Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23, 1 (1993), 13 - 27 Review of Research Faculty of Science Mathematics Series

A COMMUTATIVE NEUTRIX CONVOLUTION PRODUCT OF DISTRIBUTIONS

Brian Fisher

Department of Mathematics, The University, Leicester, LE1 7RH, England

Li Chen Kuan

Department of Basic Course, Jaingsu Agricultural College, Yangzhou, Jiangsu Province, People's Republic of China

Abstract

Let f and g be distributions in \mathcal{D}' and let

$$f_n(x) = f(x)\tau_n(x), \quad g_n(x) = g_n(x)\tau_n(x)$$

where $\tau_n(x)$ is a certain function which converges to the identity func as n tends to infinity. Then the neutrix convolution product $f \boxtimes g$ is defined as the neutrix limit of the sequence $\{f_n * g_n\}$, provided the limit h exists in the sense that

$$N - \lim_{n \to \infty} \langle f_n * g_n, \phi \rangle = \langle h, \phi \rangle$$

for all ϕ in \mathcal{D} . The neutrix convolution products $x_{-}^{\lambda} \boxtimes x_{+}^{n}$ for $\lambda, \mu, \lambda + \mu \neq 0, \pm 1, \pm 2, ...$ and $x_{-}^{\lambda} \boxtimes x_{+}^{s}$ for $\lambda \neq 0, \pm 1, \pm 2, ...$ and s = 0, 1, 2, ... are evaluated, from which other neutrix convolution products are deduced.

AMS Mathematics Subject Classifications (1991): 46F10 Key words and phrases: neutrix convolution, distribution

The classical definition for the convolution preduct of two functions f and g is as follows:

Definition 1. Let f and g be functions. Then the convolution product f * g is defined by

$$(f * g)(x) = \int_{-\infty}^{\infty} f(t)g(x - t)dt$$

for all points x for which the integral exists.

It follows easily from the definition that if f * g exists then g * f exists and

$$f * g = g * f$$

and if (f * g)' and f * g' (or f' * g) exist, then

(2)
$$(f * g)' = f * g' \text{ (or } f' * g)$$

The following theorem also holds and it is an immediate consequence of Hölder's inequality for integrals.

Theorem 1. Let f and g be functions in $L^p(-\infty,\infty)$ and $L^q(-\infty,\infty)$ respectively, where 1/p + 1/q = 1. Then the convolution product (f * g)(x) exists for all x.

Now, suppose that the convolution product (f*g)(x) exists for all x and let ϕ be an arbitrary test function in the space \mathcal{D} of infinitely differentiable functions with compact support. Then

$$\begin{array}{lcl} \langle (f*g)(x), \phi(x) \rangle & = & \int_{-\infty}^{\infty} \phi(x) \int_{-\infty}^{\infty} f(t)g(x-t)dtdx \\ & = & \int_{-\infty}^{\infty} f(y) \int_{-\infty}^{\infty} g(x)\phi(x+y)dxdy \end{array}$$

and for convenience we will write this as

$$\langle (f * g)(x), \phi(x) \rangle = \langle f(y), \langle g(x), \phi(x+y) \rangle \rangle$$

even though the infinitely differentiable function $\langle g(x), \phi(x+y) \rangle$ does not necessarily have compact support. This equation does however suggest the following definition for the convolution product of certain distributions f and g in \mathcal{D}' , see for example Gel'fand and Shilov [4].

Definition 2. Let f and g be distributions in \mathcal{D}' satisfying either of the following conditions:

- (a) either f or g has bounded support,
- (b) the supports of f and g are bounded on the same side.

Then the convolution product f * g is defined by

$$\langle (f * g)(x), \phi \rangle = \langle f(y), \langle g(x), \phi(x+y) \rangle \rangle$$

for arbitrary ϕ in \mathcal{D} .

Note that with this definition, if g has bounded support, then $\langle g(x), \phi(x+y) \rangle$ is in \mathcal{D} and so $\langle f(y), \langle g(x), \phi(x+y) \rangle \rangle$ is meaningful. If on the other hand either f has bounded support or the supports of f and g are bounded on the same side, then the intersection of the supports of f and $\langle g(x), \phi(x+y) \rangle$ is bounded and so $\langle f(y), \langle g(x), \phi(x+y) \rangle \rangle$ is again meaningful.

It follows that if the convolution product f * g exists by Definition 2, then equations (1) and (2) always hold.

Definition 1 and 2 are very restrictive and can only be used for a small class of distributions. In order to extend the convolution product to a larger class of distributions, Jones [5] gave the following definition.

