"The Confrontation between General Relativity and Experiment"
Clifford M. Will 


1 Adelberger, E. G., “New tests of Einstein’s equivalence principle and Newton’s inverse-square law”, Class. Quantum Grav., 18, 2397–2405 (2001). [External LinkDOI], [External LinkADS].
2 Adelberger, E. G., Heckel, B. R., Hoedl, S., Hoyle, C. D., Kapner, D. J. and Upadhye, A., “Particle-Physics Implications of a Recent Test of the Gravitational Inverse-Square Law”, Phys. Rev. Lett., 98, 131104 (2007). [External LinkDOI], [External LinkADS], [External Linkhep-ph/0611223].
3 Adelberger, E. G., Heckel, B. R. and Nelson, A. E., “Tests of the Gravitational Inverse-Square Law”, Annu. Rev. Nucl. Part. Sci., 53, 77–121 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-ph/0307284 [hep-ph]].
4 Adelberger, E. G., Heckel, B. R., Stubbs, C. W. and Rogers, W. F., “Searches for New Macroscopic Forces”, Annu. Rev. Nucl. Sci., 41, 269–320 (1991). [External LinkDOI].
5 Alexander, S. and Yunes, N., “Chern-Simons modified general relativity”, Phys. Rep., 480, 1–55 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0907.2562 [hep-th]].
6 Ali-Haïmoud, Y. and Chen, Y., “Slowly rotating stars and black holes in dynamical Chern-Simons gravity”, Phys. Rev. D, 84, 124033 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.5329 [astro-ph.HE]].
7 Alsing, J., Berti, E., Will, C. M. and Zaglauer, H., “Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity”, Phys. Rev. D, 85, 064041 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1112.4903 [gr-qc]].
8 Alväger, T., Farley, F. J. M., Kjellman, J. and Wallin, I., “Test of the second postulate of special relativity in the GeV region”, Phys. Lett., 12, 260–262 (1977). [External LinkDOI], [External LinkADS].
9 Alvarez, C. and Mann, R. B., “The equivalence principle and anomalous magnetic moment experiments”, Phys. Rev. D, 54, 7097–7107 (1996). [External LinkDOI], [External Linkgr-qc/9511028].
10 Alvarez, C. and Mann, R. B., “Testing the equivalence principle by Lamb shift energies”, Phys. Rev. D, 54, 5954–5974 (1996). [External LinkDOI], [External Linkgr-qc/9507040].
11 Alvarez, C. and Mann, R. B., “The equivalence principle and g 2 experiments”, Phys. Lett. B, 409, 83–87 (1997). [External LinkDOI], [External Linkgr-qc/9510070].
12 Alvarez, C. and Mann, R. B., “The equivalence principle in the non-baryonic regime”, Phys. Rev. D, 55, 1732–1740 (1997). [External LinkDOI], [External Linkgr-qc/9609039].
13 Alvarez, C. and Mann, R. B., “Testing the equivalence principle using atomic vacuum energy shifts”, Mod. Phys. Lett. A, 11, 1757–1763 (1997). [External Linkgr-qc/9612031].
14 Alves, M. E. S. and Tinto, M., “Pulsar timing sensitivities to gravitational waves from relativistic metric theories of gravity”, Phys. Rev. D, 83, 123529 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1102.4824 [gr-qc]].
15 Amin, M. A., Wagoner, R. V. and Blandford, R. D., “A subhorizon framework for probing the relationship between the cosmological matter distribution and metric perturbations”, Mon. Not. R. Astron. Soc., 390, 131–142 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0708.1793].
16 Anderson, J. D., Laing, P. A., Lau, E. L., Liu, A. S., Nieto, M. M. and Turyshev, S. G., “Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration”, Phys. Rev. Lett., 81, 2858–2861 (1998). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9808081].
17 Antia, H. M., Chitre, S. M. and Gough, D. O., “Temporal variations in the Sun’s rotational kinetic energy”, Astron. Astrophys., 477, 657–663 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0711.0799].
18 Antoniadis, I., Arkani-Hamed, N., Dimopoulos, S. and Dvali, G., “New dimensions at a millimeter to a fermi and superstrings at a TeV”, Phys. Lett. B, 436, 257–263 (1998). [External LinkDOI], [External Linkhep-ph/9804398].
19 Antoniadis, J. et al., “A Massive Pulsar in a Compact Relativistic Binary”, Science, 340, 448 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1304.6875 [astro-ph.HE]].
20 Antonini, P., Okhapkin, M., Göklü, E. and Schiller, S., “Test of constancy of speed of light with rotating cryogenic optical resonators”, Phys. Rev. A, 71, 050101 (2005). [External Linkgr-qc/0504109].
