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Abstract
Let f and g be distributions in D’ and let

fa(z) = f(@)mm(2),  9n(2) = 9n(2)7n(2)

where 7.(z) is a certain function which converges to the identity func
as n tends to infinity. Then the neutrix convolution product f & g is
defined as the neutrix limit of the sequence {f, * gn}, provided the
limit A exists in the sense that

N - "lifg(fn *gn;¢) = (h!¢)

for all ¢ in D. The neutrix convolution products z2 z for A, p, A+
p#£0, 1,42, ...and 22 Bz for A £ 0, £1,42,...and s=10,1,2,...
are evaluated, from which other neutrix convolution products are de-
duced. ’

. AMS Mathematics Subject Classifications (1991): 46F10
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" The classical definition for the convolutien prasluct of two functions f
and g is as follows: :
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Definition 1. Let f and g be functions. Then the convolution product f * g
15 defined by

Fra)e)= [ f(D)a(e - t)dt

-0

for all points x for which the integral exists.

It follows easily from the definition that if f * g exists then g * f exists
and

(1) frg=gxf
and if (f * g)’ and f * ¢’ (or f' * g) exist, then
(2) (f+g) =f+g" (or f'+g)

The following theorem also holds and it is an immediate consequence of
Holder’s inequality for integrals.

Theorem 1. Let f and g be functions in LP(—o00,00) end LI(—oc0,00) re-
spectively, where 1/p + 1/q = 1. Then the convolution product (f * g)(zx)
ezists for all x.

Now, suppose that the convolution product (f *g)(z) exists for all z and
let ¢ be an arbitrary test function in the space D of infinitely differentiable
functions with compact support. Then '

(fx9)=),0(2)) = [, (=) [, f(t)g(z —t)dtdz
= = f(y) [Z, 9(z)¢(z + y)dzdy

and for convenience we will write this as

((f *9)(2), d(2)) = (f(): (9(2), b(= + 9)))

even though the infinitely differentiable function (g(z), #(z + y)} does not
necessarily have compact support. This equation does however suggest the
following definition for the convolution product of certain distributions f
and g in D', see for example Gel’fand and Shilov [4]. '

Definition 2. Let f and g be distributions in D' satisfying either of the
following conditions:
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(a) either f or g has bounded support,
(b) the supports of f and-g are bounded on the same side.
Then the convolution product f * g is defined by

((f *g)(2),9) = (f(y), (9(2), (= + y)})
for arbitrary ¢ in D.

Note that with this definition, if g has bounded support, then {g(z), ¢(z+
¥)) is in D and so {f(y), (9(z), ¢(z +y))) is meaningful. If on the other hand
either f has bounded support or the supports of f and g are bounded on
the same side, then the intersection of the supports of f and (g(z), #(z+y))
is bounded and so {f(y),{g(z),d(z + y))) is again meaningful.

It follows that if the convolution product f * g exists by Definition 2,
then equations (1) and (2) always hold.

Definition 1 and 2 are very restrictive and can only be used for a small
class of distributions. In order to extend the convolution product to a larger
class of distributions, Jones [5] gave the following definition.

Definition 3. Let f and g be distributions and let T be an infinitely differ-
entiable function satisfying the following conditions:

() 7(2) = r(-2),

() 0<r(z)<1,

(i) t(z) =1 for |z| < 1/2,

(iv) 7(z)=0 for |z| > 1.
Let

fa(z) = f(z)r(z/n), gn(z) = g(z)7(z/n)

for n = 1,2,... Then the convolution product f x g is defined as the limit of
the sequence {fn * gn}, provided the limit h exists in the sense that

Tim (£ * gn, 9) = (k. 6)

for all test functions ¢ in D.

In this definition the convolution product f, * g, exists by Definition 2
since f, and ¢, have bounded supports. It follows that if the limit of the
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sequence {f, * g, } exists, so that the convolution product f * g exists, then
g * [ also exists and equation (1) holds. However equation (2) need not
necessarily hold since Jones proved that

1*sgnz = sgnz *1 = z,
(1*sgnz) =1, 1"*xsgnz =0, 1x*(sgnz) =2.

