
complete metric space, where the metric d on X is defined by (x). If ® :
X — R is a lower semicontinuous and bounded below function and the
mapping T : X — X satisfies the following condition: for all z € X and
t>0,

(4'4) g(F:c,T:c(t)) < ¢(:17) - Q(Tz%
then T has a fized point in X.

Proof. From (4.4), we have

d(z,Tz)

/01 h(Fz,1s(t))dt < /lg(F:c,T:c(t))dt

< /0 (8(z) — ®(T))dt = B(z) — &(Tx)

and thus, by Theorem 4.1, T' has a fixed point in X.O

Corollary 4.1. Let (X,F) be a PM-space of type (C)yn and (X,d) be a
complete metric space, where the metric d on X is defined by (*), and the
function ®(z,t) : X x Rt — R* be integrable in t. If the function i¢(z) =
fol d(z,t)dt is lower semicontinuous and bounded below and the mapping
T : X — X satisfies the following condition:

forallz € X andt > 0,
(45) g(Fr,Tz(t)) < ¢(1‘,t) - ¢(T1‘,t),
then T has a fized point in X .
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Proof. From (4.5), we have

d(z,Tz)

/01 h(Fr1:(t))dt < /()1 9(Fy1(t))dt

IA

| (6(z, 1) - 6(Tz, D)t

1 1
= / o(z,t)dt — / &(Tz,t)dt
0 0

= P(z) - ¥(Tx)
Therefore, by Theorem 4.3, T has a fixed point in X.O
Theorem 4.4. Let (X,F) be a PM-space of type (C)yn and (X,d) be a
complete metric space, where the metric d on X is defined by (x). If the
function ® : X — R is a proper, lower semicontinuous and bounded below,
and T is a multi-valued mapping from X into 2% such that for each z € X,

there exists a point fxr € Tz such that f : X — X is a function satisfying
the following condition: for allz € X andt > 0,

(4.6) 9(Fz,52(1)) < () — 2(f2),
then f and T have a common fized point in X .

Proof. Since ® is proper, there exists a point « € X such that ®(z) < +oo
and so let

A= {reX:g(Fru(t)) < ®(u)— ®(z) for every t > 0}.

Then A is a nonempty closed set in X. Since g(Fy 54(t)) < ®(z) — ®(fx),
for each z € X, fz € A and so we have

O(fz) + 9(Fz 52(1)) < ®(z) < B(u) — g(Fru(t)).

Thus we have

9(Fu,52(1)) h(Fuz(t)) + h(Fz,f(1))
g(Fu,x(t)) + g(Fz.fx(t))
o(u) - &(z) + 0(z) - (fz)

®(u) - @(f2).

IAN IA A
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Therefore, by Theorem 4.3, the function f: A — A has a fixed point in A,
say zg, and so zg = fzg € Tzg, that is, the point z¢ is a common fixed point
of f and T. This completes the proof.00

By Theorem 4.4, we have Ekeland’s variational principle in PM-spaces.

Theorem 4.5. Let (X,F) be a PM-space of type (C)gn and (X,d) be a
complete metric space, where the metric d on X is defined by (). If the
function ® : X — R is proper, lower semicontinuous and bounded below
and, for each € > 0, there ezists a point u € X such that ®(u) < inf{®(z):
z € X} + ¢, then there exists a point v € X such that

(4.7) ®(v) < ®(u),

(4.8) g(Fun(?)) < 1, |

(4.9) For all z € X, there ezists t > 0 such that ®(v) — ®(u) < eg(F, 2(1)).

Proof. Let € > 0 and let a point v € X such that ®(u) < inf{®(u) : z €
X} + e Letting A = {z € X : ®(z) < ®(u) — eg(Fy (1)}, then A is a
nonempty closed set in X and so, since (X,d) is complete, A is complete.
Foreach z € A,let Sz ={ye X : ®(y) < ¥(z) — eg(F4(t)),z #y, t > 0}
and define

Te=d 2 if Sz is empty
“ 1 Sz if Sz is nonempty.

Then T is a multi-valued mapping from A into 24. Since Tz = z € A if
Sz =0 and Tz = Sz if Sz # 0, we have, for each y € Tz = Sz,

®(y) < () — €g(Fry(?))

and

€g(Fuy(t)) €h(Fug(t)) + h(Fz4())

€g(Fuz(t)) + eg(Fry(t))

o(u) — &(z) + @(z) - &(y)

o(u) - (),

which implies y € A, and so we have Tz = Sz in A. Assume that T has no
fixed point in A. Then for each z € A and y € Tz = Sz, we have

€g(Fzy(1)) < ®(z) — 2(y)

IA N IA
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and
o(Fr,y(1) < 18() - 18()

Thus, by Theorem 4.4, T has a fixed point v in A, which is a contradiction.
Therefore, Sv = @, that is, for each z € X, z # v, ®(z) > ®(v) — eg(F, (2))-
Since v € A, ®(v) < ®(u) — eg(F, (t)) and so &(v) < P(u).