Definition 3. Let f and g be distributions and let τ be an infinitely differentiable function satisfying the following conditions:

- (i) $\tau(x) = \tau(-x)$,
- (ii) $0 \le \tau(x) \le 1$,
- (iii) $\tau(x) = 1$ for $|x| \le 1/2$,
- (iv) $\tau(x) = 0$ for $|x| \geq 1$.

Let

$$f_n(x) = f(x)\tau(x/n), \quad g_n(x) = g(x)\tau(x/n)$$

for n = 1, 2, ... Then the convolution product f * g is defined as the limit of the sequence $\{f_n * g_n\}$, provided the limit h exists in the sense that

$$\lim_{n\to\infty}\langle f_n*g_n,\phi\rangle=\langle h,\phi\rangle$$

for all test functions ϕ in \mathcal{D} .

In this definition the convolution product $f_n * g_n$ exists by Definition 2 since f_n and g_n have bounded supports. It follows that if the limit of the

sequence $\{f_n * g_n\}$ exists, so that the convolution product f * g exists, then g * f also exists and equation (1) holds. However equation (2) need not necessarily hold since Jones proved that

$$1 * sgnx = sgnx * 1 = x,$$
$$(1 * sgnx)' = 1, 1' * sgnx = 0, 1 * (sgnx)' = 2.$$

It can be proved that if a convolution product exists by Definitions 1 and 2 then it exists by Definition 3 and defines the same distribution.

However, there were still many convolution products which did not exist by Definition 3 and in order to try and remedy this the next definition was introduced in [2].

Definition 4. Let f and g be distributions and let

$$au_n(x) = \left\{ egin{array}{ll} 1, & |x| \leq n, \ au(n^n x - n^{n+1}), & x > n, \ au(n^n x + n^{n+1}), & x < -n, \end{array}
ight.$$

for n=1,2,..., where τ is defined as in Definition 3. Let $f_n(x)=f(x)\tau_n(x)$ for n=1,2,... Then the neutrix convolution product $f \boxtimes g$ is defined as the neutrix limit of the sequence $\{f_n * g\}$, provided the limit h exists in the sense that

$$N - \lim_{n \to \infty} \langle f_n * g, \phi \rangle = \langle h, \phi \rangle$$

for all ϕ in \mathcal{D} , where N is the neutrix, see van der Corput [1], having domain $N' = \{1, 2, ..., n, ...\}$ and range the real numbers with negligible functions finite linear sums of the functions

$$n^{\lambda} \ln^{r-1} n$$
, $\ln^r n$, $(\lambda)0$; $r = 1, 2, ...)$

and all functions $\epsilon(n)$ for which $\lim_{n\to\infty} \epsilon(n) = 0$.

The convolution product $f_n * g$ in this definition is again in the sense of Definition 2, the support of f_n being contained in the interval $[-n-n^n, n+n^{-n}]$. It can be proved that if a convolution product exists by Definitions 1 or 2 then the neutrix convolution product exists and defines the same distribution.

However, the neutrix convolution product as defined in Definition 4 is in general non-commutative. For example, it was proved in [2] that

$$x_{-}$$
E $x_{+}=rac{1}{6}x_{-}^{3}, \quad x_{+}$ E $x_{-}=rac{1}{6}x_{+}^{3}$

so that

$$x_{-} \mathbb{E} x_{+} \neq x_{+} \mathbb{E} x_{-}$$
.

In the following, we now consider a commutative neutrix convolution product. We will denote the commutative neutrix convolution product of the distributions f and g by $f \boxtimes g$ to distinguish it from the non-commutative neutrix convolution product.

Definition 5. Let f and g be distributions and let τ_n be defined as in Definition 4. Let $f_n(x) = f(x)\tau_n(x)$ and $g_n(x)\tau_n(x)$ for n = 1, 2, ... Then the commutative neutrix convolution product $f \boxtimes g$ is defined as the neutrix limit of the sequence $\{f_n * q_n\}$, provided the limit h exists in the sense that

$$N - \lim_{n \to \infty} \langle f_n * g_n, \phi \rangle = \langle h, \phi \rangle$$

for all ϕ in \mathcal{D} , where N is the neutrix defined above.

The convolution product $f_n * g_n$ in this definition is again in the sense of Definition 2 and since $f_n * g_n = g_n * f_n$, the neutrix convolution product $f \mathbb{E} g$ is clearly commutative.

The next theorem shows that this definition generalizes Definition 1.