21 Arkani-Hamed, N., Dimopoulos, S. and Dvali, G. R., “The hierarchy problem and new dimensions at a millimeter”, Phys. Lett. B, 429, 263–272 (1998). [External LinkDOI], [External LinkarXiv:hep-ph/9803315].
22 Arun, K. G., Iyer, B. R., Qusailah, M. S. S. and Sathyaprakash, B. S., “Probing the nonlinear structure of general relativity with black hole binaries”, Phys. Rev. D, 74, 024006 (2006). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0604067].
23 Arun, K. G. and Will, C. M., “Bounding the mass of the graviton with gravitational waves: effect of higher harmonics in gravitational waveform templates”, Class. Quantum Grav., 26, 155002 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0904.1190 [gr-qc]].
24 Asada, H., “The light cone effect on the Shapiro time delay”, Astrophys. J. Lett., 574, L69–L70 (2002). [External LinkDOI], [External Linkastro-ph/0206266].
25 Ashby, N., “Relativistic effects in the Global Positioning System”, in Dadhich, N. and Narlikar, J. V., eds., Gravitation and Relativity: At the Turn of the Millenium, Proceedings of the 15th International Conference on General Relativity and Gravitation (GR-15), held at IUCAA, Pune, India, December 16 – 21, 1997, pp. 231–258, (Inter-University Center for Astronomy and Astrophysics, Pune, India, 1998).
26 Ashby, N., “Relativity in the Global Positioning System”, Living Rev. Relativity, 6, lrr-2003-1 (2003). [External LinkDOI]. URL (accessed 28 March 2014):
27 Ashby, N., Bender, P. L. and Wahr, J. M., “Future gravitational physics tests from ranging to the BepiColombo Mercury planetary orbiter”, Phys. Rev. D, 75, 022001 (2007). [External LinkDOI], [External LinkADS].
28 “ATNF Pulsar Catalogue”, web interface to database, Australia Telescope National Facility. URL (accessed 28 March 2014):
External Link
29 Baeßler, S., Heckel, B. R., Adelberger, E. G., Gundlach, J. H., Schmidt, U. and Swanson, H. E., “Improved Test of the Equivalence Principle for Gravitational Self-Energy”, Phys. Rev. Lett., 83, 3585–3588 (1999). [External LinkDOI], [External LinkADS].
30 Baker, T., Ferreira, P. G. and Skordis, C., “The parameterized post-Friedmann framework for theories of modified gravity: Concepts, formalism, and examples”, Phys. Rev. D, 87, 024015 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1209.2117 [astro-ph.CO]].
31 Bambi, C., Giannotti, M. and Villante, F. L., “Response of primordial abundances to a general modification of GN and/or of the early universe expansion rate”, Phys. Rev. D, 71, 123524 (2005). [External LinkDOI], [External Linkastro-ph/0503502].
32 Barausse, E., Palenzuela, C., Ponce, M. and Lehner, L., “Neutron-star mergers in scalar-tensor theories of gravity”, Phys. Rev. D, 87, 081506 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1212.5053 [gr-qc]].
33 Bartlett, D. F. and Van Buren, D., “Equivalence of Active and Passive Gravitational Mass Using the Moon”, Phys. Rev. Lett., 57, 21–24 (1986). [External LinkDOI].
34 Bauch, A. and Weyers, S., “New experimental limit on the validity of local position invariance”, Phys. Rev. D, 65, 081101(R) (2002). [External LinkDOI], [External LinkADS].
35 Baumgarte, T. W. and Shapiro, S. L., Numerical Relativity: Solving Einstein’s Equations on the Computer, (Cambridge University Press, Cambridge; New York, 2010). [External LinkADS], [External LinkGoogle Books].
36 Bekenstein, J. D., “Relativistic gravitation theory for the modified Newtonian dynamics paradigm”, Phys. Rev. D, 70, 083509 (2004). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0403694].
37 Bell, J. F. and Damour, T., “A new test of conservation laws and Lorentz invariance in relativistic gravity”, Class. Quantum Grav., 13, 3121–3127 (1996). [External LinkDOI], [External Linkgr-qc/9606062].
38 Benkhoff, J. et al., “BepiColombo – Comprehensive exploration of Mercury: Mission overview and science goals”, Planet. Space Sci., 58, 2–20 (2010). [External LinkDOI], [External LinkADS].
39 Bennett, C. L. et al., “Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results”, Astrophys. J. Suppl. Ser., 208, 20 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1212.5225 [astro-ph.CO]].
40 Beringer, J. et al. (Particle Data Group), “Review of Particle Physics”, Phys. Rev. D, 86, 010001 (2012). [External LinkDOI].
41 Berti, E., Buonanno, A. and Will, C. M., “Estimating spinning binary parameters and testing alternative theories of gravity with LISA”, Phys. Rev. D, 71, 084025 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0411129].