It can be proved that if a convolution product exists by Definitions 1
and 2 then it exists by Definition 3 and defines the same distribution.

However, there were still many convolution products which did not exist
by Definition 3 and in order to try and remedy this the next definition was
introduced in [2].

Definition 4. Let f and g be distributions and let

1, |z| < n,
(z) = { r(n"*z —n"t1), z>n,
r(ntz + n"*1), 2z < —n,

forn =1,2,..., where T is defined as in Definition 3. Let fp(z) = f(x)ma(z)
for n = 1,2, .... Then the neutriz convolution product f B g is defined as the
neutriz limit of the sequence { f, * g}, provided the limit h ezists in the sense
that

N - lim (faxg,4) = (h¢)

for all ¢ in D, where N is the neutriz, see van der Corput [1], having domain
N' = {1,2,...,n,...} and range the real numbers with negligible functions
finite linear sums of the functions

a*ln™n, In"n, (A)0; r=1,2,..))

and all functions e(n) for which lim,—o €(n) = 0.

The convolution product f, # g in this definition is again in the sense of
Definition 2, the support of f,, being contained in the interval [—n — n"™,n+
n~"]. It can be proved that if a convolution product exists by Definitions
1 or 2 then the neutrix convolution product exists and defines the same
distribution.
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However, the neutrix convolution product.as defined in Definition 4 is in
general non-commutative. For example, it was proved in [2] that
1 3

1
r_Bry = gl‘i, T fHr_ = El‘_*_

so that
(L‘_gil?+ ?é 1L'+_.

In the following, we now consider a commutative neutrix convolution
product. We will denote the commutative neutrix convolution product of
the distributions f and g by f g to distinguish it from the non-commutative
neutrix convolution product.

Definition 5. Let f and g be distributions and let ,, be defined as in Def-
inition 4. Let f,(z) = f(z)m(z) and gn(z)mn(z) for n = 1,2,.... Then the
commutative neutriz convolution product f B g is defined as the neutriz limit
of the sequence { f, * gn}, provided the limit h ezists in the sense that

N - hmn——-»oo(fn * gn, (]5) = (h, ¢))
for all ¢ in D, where N is the neutriz defined above.

The convolution product f, * g, in this definition is again in the sense
of Definition 2 and since f, x g, = gn * f., the neutrix convolution product
f @ g is clearly commutative.

The next theorem shows that this definition generalizes Definition 1.

Theorem 2. Let f and g be functions in LP(—00,00) and LI(—o00,00) re-
spectively, where 1/p+ 1/q = 1, so that the convolution product f * g exists
by Definition 1. Then the neutriz convolution product f B g exists and

fEIg = fHg.
Proof. For arbitrary € > 0 we have
| [oo f()g(z — D)1 — Ta(t)ma(z — t)]dt]
[Zoa 1f(B)g(z = D)1 — T ()] (2 — t)|dt
[Zo 1f®)g(z = )[1 — To(z — 1)]|dt

S V@ g(z = B)ldt + f,_yps [F(Dg(z — t)]dt
Jion 1 f@g( = t)ldt + fis, |1 f(z — )g(2)ldi(e

|f*g_fn*gn|

VAN o VAN
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for all n greater than some ng. Thus if ¢ is an arbitrary function in D then

|(f *9,¢) - (fn * Gn ¢)| < Sup{lfb(z)l}€

for n > ng a.n‘d it follows that
nll.l{.lo<f" * On, ¢) = (f *g,¢) = N. - nll.ngo<fn * Gn, ¢) .

The result of the theorem follows.
The next theorem shows that Definition 5 also generalizes Definition 2.

Theorem 3. Let f and g be distributions satisfying either condition (a) or
condition (b) of Definition 2 so that the convolution product f * g exists by
Definition 2. Then the neutriz convolution product f # g ezists and

fEg = f*g.

Proof. Suppose first of all that the support of g is bounded so that g = g,
for some n greater than some ng. Then with n > ng and arbitrary ¢ in D

(fn* gn, ) (fa*g,0)
(fa(y), (9(z), (= + 9)))
(f(9),(9(2), (= + ¥)))

for large enough =, since the support of (g(z),4(z + y)) is bounded. It
follows that

(f(9),(g(z), p(= + ¥)))
= N - limn_,oo(fn * On, ¢)

and the result of the theorem follows when the support of g is bounded.

lim oo (fa * gn, @)

Now suppose that the support of f is bounded. Then the result of the
theorem follows as above on noting that f, * g, = gn * fa.