Theorem 2. Let f and g be functions in $L^p(-\infty,\infty)$ and $L^q(-\infty,\infty)$ respectively, where 1/p+1/q=1, so that the convolution product f*g exists by Definition 1. Then the neutrix convolution product $f extbf{E} g$ exists and

$$f \mathbb{E} g = f \mathbb{E} g$$
.

Proof. For arbitrary $\epsilon > 0$ we have

$$\begin{array}{lcl} |f*g-f_n*g_n| & = & |\int_{-\infty}^{\infty} f(t)g(x-t)[1-\tau_n(t)\tau_n(x-t)]dt| \\ & \leq & \int_{-\infty}^{\infty} |f(t)g(x-t)[1-\tau_n(t)]\tau_n(x-t)|dt \\ & + & \int_{-\infty}^{\infty} |f(t)g(x-t)[1-\tau_n(x-t)]|dt \\ & \leq & \int_{|t|\geq } |f(t)g(x-t)|dt + \int_{|x-t|\geq } |f(t)g(x-t)|dt \\ & = & \int_{|t|\geq n} |f(t)g(x-t)|dt + \int_{|t|\geq n} |f(x-t)g(t)|dt \langle \epsilon | \end{array}$$

for all n greater than some n_0 . Thus if ϕ is an arbitrary function in \mathcal{D} then

$$|\langle f * g, \phi \rangle - \langle f_n * g_n, \phi \rangle| \le \sup\{|\phi(x)|\}\epsilon$$

for $n > n_0$ and it follows that

$$\lim_{n\to\infty}\langle f_n*g_n,\phi\rangle=\langle f*g,\phi\rangle=N-\lim_{n\to\infty}\langle f_n*g_n,\phi\rangle.$$

The result of the theorem follows.

The next theorem shows that Definition 5 also generalizes Definition 2.

Theorem 3. Let f and g be distributions satisfying either condition (a) or condition (b) of Definition 2 so that the convolution product f * g exists by Definition 2. Then the neutrix convolution product $f \not \equiv g$ exists and

$$f \otimes g = f * g.$$

Proof. Suppose first of all that the support of g is bounded so that $g = g_n$ for some n greater than some n_0 . Then with $n > n_0$ and arbitrary ϕ in \mathcal{D}

$$\langle f_n * g_n, \phi \rangle = \langle f_n * g, \phi \rangle = \langle f_n(y), \langle g(x), \phi(x+y) \rangle \rangle = \langle f(y), \langle g(x), \phi(x+y) \rangle \rangle$$

for large enough n, since the support of $\langle g(x), \phi(x+y) \rangle$ is bounded. It follows that

$$\lim_{n\to\infty}\langle f_n*g_n,\phi\rangle = \langle f(y),\langle g(x),\phi(x+y)\rangle\rangle$$
$$= N - \lim_{n\to\infty}\langle f_n*g_n,\phi\rangle$$

and the result of the theorem follows when the support of g is bounded.

Now suppose that the support of f is bounded. Then the result of the theorem follows as above on noting that $f_n * g_n = g_n * f_n$.

Finally, suppose that the supports of f and g are bounded on the same side, say on the left, so that the supports of f and g are contained in some half - bounded intervals $[a, \infty)$ and $[b, \infty)$ respectively. Now let ϕ be an arbitrary function in \mathcal{D} with its support contained in the bounded interval [c, d]. Then since g(x) = 0 if x < b,

$$\psi(y) = \langle g_n(x), \phi(x+y) \rangle = \langle g(x), \phi(x+y) \rangle = 0$$

if y > d - b. Further, since f(y) = 0 if y < a, it follows that the intersection of the supports of ψ and f are contained in the interval [a, d - b] if d - b > a and is the empty set otherwise. Thus

$$\langle f_n * g_n, \phi \rangle = \langle f * g, \phi \rangle$$

for $n > \max\{|a|, |d-b|\}$ and the result of the theorem follows as above for this third case.

Theorem 4. The neutrix convolution product $x_{-}^{\lambda} \times x_{+}^{n}$ exists and

(3)
$$x^{\lambda}_{-} \mathbb{E} x^{n}_{+} = B(-\lambda - \mu - 1, \mu + 1) x^{\lambda + \mu + 1}$$

$$= B(-\lambda - \mu - 1, \lambda + 1) x^{\lambda + \mu + 1}$$

for $\lambda, \mu, \lambda + \mu \neq 0, \pm 1, \pm 2, ...,$ where B denotes the Beta function.