42 Berti, E., Buonanno, A. and Will, C. M., “Testing general relativity and probing the merger history of massive black holes with LISA”, Class. Quantum Grav., 22, S943–S954 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0504017].
43 Berti, E., Cardoso, V. and Starinets, A. O., “Quasinormal modes of black holes and black branes”, Class. Quantum Grav., 26, 163001 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0905.2975 [gr-qc]].
44 Bertotti, B., Iess, L. and Tortora, P., “A test of general relativity using radio links with the Cassini spacecraft”, Nature, 425, 374–376 (2003). [External LinkDOI], [External LinkADS].
45 Bezerra, V. B., Klimchitskaya, G. L., Mostepanenko, V. M. and Romero, C., “Constraints on non-Newtonian gravity from measuring the Casimir force in a configuration with nanoscale rectangular corrugations”, Phys. Rev. D, 83, 075004 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1103.0993 [hep-ph]].
46 Bhat, N. D. R., Bailes, M. and Verbiest, J. P. W., “Gravitational-radiation losses from the pulsar white-dwarf binary PSR J1141 6545”, Phys. Rev. D, 77, 124017 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0804.0956].
47 Bi, X.-J., Cao, Z., Li, Y. and Yuan, Q., “Testing Lorentz invariance with the ultrahigh energy cosmic ray spectrum”, Phys. Rev. D, 79, 083015 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0812.0121].
48 Biller, S. D. et al., “Limits to Quantum Gravity Effects on Energy Dependence of the Speed of Light from Observations of TeV Flares in Active Galaxies”, Phys. Rev. Lett., 83, 2108–2111 (1999). [External LinkDOI], [External LinkarXiv:gr-qc/9810044].
49 Bize, S. et al., “Testing the Stability of Fundamental Constants with 199Hg+ Single-Ion Optical Clock”, Phys. Rev. Lett., 90, 150802 (2003). [External LinkDOI], [External Linkphysics/0212109].
50 Blanchet, L., “Second-post-Newtonian generation of gravitational radiation”, Phys. Rev. D, 51, 2559–2583 (1995). [External LinkDOI], [External Linkgr-qc/9501030].
51 Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries”, Living Rev. Relativity, 17, lrr-2014-2 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1310.1528 [gr-qc]]. URL (accessed 28 March 2014):
52 Blanchet, L. and Damour, T., “Radiative gravitational fields in general relativity I. General structure of the field outside the source”, Philos. Trans. R. Soc. London, Ser. A, 320, 379–430 (1986). [External LinkDOI].
53 Blanchet, L. and Damour, T., “Tail-transported temporal correlations in the dynamics of a gravitating system”, Phys. Rev. D, 37, 1410–1435 (1988). [External LinkDOI].
54 Blanchet, L. and Damour, T., “Post-Newtonian generation of gravitational waves”, Ann. Inst. Henri Poincare A, 50, 377–408 (1989).
55 Blanchet, L. and Damour, T., “Hereditary effects in gravitational radiation”, Phys. Rev. D, 46, 4304–4319 (1992). [External LinkDOI].
56 Blanchet, L., Damour, T., Iyer, B. R., Will, C. M. and Wiseman, A. G., “Gravitational-Radiation Damping of Compact Binary Systems to Second Post-Newtonian Order”, Phys. Rev. Lett., 74, 3515–3518 (1995). [External LinkDOI], [External Linkgr-qc/9501027].
57 Blanchet, L. and Novak, J., “External field effect of modified Newtonian dynamics in the Solar system”, Mon. Not. R. Astron. Soc., 412, 2530–2542 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1010.1349 [astro-ph.CO]].
58 Blanchet, L. and Novak, J., “Testing MOND in the Solar System”, arXiv, e-print, (2011). [External LinkADS], [External LinkarXiv:1105.5815 [astro-ph.CO]].
59 Blanchet, L. and Sathyaprakash, B. S., “Signal analysis of gravitational wave tails”, Class. Quantum Grav., 11, 2807–2831 (1994). [External LinkDOI].
60 Blanchet, L. and Sathyaprakash, B. S., “Detecting the tail effect in gravitational wave experiments”, Phys. Rev. Lett., 74, 1067–1070 (1995). [External LinkDOI].
61 Blas, D., Pujolàs, O. and Sibiryakov, S., “Consistent extension of Hořava gravity”, Phys. Rev. Lett., 104, 181302 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0909.3525 [hep-th]].
62 Blas, D., Pujolàs, O. and Sibiryakov, S., “Models of non-relativistic quantum gravity: the good, the bad and the healthy”, J. High Energy Phys., 4, 18 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1007.3503 [hep-th]].
63 Blatt, S. et al., “New Limits on Coupling of Fundamental Constants to Gravity Using Sr87 Optical Lattice Clocks”, Phys. Rev. Lett., 100, 140801 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0801.1874 [physics.atom-ph]].