Finally, suppose that the supports of f and g are bounded on the same
side, say on the left, so that the supports of f and g are contained in some
half - bounded intervals [a,00) and [b,00) respectively. Now let ¢ be an
arbitrary function in D with its support contained in the bounded interval
[e,d]. Then since g(z) = 0if z < b,

B(¥) = (gal2), (= +9)) = (9(x),B(z + 3)) = 0
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if y > d — b. Further, since f(y) = 0if y < a, it follows that the intersection
of the supports of 4 and f are contained in the interval [a,d —b]if d—b > a
and is the empty set otherwise. Thus

(f'n *gn,¢) = (f*ga¢)

for n > max{|a|,|d — b|} and the result of the theorem follows as above for
this third case.

Theorem 4. The neutriz convolution product 2 ® T exists and

B(=A—p—1,p+ 1)zgrtst?

a3 0
B(=XA — p—1,A+ 1)z +#+1

3)

for A, u, A+ #0, £1, £2, ..., where B denotes the Beta function.

Proof. We will first of all suppose that A,u) — 1, so that z* and z7} are
locally summable functions. Put

(z:\-)n = -T:\.Tn(x)v (zi)n = xiTn(Z).
Then the convolution product (z ), * (24 ) exists by Definition 2 and
(4)
{((z2)n * (24 )n = ((glﬁ)m (Z)n, b(z +£/)))
= f_bn_n-n(—y)*fn(y) Ji(@ = v)ima(z — y)dyda+
I; #() L=z - y)ima(z - y)dedy+
+ fp ¢(2) [ n (9 T (y)(z — )i (2 — y)dydz
for n > —a and arbitrary ¢ in D with support of ¢ contained in the interval
[a, B].
When z < 0 and —n < y <0, 7,(z — y) = 1 on the support of ¢. Thus

with z < 0 and —n < y < 0, we have on making the substitution y = zu™!,

It

0 - ' T
[ 09 - vt - iy = [ (9= v

. 1
. 7 _ (_x)A+#+l/ u—A—#—2(1 _ u)“du

= (_m);?rm /_1/ TR — )t = Y Lll%j@imdw '_

=0
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+(= w)**"“zu(z( . (”)’ [1 = (=z/n)= ),

-1

for some integer r > A+ u + 1, where

1, =0
(A)s = { TO-1), s>1.

1=0

It follows that

0
N - ]imn—roo (_y)/\(z - y)i"'n(“’ - y)dy =
—n

(5) = B(-A—p—1, p+1)(—z)VtrH,
see [3] or Gel’fand and Shilov [4].
When z > 0 and —n < y < 0, we have

3 (—)Mz =y ml(z — y)dy = /_ (—v)(z — y)*dy+

(6) 4 / R VO ey P

—n—n—"

On making the substitution y = z(1 — ¢« 1), we have

0 1
/ (_y)’\(z _ y)l-‘-dy — z/\+#+1 / u—/\—u.-2(1 _ u)/\du
r—n zfn
and it follows as above that
)
(1) N- ﬁmnaoo/ ()& - y)dy = B(=X ~ p— 1, A+ Dt

Further, with n > 2z
z—n nn~"

| (—) (@ — 1)ralz — 9)dy |< / (v — 2y dy

r—n—n"" n

n+n~"
=[P e e
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<f(nt nn )\ reg-n, A>0,
S\ 273 (n 4 nomPMHEnn, —1(A <0,
and so
r—n /\
(8) lim (=9)(z — y)'7u(z — y)dy = 0.

—
n—oo Jo_ o n-n

It now follows from equations (6), (7) and (8) that
(9) .
N —limnoo | (=9)*(z = 9)ima(z —y)dy = B(=X = p = 1, A+ 1)z 441,

Next, with 37 < a < z < b < in, we have

-n

D@ -me-irls [ (o -a/mray

—p—n—n

-n
—n—n—n

<] 2(n+t nm)Menn 4> 0,
=l 27%(n+ n'")""'“n‘", ~l<u<0
and so

(10) " lim n(—y)*rn(y)(z - y)tdy = 0.