On the other hand, we have

eg(Fun(?)) ®(u) — @(v)
®(u) —inf{®(z):z € X}

€

IN A IA

and so g(Fy(t)) > 1. This completes the proof.O

" Next, by using Theorem ??, we prove common fixed point theorems in
PM-spaces. We introduce some definitions and properties of compatible
mappings of type (P) in PM-spaces.

Definition 4.1. Let (X,F,A) be an N.A. Menger PM-space of type (D)g 1
and A, S be mappings from X into itself. A and S are said to be g-compatible

if

Jim g(Fasz,,s5524(8)) =0
for all t > 0, whenever {z,} is a sequence in X such that lim,_, Az, =
lim, oo STy = 2 for some z € X.

Definition 4.2. Let (X, F,A) be an N. A. Menger PM-space of type (D)gy,x
and A, S be mappings from X into itself. A and S are said to be g-compatible

of type (A) if
Jim g(Faaz,ssen(t)) =0, lim g(Fsac,,a4z,(t)) =0

for allt > 0, whenever {z,} is a sequen.ce i X such that im,_.o Az, =
lim,_,o Sz, = 2z for some z € X.

Definition 4.3. Let (X,F,A) be an N.A. Menger PM-space of type (D)4 n
and A, S be mappings from X into itself. A and S are said to be g-compatible
of type (P) if

lim g(Fpaq,,552.(t)) =0
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for all t > 0, whenever {z,} is a sequence in X such that lim,_ ., Az, =
limp—soo Sz, = 2z for some 2z € X.

Remark 4.2. (1) The mappings A and S are h-compatible, h-compatible
of type (A) and h-compatible of type (P), whenever they are g-compatible,
g-compatible of type (A) and g-compatible of type ( P), respectively.

(2) In fact, since (X, F,A) is a N.A. Menger PM-space of type (D), x
and it is metrizable by the metric d defined by (), Definitions 2.1 and 4.1,
2.2 and 4.2, 2.3 and 4.3 are equivalent each other, respectively.

(3) By using Definitions 4.1~4.3, we can obtain the same properties, that
is, Propositions 2.1~2.8 between compatible mappings, compatible map-
pings of type (A) and compatible mappings of type (P) in PM-spaces.

Theorem 4.6. Let (X,F,A) be a T-complete N.A. Menger PM-space with
the t-norm A such that A(s,t) > Ay (s,t) = max{s +t— 1,0}, s,t € [0, 1].
Let A, B,S and T be mappings from X into itself such that

(4.10) A(X) C T(X) and B(X) C S(X),

(4.11) one of A, B, S and T is T-continuous,

(4.12) the pairs A, S and B,T are g-compatible mappings of type (P),
(4.13) there exists a ¢ € G such that

/01 Fappy(t)dt > 1-— ¢{/01(1 — Fazs2(1))%dt,
/01(1 - FBy,Ty(t))zdt,/(;l(l - FAz,Ty(t))zdt
/01(1 = Fazso(1))dt, /0 a- Faz,ss())dt}

forallz,y € X andt > 0.
Then A, B,S and T have a unigue common fized point in X .

Proof. Since (X,F,A) is an N.A. Menger PM-space with the t-norm such
that A(s,t) > Ap(s,t) = max{s+t - 1,0}, s,t € [0, 1], by Remark 1.1 (5),
it is metrizable by the metric d defined by (x). Thus, if we define g(t) = 1—1¢
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and h(t) = (1 —¢)?, from (4.13), we have
1 1
d(Az, By) = / R(Faes2(t))dt = / (L= Fao5,(1))%dt
0 0

1 1
- / (1= Fagpy(t))dt < 1— / Fag,s0()dt
0 0

IA

o{ /0 (1= Fagsa(0)dr, /0 (1= Fayzy(0)dt,
/01(1 — Faz1y(t))dt, /01(1 — Fag s:(t))%dt,
/0 (1 — FAI’SI(t))2dt},

ie.,
d(Az, By) < ¢(d(Az, Sz),d(By, Ty),d(Az,Ty),d(By, Sz),d(Sz,Ty))

for all z,y € X. Therefore, by Theorem 3.1, A, B, S and T have a unique
common fixed point in X. This completes the proof.O

As an immediate consequence of Theorem 4.6, we have the following:

Corollary 4.2. Let (X,F,A) be as in Theorem 4.6 Let A,B,S and T be
mappings from X into itself satisfying the conditions (4.10), (4.11), (4.12)
and

(4.14) there ezists a number ¢ € (0,1) such that
1 1
/ FAI'By(t)dt > 1—c- max{/ (1 - FAx,sz(t))2dt,
0 0 -
1 1
| @ = Faun, 0, [ (0= Faa o)
0 0
1 1
/ (1 - Fpys5a(t))%dt, / (1= Fsuy(0))dt)
0 0

forallz,ye X andt> 0.

Then A,B,S and T have a unique common fized point in X .
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