64 Bolton, A. S., Rappaport, S. and Burles, S., “Constraint on the post-Newtonian parameter γ on galactic size scales”, Phys. Rev. D, 74, 061501 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0607657].
65 Braginsky, V. B. and Panov, V. I., “Verification of the equivalence of inertial and gravitational mass”, Sov. Phys. JETP, 34, 463–466 (1972). [External LinkDOI].
66 Braxmaier, C. et al., “Astrodynamical Space Test of Relativity using Optical Devices I (ASTROD I) – a class-M fundamental physics mission proposal for cosmic vision 2015-2025: 2010 Update”, Exp. Astron., 34, 181–201 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1104.0060 [gr-qc]].
67 Brecher, K., “Is the speed of light independent of the velocity of the source?”, Phys. Rev. Lett., 39, 1051–1054 (1977). [External LinkDOI].
68 Breton, R. P. et al., “Relativistic Spin Precession in the Double Pulsar”, Science, 321, 104 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0807.2644].
69 Brillet, A. and Hall, J. L., “Improved laser test of the isotropy of space”, Phys. Rev. Lett., 42, 549–552 (1979). [External LinkDOI].
70 Brunetti, M., Coccia, E., Fafone, V. and Fucito, F., “Gravitational-wave radiation from compact binary systems in the Jordan–Brans–Dicke theory”, Phys. Rev. D, 59, 044027 (1999). [External LinkDOI], [External Linkgr-qc/9805056].
71 Burgay, M., “The double pulsar system in its 8th anniversary”, in Science with Parkes at 50 Years Young, 31 Oct. – 4 Nov., 2011, (ATNF / CSIRO, Australia, 2012). [External LinkADS], [External LinkarXiv:1210.0985 [astro-ph.IM]]. URL (accessed 5 June 2014):
External Link
72 Burgay, M. et al., “An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system”, Nature, 426, 531–533 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0312071 [astro-ph]].
73 Carlip, S., “Model-dependence of Shapiro time delay and the ‘speed of gravity/speed of light’ controversy”, Class. Quantum Grav., 21, 3803–3812 (2004). [External LinkDOI], [External Linkgr-qc/0403060].
74 Chamberlin, S. J. and Siemens, X., “Stochastic backgrounds in alternative theories of gravity: Overlap reduction functions for pulsar timing arrays”, Phys. Rev. D, 85, 082001 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.5661 [astro-ph.HE]].
75 Champeney, D. C., Isaak, G. R. and Khan, A. M., “An ‘aether drift’ experiment based on the Mössbauer effect”, Phys. Lett., 7, 241–243 (1963). [External LinkDOI].
76 Chand, H., Petitjean, P., Srianand, R. and Aracil, B., “Probing the time-variation of the fine-structure constant: Results based on Si IV doublets from a UVES sample”, Astron. Astrophys., 430, 47–58 (2005). [External LinkDOI], [External Linkastro-ph/0408200].
77 Chandrasekhar, S., “The Post-Newtonian Equations of Hydrodynamics in General Relativity.”, Astrophys. J., 142, 1488–1540 (1965). [External LinkDOI], [External LinkADS].
78 Chatziioannou, K., Yunes, N. and Cornish, N., “Model-independent test of general relativity: An extended post-Einsteinian framework with complete polarization content”, Phys. Rev. D, 86, 022004 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1204.2585 [gr-qc]].
79 Chiaverini, J., Smullin, S. J., Geraci, A. A., Weld, D. M. and Kapitulnik, A., “New experimental constraints on non-Newtonian forces below 100 μm”, Phys. Rev. Lett., 90, 151101 (2003). [External LinkDOI], [External Linkhep-ph/0209325].
80 Chou, C. W., Hume, D. B., Rosenband, T. and Wineland, D. J., “Optical Clocks and Relativity”, Science, 329, 1630–1633 (2010). [External LinkDOI], [External LinkADS].
81 Chupp, T. E., Hoare, R. J., Loveman, R. A., Oteiza, E. R., Richardson, J. M., Wagshul, M. E. and Thompson, A. K., “Results of a new test of local Lorentz invariance: A search for mass anisotropy in 21Ne”, Phys. Rev. Lett., 63, 1541–1545 (1989). [External LinkDOI].
82 Ciufolini, I., “The 1995–99 measurements of the Lense–Thirring effect using laser-ranged satellites”, Class. Quantum Grav., 17, 2369–2380 (2000). [External LinkDOI].
83 Ciufolini, I., Chieppa, F., Lucchesi, D. and Vespe, F., “Test of Lense–Thirring orbital shift due to spin”, Class. Quantum Grav., 14, 2701–2726 (1997). [External LinkDOI].