—_
n—oo f_ .

It now follows from equations (4), (5), (9) and (10) that
N —limg oo {(z2 )n * (2% )n, #) = (B(=X — p = 1, p 4 1)z2T4+!

+B(=X — p - 1,5+ D)z} g(2))
and equation (3) follows for A, u) — 1 and A, u, A+ +1#0,1,2,....

Now assume that equation (3) holds for u > —-1, -k < A < -k +1
and gy, A+ p+ k # 0,1,2,..., where &k is some positive integer. This is
certainly true when k = 1. The convolution product (z ), * (z/ ). exists by
Definition 2 and so equations (2) hold. Thus if ¢ is an arbitrary function in
D with support contained in the interval {a,b], where we may suppose that
a<0<b,

({22 Y+ (24), B(2)) = (22 ) 4124, #'(2))
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= =M(22 ) # (25 ), $(2)) + ([22 = 7o (2)] # (2 ), 6(2))

and so

M@ )k (f)n, (2)) = (@2)n# (25, '(2)) + (2 70 (2)]# (25 ), (2)).

The support of 22 7!(x) is contained in the interval [-n — »~™,n] and so
with n > —a > n™", it follows as above that

b —n
(et (@)le (s ) = [ 61a) (—9)7(u)(z 1) ra(z—y)dyde

—n—n—"

n

B /_n_ ¢(z) K (=) i (v)(z — y)*dyda+

—n—n—"

-n

)+ [ e [T (e - v - vy,

—n—n _n_n—-n
where on the domain of integration (~y)* and (z —y)* are locally summable
functions.

Putting M = sup{|r'(z)¢(z)|}, we have

[ s [T e - v - vdvds

—_n—n—"

<o [ [ M- ofypduds

A 2EM(n 4 )M, >0,
= A M((n+ n‘")’\‘“‘n*", —-1<u<0
and it follows that \

n~" , -n

(12) lim /7(1:) (=) (2 — y)Pra(z — y)dydz = 0.

= _
oo —n—n""/ —n—n=—"n

Integrating by parts, we have
Ve

/_-" () i (¥)(z — 9)*dy = n’(z + n)*

n—n—"
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13)  + [ DM -9+ a9z - y) T () dy.
Choosing a positive integer r greater than A + pu, we see that

n(z + n)# = n e Z Q:T)ni + o(1/n)

=0

and so

(14) -}—o(l/n)/ ¢(z)dzx

where
(15) lim o(l/n)/ o(z)dz = 0.
Putting

/zié(z)dz = xi(z),
fori=10,1,2,...,7, we have
xi(z) = xi(0) + zxi(&),

where 0 < £ < 1 and so

—_n

/—n zi(b(x)dz =xi(0) = n7"xi(&n™") — xi(a)

for:=0,1,2,...,7
Thus

—1

N — limp_oon?t* XT: ﬂ /—n o' d(z)dz

int
=0

it

LN - limpe Z Wiry (0) = xi(a)]

23



24 B.Fisher, L.C. Kuan

+ lim ni¥e-m Zx;(—fm_") =0,

n—oo L
1=0

since A 4 p is not an integer and so from equations (14) and (15) we have

(16) N —limy o / (@ + n)*d(z)dz = 0.
It now follows from equations (11), (12), (13) and (16) that

N = limpooo M(227)n # (24 )n, 8(2)) N = limnoo{(22)n * (24 ), #/(2))
= (2@l #(2))
by our assumption. This proves that the neutrix product z’l_lﬂt‘_;, exists
and

(z2ec} )
A A A
= B(=A—p,p+ 1)z2H 4 B(=X - p, Nzt
Equation (3) now follows by induction for u}—1, u # 0,1,2,...and A\, A+ pu #
0, +£1,+2,....