Proof. We will first of all suppose that $\lambda, \mu \rangle - 1$, so that x_{-}^{λ} and x_{+}^{n} are locally summable functions. Put

$$(x_{-}^{\lambda})_{n} = x_{-}^{\lambda} \tau_{n}(x), \quad (x_{+}^{\mu})_{n} = x_{+}^{\mu} \tau_{n}(x).$$

Then the convolution product $(x_{-}^{\lambda})_n * (x_{+}^{\mu})_n$ exists by Definition 2 and (4)

$$\begin{array}{lll} \langle (x_{-}^{\lambda})_{n} * (x_{+}^{\mu})_{n} &=& \langle (y_{-}^{\lambda})_{n}, \langle (x_{+}^{\mu})_{n}, \phi(x+y) \rangle \rangle \\ &=& \int_{-n-n-n}^{0} (-y)^{\lambda} \tau_{n}(y) \int_{a}^{b} (x-y)_{+}^{\mu} \tau_{n}(x-y) dy dx + \\ &=& \int_{a}^{b} \phi(x) \int_{-n}^{0} (-y)^{\lambda} (x-y)_{+}^{\mu} \tau_{n}(x-y) dx dy + \\ &+& \int_{a}^{b} \phi(x) \int_{-n-n-n}^{-n} (-y)^{\lambda} \tau_{n}(y) (x-y)_{+}^{\mu} \tau_{n}(x-y) dy dx \end{array}$$

for n > -a and arbitrary ϕ in \mathcal{D} with support of ϕ contained in the interval [a, b].

When x < 0 and $-n \le y \le 0$, $\tau_n(x - y) = 1$ on the support of ϕ . Thus with x < 0 and $-n \le y \le 0$, we have on making the substitution $y = xu^{-1}$,

$$\int_{-n}^{0} (-y)^{\lambda} (x-y)_{+}^{\mu} \tau_{n}(x-y) dy = \int_{-n}^{x} (-y)^{\lambda} (x-y)^{\mu} dy$$

$$= (-x)^{\lambda+\mu+1} \int_{-x/n}^{1} u^{-\lambda-\mu-2} (1-u)^{\mu} du$$

$$= (-x)^{\lambda+\mu+1} \int_{-x/n}^{1} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} \int_{-x/n}^{n} u^{-\lambda-\mu-2} [(1-u)^{\mu} - \sum_{i=0}^{r} \frac{(-1)^{i} (\mu)_{i}}{i!} u^{i}] du + \frac{1}{n!} u^{i}$$

$$+(-x)^{\lambda+\mu+1}\sum_{i=0}^{r}\frac{(-1)^{i}(\mu)_{i}}{i!(i-\lambda-\mu-1)}[1-(-x/n)^{i-\lambda-\mu-1}],$$

for some integer $r > \lambda + \mu + 1$, where

$$(\lambda)_s = \begin{cases} 1, & s = 0\\ \prod_{i=0}^{s-1} (\lambda - 1), & s \ge 1. \end{cases}$$

It follows that

$$N - \lim_{n \to \infty} \int_{-n}^{0} (-y)^{\lambda} (x-y)_{+}^{\mu} \tau_{n}(x-y) dy =$$

(5)
$$= B(-\lambda - \mu - 1, \ \mu + 1)(-x)^{\lambda + \mu + 1},$$

see [3] or Gel'fand and Shilov [4].

When x > 0 and $-n \le y \le 0$, we have

$$\int_{-n}^{0} (-y)^{\lambda} (x-y)_{+}^{\mu} \tau_{n}(x-y) dy = \int_{x-n}^{0} (-y)^{\lambda} (x-y)^{\mu} dy +$$

(6)
$$+ \int_{x-n-n^{-n}}^{x-n} (-y)^{\lambda} (x-y)^{\mu} \tau_n(x-y) dy$$

On making the substitution $y = x(1 - u^{-1})$, we have

$$\int_{x-n}^{0} (-y)^{\lambda} (x-y)^{\mu} dy = x^{\lambda+\mu+1} \int_{x/n}^{1} u^{-\lambda-\mu-2} (1-u)^{\lambda} du$$

and it follows as above that

(7)
$$N - \lim_{n \to \infty} \int_{x-n}^{0} (-y)^{\lambda} (x-y)^{\mu} dy = B(-\lambda - \mu - 1, \ \lambda + 1) x^{\lambda + \mu + 1}.$$