84 Ciufolini, I., Moreno Monge, B., Paolozzi, A., Koenig, R., Sindoni, G., Michalak, G. and Pavlis, E. C., “Monte Carlo simulations of the LARES space experiment to test General Relativity and fundamental physics”, Class. Quantum Grav., 30, 235009 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1310.2601 [gr-qc]].
85 Ciufolini, I., Paolozzi, A., Pavlis, E. C., Ries, J., Koenig, R., Matzner, R., Sindoni, G. and Neumeyer, H., “Testing gravitational physics with satellite laser ranging”, Eur. Phys. J. Plus, 126, 72 (2011). [External LinkDOI], [External LinkADS].
86 Ciufolini, I. and Pavlis, E. C., “A confirmation of the general relativistic prediction of the Lense–Thirring effect”, Nature, 431, 958–960 (2004). [External LinkDOI], [External LinkADS].
87 Ciufolini, I., Pavlis, E. C., Chieppa, F., Fernandes-Vieira, E. and Pérez-Mercader, J., “Test of general relativity and measurement of the Lense–Thirring effect with two Earth satellites”, Science, 279, 2100–2103 (1998). [External LinkDOI].
88 Ciufolini, I., Pavlis, E. C. and Peron, R., “Determination of frame-dragging using Earth gravity models from CHAMP and GRACE”, New Astron., 11, 527–550 (2006). [External LinkDOI], [External LinkADS].
89 Clifton, T., Barrow, J. D. and Scherrer, R. J., “Constraints on the variation of G from primordial nucleosynthesis”, Phys. Rev. D, 71, 123526 (2005). [External LinkDOI], [External Linkastro-ph/0504418].
90 Coc, A., Olive, K. A., Uzan, J.-P. and Vangioni, E., “Big bang nucleosynthesis constraints on scalar-tensor theories of gravity”, Phys. Rev. D, 73, 083525 (2006). [External LinkDOI], [External Linkastro-ph/0601299].
91 Coley, A., “Schiff’s Conjecture on Gravitation”, Phys. Rev. Lett., 49, 853–855 (1982). [External LinkDOI].
92 Colladay, D. and Kostelecký, V. A., “CPT violation and the standard model”, Phys. Rev. D, 55, 6760–6774 (1997). [External LinkDOI], [External LinkarXiv:hep-ph/9703464].
93 Colladay, D. and Kostelecký, V. A., “Lorentz-violating extension of the standard model”, Phys. Rev. D, 58, 116002 (1998). [External LinkDOI], [External LinkarXiv:hep-ph/9809521].
94 Copi, C. J., Davis, A. N. and Krauss, L. M., “New Nucleosynthesis Constraint on the Variation of G”, Phys. Rev. Lett., 92, 171301 (2004). [External LinkDOI], [External LinkarXiv:astro-ph/0311334].
95 Crelinsten, J., Einstein’s Jury: The Race to Test Relativity, (Princeton University Press, Princeton, 2006).
96 Creminelli, P., Nicolis, A., Papucci, M. and Trincherini, E., “Ghosts in massive gravity”, J. High Energy Phys., 2005, 003 (2005). [External LinkDOI], [External Linkhep-th/0505147].
97 Cutler, C. and Flanagan, É.É., “Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral wave form?”, Phys. Rev. D, 49, 2658–2697 (1994). [External LinkDOI], [External LinkarXiv:gr-qc/9402014].
98 Cutler, C., Hiscock, W. A. and Larson, S. L., “LISA, binary stars, and the mass of the graviton”, Phys. Rev. D, 67, 024015 (2003). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0209101].
99 Cutler, C. et al., “The Last Three Minutes: Issues in Gravitational-Wave Measurements of Coalescing Compact Binaries”, Phys. Rev. Lett., 70, 2984–2987 (1993). [External LinkDOI], [External Linkastro-ph/9208005].
100 Damour, T., “The problem of motion in Newtonian and Einsteinian gravity”, in Hawking, S. W. and Israel, W., eds., Three Hundred Years of Gravitation, pp. 128–198, (Cambridge University Press, Cambridge; New York, 1987). [External LinkADS].
101 Damour, T. and Dyson, F. J., “The Oklo bound on the time variation of the fine-structure constant revisited”, Nucl. Phys. B, 480, 37–54 (1996). [External LinkDOI], [External Linkhep-ph/9606486].
102 Damour, T. and Esposito-Farèse, G., “Tensor-multi-scalar theories of gravitation”, Class. Quantum Grav., 9, 2093–2176 (1992). [External LinkDOI], [External LinkADS].
103 Damour, T. and Esposito-Farèse, G., “Nonperturbative strong-field effects in tensor-scalar theories of gravitation”, Phys. Rev. Lett., 70, 2220–2223 (1993). [External LinkDOI], [External LinkADS].