Finally assume that equation (3) holds for —k(u(—k + 1 and A\, A+ p #
0, +1,42,.... This is certainly true when k = 1. Then since

(zi)n * (zi)n = (zi)n * (zi)m

an argument similar to that given above shows us that equation (3) follows
by unduction for A, u, A+ u+1# 0, £1,42,.... This completes the proof of
the theorem. O :

P IEhr'_:,

Theorem 5. The neutriz convolution product z’lEh::',, exists and

(17) @l = (-1 B\ +1,s + 1)+ -

for A#0,+1,%2,... and s = 0,1,2, ...

Proof. The proof of equation (17) is exactly the same as the proof of equation

(3), restricting u to the values u = s =0,1,2,..., and noting that
B(-A-s-1,54+1)=(-1)""'"B(A+1,s+1)

and
B(-A—s-1,A+1)=0.
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Corollary 1. The neutriz convolution product z}Bz® ezists and
(18) ‘ i@’ = (=1)""'B(A + 1,5+ 1)zt

for A#0, £1,+2,... and s = 0,1,2,....

Proof. The corollary follows immediately on replacing z by —z in equation
7).

Corollary 2. The neutriz convolution product z2®z*® erists and
(19) 2 @’ =0

for A#0, £1,4£2,... and s = 0,1,2,....

Proof. The convolution product z? «z* exists by Definition 2 and
(200 22 x22 = B(A+ 1,84 1)s}t+1,

see [2]. Equation (19) now follows immediately from equation (17) on noting
that z° = 23 + (—1)°z and that the neutrix convolution product is clearly
distributive with respect to addition.

Corollary 3. The neutriz convolution product a:q\_ﬂ%la:" exists and
ziEh:" =0,

for A#0, £1,4£2,...and s =0,1,2,....

Proof. The result follows immediately on replacing z by —z in equation
(19). '

Theorem 6. The neutriz convolution product z” B’ erists and
(21) e @ = ~B(r 41,8+ 1)[(=1)" 2+ 4 (—1)7z7 e

for r,s =0,1,2, ...
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Proof. Equations (4), (5), (9) and (10) still hold with A = r and p = s but
B(A,p) with A a negative integer is defined as in [3], where it was proved
that

B(-n,m)=(-1)"B(m,n —m+ 1)

for m=1,2,...,n and n = 1,2, .... Thus equation (5) becomes

0
N —lim,_ (—v) (z—y)imn(z—y)dy = (=11 B(r+1, s+1)(—z) +sH!

and equation (9) becomes

0
N —limneo [ (—9)(z—y)5ma(z—y)dy = (=1)" ' B(r+1, s+1)(—z) +*1,

—n
Equation (21) now follows as above
Corollary 4. The neutriz convolution product =" @x® exists and
(22) o @e® = (1) B(r + 1,s + )2t

forr,s=10,1,2,....

Proof. Equation (20) holds with A = r and equation (22) then follows from
equations (20) and (21).

Corollary 5. The neutriz convolution product z" Bz® exists and
(23) ot @z’ = (—1)"t* I B(r + 1,5 4+ 1)g7HH!

forr,s=0,1,2,....

Proof. Equation (23) follows immediately on replacing ¢ by —z in equation
(22).

Corollary 6. The neutriz convolution product x"®x® exists and
(24) o8’ = —B(r + 1,5+ 1)z}t + (=1)7 g4

forr,s=0,1,2,....
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Proof. Equation (24) follows immediately from equations (22) and (23).
The distributions |z|* and sgnz - |z|*are defined by

A A

|’\:xi+z’l,sgnx-lxl’\=:c+—x_.

|z
It follows that further neutrix convolution products such as
2 E|z|*, zf\}_El|z|“(sgnz - z|*),
(sgnz - |z Mk, [e|Wlzl”, |z 'm0
exist for A, u, A+ pu # —1,-2,....
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REZIME

KOMUTATIVNA NEUTRIKS KONVOLUCIJA DISTRIBUCIJA

U ovom radu je uvedena komutativna konvolucija koja je jednaka jedinici na
intervalu [—%, %] Pokazano je da je dobijena konvolucija stvarno uopstenje
uobi¢ajene konvolucije u (L?, L?) kao i konvolucije distribucija u smislu
Gel’fand- Silova.
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