Further, with n > 2x

$$|\int_{x-n-n^{-n}}^{x-n} (-y)^{\lambda} (x-y)^{\mu} \tau_n(x-y) dy| \le \int_{n}^{n+n^{-n}} (y-x)^{\lambda} y^{\mu} dy$$

$$= \int_{x-n}^{n+n^{-n}} y^{\lambda+\mu} (1-x/y)^{\lambda} dy$$

$$\leq \left\{ \begin{array}{ll} (n+n^{-n})^{\lambda+\mu}n^{-n}, & \lambda>0, \\ 2^{-\lambda}(n+n^{-n})^{\lambda+\mu}n^{-n}, & -1\langle\lambda<0, \end{array} \right.$$

and so

(8)
$$\lim_{n\to\infty} \int_{x-n-n^{-n}}^{x-n} (-y)^{\lambda} (x-y)^{\mu} \tau_n(x-y) dy = 0.$$

It now follows from equations (6), (7) and (8) that (9)

$$N-\lim_{n\to\infty}\int_{-n}^0 (-y)^{\lambda}(x-y)_+^{\mu}\tau_n(x-y)dy=B(-\lambda-\mu-1,\lambda+1)x^{\lambda+\mu+1}.$$

Next, with $\frac{1}{2}n < a \le x \le b < \frac{1}{2}n$, we have

$$\begin{split} |\int_{-n-n^{-n}}^{-n} (-y)^{\lambda} \tau_{n}(y) (x-y)^{\mu} \tau_{n}(x-y) dy | & \leq \int_{-n-n^{-n}}^{-n} (-y)^{\lambda+\mu} (1-x/y)^{\mu} dy \\ & \leq \left\{ \begin{array}{ll} 2^{\mu} (n+n^{-n})^{\lambda+\mu} n^{-n}, & \mu > 0, \\ 2^{-\mu} (n+n^{-n})^{\lambda+\mu} n^{-n}, & -1 < \mu < 0 \end{array} \right. \end{split}$$

and so

(10)
$$\lim_{n\to\infty} \int_{-n-n^{-n}}^{-n} (-y)^{\lambda} \tau_n(y) (x-y)^{\mu} dy = 0.$$

It now follows from equations (4), (5), (9) and (10) that

$$N - \lim_{n \to \infty} \langle (x_{-}^{\lambda})_{n} * (x_{+}^{\mu})_{n}, \phi \rangle = \langle B(-\lambda - \mu - 1, \mu + 1) x_{-}^{\lambda + \mu + 1} + B(-\lambda - \mu - 1, \mu + 1) x_{+}^{\lambda + \mu + 1}, \phi(x) \rangle$$

and equation (3) follows for $\lambda, \mu \rangle - 1$ and $\lambda, \mu, \lambda + \mu + 1 \neq 0, 1, 2, ...$

Now assume that equation (3) holds for $\mu > -1$, $-k < \lambda < -k+1$ and $\mu, \lambda + \mu + k \neq 0, 1, 2, ...$, where k is some positive integer. This is certainly true when k = 1. The convolution product $(x_{-}^{\lambda})_n * (x_{+}^{\mu})_n$ exists by Definition 2 and so equations (2) hold. Thus if ϕ is an arbitrary function in \mathcal{D} with support contained in the interval [a, b], where we may suppose that a < 0 < b,

$$\langle [(x_-^{\lambda})_n * (x_+^{\mu})_n]', \phi(x) \rangle = -\langle (x_-^{\lambda})_n * (x_+^{\mu})_n, \phi'(x) \rangle$$

$$= -\lambda \langle (x_{-}^{\lambda-1})_n * (x_{+}^{\mu})_n, \phi(x) \rangle + \langle [x_{-}^{\lambda} - \tau'_n(x)] * (x_{+}^{\mu})_n, \phi(x) \rangle$$

and so

$$-\lambda\langle (x_-^{\lambda-1})_n*(x_+^{\mu})_n,\phi(x)\rangle=\langle (x_-^{\lambda})_n*(x_+^{\mu})_n,\phi'(x)\rangle+\langle [x_-^{\lambda}\tau_n'(x)]*(x_+^{\mu})_n,\phi(x)\rangle.$$