104 Damour, T. and Esposito-Farèse, G., “Tensor-scalar gravity and binary-pulsar experiments”, Phys. Rev. D, 54, 1474–1491 (1996). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9602056].
105 Damour, T. and Esposito-Farèse, G., “Testing gravity to second post-Newtonian order: A field-theory approach”, Phys. Rev. D, 53, 5541–5578 (1996). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9506063].
106 Damour, T. and Esposito-Farèse, G., “Gravitational-wave versus binary-pulsar tests of strong-field gravity”, Phys. Rev. D, 58, 042001 (1998). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9803031].
107 Damour, T., Gopakumar, A. and Iyer, B. R., “Phasing of gravitational waves from inspiralling eccentric binaries”, Phys. Rev. D, 70, 064028 (2004). [External LinkDOI], [External Linkgr-qc/0404128].
108 Damour, T. and Iyer, B. R., “Post-Newtonian generation of gravitational waves. II. The spin moments”, Ann. Inst. Henri Poincare A, 54, 115–164 (1991).
109 Damour, T., Jaranowski, P. and Schäfer, G., “Poincaré invariance in the ADM Hamiltonian approach to the general relativistic two-body problem”, Phys. Rev. D, 62, 021501(R) (2000). [External Linkgr-qc/0003051]. Erratum: Phys. Rev. D, 63, 029903(E) (2001).
110 Damour, T., Jaranowski, P. and Schäfer, G., “Dimensional regularization of the gravitational interaction of point masses”, Phys. Lett. B, 513, 147–155 (2001). [External LinkDOI], [External Linkgr-qc/0105038].
111 Damour, T., Jaranowski, P. and Schäfer, G., “Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries”, Phys. Rev. D, 63, 044021 (2001). [External LinkDOI], [External Linkgr-qc/0010040]. Erratum: Phys. Rev. D, 66, 029901(E) (2002).
112 Damour, T. and Nordtvedt Jr, K. L., “General relativity as a cosmological attractor of tensor-scalar theories”, Phys. Rev. Lett., 70, 2217–2219 (1993). [External LinkDOI].
113 Damour, T. and Nordtvedt Jr, K. L., “Tensor-scalar cosmological models and their relaxation toward general relativity”, Phys. Rev. D, 48, 3436–3450 (1993). [External LinkDOI].
114 Damour, T., Piazza, F. and Veneziano, G., “Runaway dilaton and equivalence principle violations”, Phys. Rev. Lett., 89, 081601 (2002). [External LinkDOI], [External LinkarXiv:gr-qc/0204094].
115 Damour, T., Piazza, F. and Veneziano, G., “Violations of the equivalence principle in a dilaton-runaway scenario”, Phys. Rev. D, 66, 046007 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0205111].
116 Damour, T. and Pichon, B., “Big bang nucleosynthesis and tensor-scalar gravity”, Phys. Rev. D, 59, 123502 (1999). [External LinkDOI], [External Linkastro-ph/9807176].
117 Damour, T. and Polyakov, A. M., “The string dilaton and a least coupling principle”, Nucl. Phys. B, 423, 532–558 (1994). [External LinkDOI], [External LinkarXiv:hep-th/9401069].
118 Damour, T. and Schäfer, G., “New tests of the strong equivalence principle using binary-pulsar data”, Phys. Rev. Lett., 66, 2549–2552 (1991). [External LinkDOI].
119 Damour, T. and Taylor, J. H., “Strong-field tests of relativistic gravity and binary pulsars”, Phys. Rev. D, 45, 1840–1868 (1992). [External LinkDOI].
120 Damour, T. and Vokrouhlický, D., “Equivalence principle and the Moon”, Phys. Rev. D, 53, 4177–4201 (1996). [External LinkDOI], [External Linkgr-qc/9507016].
121 Daniel, S. F., Linder, E. V., Smith, T. L., Caldwell, R. R., Cooray, A., Leauthaud, A. and Lombriser, L., “Testing general relativity with current cosmological data”, Phys. Rev. D, 81, 123508 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1002.1962 [astro-ph.CO]].
122 De Felice, A. and Tsujikawa, S., “f(R) Theories”, Living Rev. Relativity, 13, lrr-2010-3 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1002.4928]. URL (accessed 28 March 2014):
123 de Rham, C., “Massive Gravity”, Living Rev. Relativity, forthcoming (2014). [External LinkADS], [External LinkarXiv:1401.4173 [hep-th]].
124 de Sitter, W., “On Einstein’s theory of gravitation and its astronomical consequences. Second paper”, Mon. Not. R. Astron. Soc., 77, 155–184 (1916). [External LinkADS].
125 Deffayet, C., Dvali, G., Gabadadze, G. and Vainshtein, A. I., “Nonperturbative continuity in graviton mass versus perturbative discontinuity”, Phys. Rev. D, 65, 044026 (2002). [External LinkDOI], [External LinkarXiv:hep-th/0106001].
126 Deller, A. T., Verbiest, J. P. W., Tingay, S. J. and Bailes, M., “Extremely High Precision VLBI Astrometry of PSR J0437-4715 and Implications for Theories of Gravity”, Astrophys. J. Lett., 685, L67–L70 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0808.1594].
127 Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E. and Hessels, J. W. T., “A two-solar-mass neutron star measured using Shapiro delay”, Nature, 467, 1081–1083 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1010.5788 [astro-ph.HE]].
128 Di Casola, E., Liberati, S. and Sonego, S., “Nonequivalence of equivalence principles”, arXiv, e-print, (2013). [External LinkADS], [External LinkarXiv:1310.7426 [gr-qc]].
129 Dick, R., “Inequivalence of Jordan and Einstein frame: What is the low energy gravity in string theory?”, Gen. Relativ. Gravit., 30, 435–444 (1998). [External LinkDOI].
130 Dicke, R. H., “Experimental relativity”, in DeWitt, C. M. and DeWitt, B. S., eds., Relativity, Groups and Topology. Relativité, Groupes et Topologie, Lectures delivered at Les Houches during the 1963 session of the Summer School of Theoretical Physics, University of Grenoble, pp. 165–313, (Gordon and Breach, New York; London, 1964).
131 Dicke, R. H., Gravitation and the Universe, Memoirs of the American Philosophical Society. Jayne Lecture for 1969, 78, (American Philosophical Society, Philadelphia, 1970).
132 Dickey, J. O. et al., “Lunar Laser Ranging: A Continuing Legacy of the Apollo Program”, Science, 265, 482–490 (1994). [External LinkDOI].
133 Doeleman, S. et al., “Imaging an Event Horizon: submm-VLBI of a Super Massive Black Hole”, in Astro2010: The Astronomy and Astrophysics Decadal Survey – Science White Papers, p. 68, (National Academy of Sciences, Washington, DC, 2009). [External LinkADS], [External LinkarXiv:0906.3899 [astro-ph.CO]]. URL (accessed 10 June 2014):
External Link
134 Dossett, J. N. and Ishak, M., “Spatial curvature and cosmological tests of general relativity”, Phys. Rev. D, 86, 103008 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1205.2422 [astro-ph.CO]].
135 Dossett, J. N., Ishak, M. and Moldenhauer, J., “Testing general relativity at cosmological scales: Implementation and parameter correlations”, Phys. Rev. D, 84, 123001 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1109.4583 [astro-ph.CO]].
136 Drever, R. W. P., “A search for anisotropy of inertial mass using a free precession technique”, Philos. Mag., 6, 683–687 (1961). [External LinkDOI].
137 Dyda, S., Flanagan, É. É. and Kamionkowski, M., “Vacuum instability in Chern-Simons gravity”, Phys. Rev. D, 86, 124031 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1208.4871 [gr-qc]].
138 Dyson, F. J., “The Fundamental Constants and Their Time Variation”, in Salam, A. and Wigner, E. P., eds., Aspects of Quantum Theory, pp. 213–236, (Cambridge University Press, Cambridge; New York, 1972). [External LinkGoogle Books].
139 Eardley, D. M., “Observable effects of a scalar gravitational field in a binary pulsar”, Astrophys. J. Lett., 196, L59–L62 (1975). [External LinkDOI], [External LinkADS].
140 Eddington, A. and Clark, G. L., “The Problem of n Bodies in General Relativity Theory”, Proc. R. Soc. London, Ser. A, 166, 465–475 (1938). [External LinkDOI], [External LinkADS].
141 Eddington, A. S., “The Propagation of Gravitational Waves”, Proc. R. Soc. London, Ser. A, 102, 268–282 (1922). [External LinkDOI], [External LinkADS].
142 Ehlers, J., Rosenblum, A., Goldberg, J. N. and Havas, P., “Comments on gravitational radiation damping and energy loss in binary systems”, Astrophys. J. Lett., 208, L77–L81 (1976). [External LinkDOI], [External LinkADS].
143 Einstein, A., “Näherungsweise Integration der Feldgleichungen der Gravitation”, Sitzungsber. K. Preuss. Akad. Wiss., Phys.-Math. Kl., 1916, 688–696 (1916). [External LinkADS]. Online version (accessed 5 June 2014):
External Link
144 Einstein, A., “Über Gravitationswellen”, Sitzungsber. K. Preuss. Akad. Wiss., 1918, 154–167 (1918). [External LinkADS].
145 Einstein, A., Infeld, L. and Hoffmann, B., “The Gravitational Equations and the Problem of Motion”, Ann. Math., 39, 65–100 (1938). [External LinkDOI], [External LinkADS].