The support of $x_{-}^{\lambda}\tau'_{n}(x)$ is contained in the interval $[-n-n^{-n}, n]$ and so with $n > -a > n^{-n}$, it follows as above that

$$\langle [x_{-}^{\lambda}\tau'_{n}(x)]*(x_{+}^{\mu})_{n}, \phi(x) \rangle = \int_{a}^{b} \phi(x) \int_{-n-n-n}^{-n} (-y)^{\lambda} \tau'_{n}(y) (x-y)^{\mu} \tau_{n}(x-y) dy dx$$

$$= \int_{a}^{-n-n} \phi(x) \int_{-n-n-n}^{-n} (-y)^{\lambda} \tau'_{n}(y) (x-y)^{\mu} dy dx +$$

(11)
$$+ \int_{-n^{-n}}^{n^{-n}} \phi(x) \int_{-n-n^{-n}}^{-n} (-y)^{\lambda} \tau'_n(y) (x-y)^{\mu} \tau_n(x-y) dy dx,$$

where on the domain of integration $(-y)^{\lambda}$ and $(x-y)^{\mu}$ are locally summable functions.

Putting $M = \sup\{|\tau'(x)\phi(x)|\}$, we have

$$\left| \int_{-n^{-n}}^{n^{-n}} \phi(x) \int_{-n^{-n}}^{-n} (-y)^{\lambda} \tau'_{n}(y) (x-y)^{\mu} \tau_{n}(x-y) dy dx \right|$$

$$\leq M n^{n} \int_{-n^{-n}}^{n^{-n}} \int_{-n-n^{-n}}^{-n} (-y)^{\lambda+\mu} (1-x/y)^{\mu} dy dx$$

$$\leq \begin{cases} 2^{1+\mu} M (n+n^{-n})^{\lambda+\mu} n^{-n}, & \mu > 0, \\ 2^{1-\mu} M (n+n^{-n})^{\lambda+\mu} n^{-n}, & -1 < \mu < 0 \end{cases}$$

and it follows that

(12)
$$\lim_{n \to \infty} \int_{-n-n^{-n}}^{n^{-n}} \phi(x) \int_{-n-n^{-n}}^{-n} (-y)^{\lambda} \tau'_n(x-y)^{\mu} \tau_n(x-y) dy dx = 0.$$

Integrating by parts, we have

$$\int_{-n-n-n}^{-n} (-y)^{\lambda} \tau'_n(y) (x-y)^{\mu} dy = n^{\lambda} (x+n)^{\mu}$$

(13)
$$+ \int_{-n-n-n}^{-n} [\lambda(-y)^{\lambda-1}(x-y)^{\mu} + \mu(-y)^{\lambda}(x-y)^{\mu-1}] \tau_n(y) dy.$$

Choosing a positive integer r greater than $\lambda + \mu$, we see that

$$n^{\lambda}(x+n)^{\mu} = n^{\lambda+\mu} \sum_{i=0}^{r} \frac{(\mu)_{i}x^{i}}{i!n^{i}} + o(1/n)$$

and so

$$\int_{a}^{-n^{-n}} n^{\lambda} (x+n)^{\mu} \phi(x) dx = n^{\lambda+\mu} \sum_{i=0}^{r} \frac{(\mu)_{i}}{i! n^{i}} \int_{a}^{-n^{-n}} x^{i} \phi(x) dx$$

$$(14) +o(1/n) \int_{a}^{-n-n} \phi(x) dx$$

where

(15)
$$\lim_{n\to\infty} o(1/n) \int_0^{-n^{-n}} \phi(x) dx = 0.$$

Putting

$$\int x^i \phi(x) dx = \chi_i(x),$$

for i = 0, 1, 2, ..., r, we have

$$\chi_i(x) = \chi_i(0) + x\chi_i'(\xi_i x),$$

where $0 \le \xi_i \le 1$ and so

$$\int_{a}^{-n^{-n}} x^{i} \phi(x) dx = \chi_{i}(0) - n^{-n} \chi_{i}'(\xi_{i} n^{-n}) - \chi_{i}(a)$$

for i = 0, 1, 2, ..., r.

Thus

$$\begin{split} N - \lim_{n \to \infty} n^{\lambda + \mu} \sum_{i=0}^{r} \frac{(\mu)_i}{i! n^i} \int_a^{-n^{-n}} x^i \phi(x) dx \\ = N - \lim_{n \to \infty} n^{\lambda + \mu} \sum_{i=0}^{r} \frac{(\mu)_i}{i! n^i} [\chi_i(0) - \chi_i(a)] \end{split}$$

$$+\lim_{n\to\infty}n^{\lambda+\mu-n}\sum_{i=0}^r\chi_i'(-\xi_in^{-n})=0,$$

since $\lambda + \mu$ is not an integer and so from equations (14) and (15) we have

(16)
$$N - \lim_{n \to \infty} \int_a^{n-n} n^{\lambda} (x+n)^{\mu} \phi(x) dx = 0.$$

It now follows from equations (11), (12), (13) and (16) that

$$\begin{array}{lcl} N - \lim_{n \to \infty} \lambda \langle (x_-^{\lambda-1})_n * (x_+^{\mu})_n, \phi(x) \rangle & = & N - \lim_{n \to \infty} \langle (x_-^{\lambda})_n * (x_+^{\mu})_n, \phi'(x) \rangle \\ & = & \langle x_-^{\lambda} \boxplus x_+^{\mu}, \phi'(x) \rangle \end{array}$$

by our assumption. This proves that the neutrix product $x_{-}^{\lambda-1} \boxtimes x_{+}^{\mu}$ exists and

$$\begin{array}{rcl} x_{-}^{\lambda-1} \boxtimes x_{+}^{\mu} & = & -\frac{(x_{-}^{\lambda} \boxtimes x_{+}^{\mu})'}{\lambda} \\ & = & B(-\lambda - \mu, \mu + 1) x_{-}^{\lambda+\mu} + B(-\lambda - \mu, \lambda) x_{+}^{\lambda+\mu}. \end{array}$$

Equation (3) now follows by induction for $\mu \rangle -1$, $\mu \neq 0, 1, 2, ...$ and $\lambda, \lambda + \mu \neq 0, \pm 1, \pm 2, ...$

Finally assume that equation (3) holds for $-k(\mu(-k+1 \text{ and } \lambda, \lambda + \mu \neq 0, \pm 1, \pm 2,$ This is certainly true when k = 1. Then since

$$(x_{-}^{\lambda})_{n} * (x_{+}^{\mu})_{n} = (x_{+}^{\mu})_{n} * (x_{-}^{\lambda})_{n},$$

an argument similar to that given above shows us that equation (3) follows by unduction for $\lambda, \mu, \lambda + \mu + 1 \neq 0, \pm 1, \pm 2, ...$ This completes the proof of the theorem. \Box

Theorem 5. The neutrix convolution product $x_{\perp}^{\lambda} \mathbb{E} x_{\perp}^{s}$ exists and

(17)
$$x_{-}^{\lambda} \mathbb{E} x_{+}^{s} = (-1)^{s+1} B(\lambda + 1, s + 1) x_{-}^{\lambda + s + 1}$$

for $\lambda \neq 0, \pm 1, \pm 2, ...$ and s = 0, 1, 2, ...

Proof. The proof of equation (17) is exactly the same as the proof of equation (3), restricting μ to the values $\mu = s = 0, 1, 2, ...,$ and noting that

$$B(-\lambda - s - 1, s + 1) = (-1)^{s+1}B(\lambda + 1, s + 1)$$

and

$$B(-\lambda-s-1,\lambda+1)=0.$$

Corollary 1. The neutrix convolution product $x_{\perp}^{\lambda} \mathbb{H} x_{\perp}^{s}$ exists and

(18)
$$x_{+}^{\lambda} \mathbb{E} x_{-}^{s} = (-1)^{s+1} B(\lambda + 1, s + 1) x_{+}^{\lambda + s + 1}$$

for $\lambda \neq 0, \pm 1, \pm 2, ...$ and s = 0, 1, 2, ...

Proof. The corollary follows immediately on replacing x by -x in equation (17).

Corollary 2. The neutrix convolution product $x^{\lambda}_{-} \mathbb{E} x^{s}$ exists and

$$x_{-}^{\lambda}\mathbb{H}x^{s}=0$$

for $\lambda \neq 0, \pm 1, \pm 2, ...$ and s = 0, 1, 2, ...

Proof. The convolution product $x_{-}^{\lambda} * x_{-}^{s}$ exists by Definition 2 and

(20)
$$x_{-}^{\lambda} * x_{-}^{s} = B(\lambda + 1, s + 1)s_{-}^{\lambda + s + 1},$$

see [2]. Equation (19) now follows immediately from equation (17) on noting that $x^s = x_+^s + (-1)^s x_-^s$ and that the neutrix convolution product is clearly distributive with respect to addition.

Corollary 3. The neutrix convolution product $x_{\perp}^{\lambda} \mathbb{E} x^{s}$ exists and

$$x_{\perp}^{\lambda} \mathbb{E} x^{s} = 0,$$

for $\lambda \neq 0, \pm 1, \pm 2, ...$ and s = 0, 1, 2, ...

Proof. The result follows immediately on replacing x by -x in equation (19).

Theorem 6. The neutrix convolution product x_Ex_* exists and

(21)
$$x_{-}^{r} \mathbb{E} x_{+}^{s} = -B(r+1, s+1)[(-1)^{r} x_{+}^{r+s+1} + (-1)^{s} x_{-}^{r+s+1}]$$

for r, s = 0, 1, 2, ...

Proof. Equations (4), (5), (9) and (10) still hold with $\lambda = r$ and $\mu = s$ but $B(\lambda, \mu)$ with λ a negative integer is defined as in [3], where it was proved that

$$B(-n,m) = (-1)^m B(m,n-m+1)$$

for m = 1, 2, ..., n and n = 1, 2, ... Thus equation (5) becomes

$$N - \lim_{n \to \infty} \int_{-n}^{0} (-y)^{r} (x-y)^{s}_{+} \tau_{n}(x-y) dy = (-1)^{s+1} B(r+1, s+1) (-x)^{r+s+1}$$

and equation (9) becomes

$$N - \lim_{n \to \infty} \int_{-n}^{0} (-y)^{r} (x-y)^{s}_{+} \tau_{n}(x-y) dy = (-1)^{r+1} B(r+1, s+1) (-x)^{r+s+1}.$$

Equation (21) now follows as above

Corollary 4. The neutrix convolution product $x^r \oplus x^s$ exists and

(22)
$$x_{-}^{r} \mathbb{E} x^{s} = (-1)^{r+1} B(r+1, s+1) x_{+}^{r+s+1}$$

for r, s = 0, 1, 2,

Proof. Equation (20) holds with $\lambda = r$ and equation (22) then follows from equations (20) and (21).

Corollary 5. The neutrix convolution product $x_{+}^{\tau} \mathbb{E} x^{s}$ exists and

(23)
$$x_{+}^{r} \mathbb{E} x^{s} = (-1)^{r+s+1} B(r+1,s+1) x_{-}^{r+s+1}$$

for r, s = 0, 1, 2,

Proof. Equation (23) follows immediately on replacing x by -x in equation (22).

Corollary 6. The neutrix convolution product $x^r \mathbb{E} x^s$ exists and

$$(24) x^{r} \mathbb{E} x^{s} = -B(r+1, s+1) [x_{\perp}^{r+s+1} + (-1)^{r+s} x_{\perp}^{r+s+1}]$$

for r, s = 0, 1, 2, ...

Proof. Equation (24) follows immediately from equations (22) and (23).

The distributions $|x|^{\lambda}$ and $sgnx \cdot |x|^{\lambda}$ are defined by

$$|x|^{\lambda}=x_{+}^{\lambda}+x_{-}^{\lambda},\ sgnx\cdot|x|^{\lambda}=x_{+}^{\lambda}-x_{-}^{\lambda}.$$

It follows that further neutrix convolution products such as

$$\begin{split} x_-^\lambda \mathbf{E} |x|^\mu, & \ x_+^\lambda \mathbf{E} |x|^\mu (sgnx \cdot |x|^\mu), \\ (sgnx \cdot |x|^\lambda) \mathbf{E} x_+^\mu, & \ |x|^\lambda \mathbf{E} |x|^\mu, & \ |x|^\lambda \mathbf{E} x_-^\mu \end{split}$$

exist for $\lambda, \mu, \lambda + \mu \neq -1, -2, \dots$

References

- Van der Corput J.G., Introduction to the neutrix calculus, J. Analyse Math., 7 (1959-60), 291-398.
- [2] Fisher B., Neutices and the convolution of distributions, Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat., 17 (1987), 119-135.
- [3] Fisher B., Kuribayashi Y., Neutrices and the Beta function, Rostock. Math. Kolloq., 32 (1987), 56-66.
- [4] Gel'fand I.M., Shilov G.E., Generalized functions, Vol. I, Academic Press (1964).
- [5] Jones D.S., The convolution of generalized functions, Quart. J. Math. Oxford Ser. (2) 24 (1973), 145-163.

REZIME

KOMUTATIVNA NEUTRIKS KONVOLUCIJA DISTRIBUCIJA

U ovom radu je uvedena komutativna konvolucija koja je jednaka jedinici na intervalu $[-\frac{1}{2},\frac{1}{2}]$. Pokazano je da je dobijena konvolucija stvarno uopštenje uobičajene konvolucije u (L^p,L^q) kao i konvolucije distribucija u smislu Gel'fand- Šilova.

Received by the editors June 9, 1990