146 Einstein, A. and Rosen, N., “On Gravitational Waves”, J. Franklin Inst., 223, 43–54 (1937). [External LinkDOI], [External LinkADS].
147 Eling, C. and Jacobson, T., “Static post-Newtonian equivalence of general relativity and gravity with a dynamical preferred frame”, Phys. Rev. D, 69, 064005 (2004). [External LinkDOI], [External Linkgr-qc/0310044].
148 Eötvös, R. v., Pekár, V. and Fekete, E., “Beitrage zum Gesetze der Proportionalität von Trägheit und Gravität”, Ann. Phys. (Leipzig), 68, 11–66 (1922). [External LinkDOI], [External LinkADS].
149 Everitt, C. W. F. et al., “Gravity Probe B: Final Results of a Space Experiment to Test General Relativity”, Phys. Rev. Lett., 106, 221101 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1105.3456 [gr-qc]].
150 Famaey, B. and McGaugh, S. S., “Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions”, Living Rev. Relativity, 15, lrr-2012-10 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1112.3960 [astro-ph.CO]]. URL (accessed 28 March 2014):
151 Farley, F. J. M., Bailey, J., Brown, R. C. A., Giesch, M., Jöstlein, H., van der Meer, S., Picasso, E. and Tannenbaum, M., “The Anomalous Magnetic Moment of the Negative Muon”, Nuovo Cimento, 45, 281–286 (1966). [External LinkDOI].
152 Fienga, A., Laskar, J., Kuchynka, P., Manche, H., Desvignes, G., Gastineau, M., Cognard, I. and Theureau, G., “The INPOP10a planetary ephemeris and its applications in fundamental physics”, Celest. Mech. Dyn. Astron., 111, 363–385 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1108.5546 [astro-ph.EP]].
153 Finn, L. S. and Chernoff, D. F., “Observing binary inspiral in gravitational radiation: One interferometer”, Phys. Rev. D, 47, 2198–2219 (1993). [External LinkDOI], [External LinkarXiv:gr-qc/9301003].
154 Finn, L. S. and Sutton, P. J., “Bounding the mass of the graviton using binary pulsar observations”, Phys. Rev. D, 65, 044022 (2002). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0109049].
155 Fischbach, E., Gillies, G. T., Krause, D. E., Schwan, J. G. and Talmadge, C. L., “Non-Newtonian gravity and new weak forces: An index of measurements and theory”, Metrologia, 29, 213–260 (1992). [External LinkDOI].
156 Fischbach, E., Sudarsky, D., Szafer, A., Talmadge, C. L. and Aronson, S. H., “Reanalysis of the Eötvös experiment”, Phys. Rev. Lett., 56, 3–6 (1986). [External LinkDOI]. Erratum: Phys. Rev. Lett. 56 (1986) 1427.
157 Fischbach, E. and Talmadge, C. L., “Six years of the fifth force”, Nature, 356, 207–215 (1992). [External LinkDOI].
158 Fischbach, E. and Talmadge, C. L., The Search for Non-Newtonian Gravity, (Springer, New York, 1998). [External LinkGoogle Books].
159 Fischer, M. et al., “New limits on the drift of fundamental constants from laboratory measurements”, Phys. Rev. Lett., 92, 230802 (2004). [External LinkDOI], [External Linkphysics/0312086].
160 Fock, V. A., The Theory of Space, Time and Gravitation, (Pergamon Press, Oxford; New York, 1964), 2nd rev. edition.
161 Fomalont, E., Kopeikin, S., Lanyi, G. and Benson, J., “Progress in Measurements of the Gravitational Bending of Radio Waves Using the VLBA”, Astrophys. J., 699, 1395–1402 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0904.3992 [astro-ph.CO]].
162 Fomalont, E. B. and Kopeikin, S. M., “The measurement of the light deflection from Jupiter: experimental results”, Astrophys. J., 598, 704–711 (2003). [External LinkDOI], [External Linkastro-ph/0302294].
163 Foster, B. Z. and Jacobson, T., “Post-Newtonian parameters and constraints on Einstein-aether theory”, Phys. Rev. D, 73, 064015 (2006). [External LinkDOI], [External LinkarXiv:gr-qc/0509083 [gr-qc]].
164 Freire, P. C. C. et al., “The relativistic pulsar–white dwarf binary PSR J1738+0333 – II. The most stringent test of scalar–tensor gravity”, Mon. Not. R. Astron. Soc., 423, 3328–3343 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1205.1450 [astro-ph.GA]].
165 Froeschlé, M., Mignard, F. and Arenou, F., “Determination of the PPN parameter γ with the Hipparcos data”, in Proceedings from the Hipparcos Venice ’97 Symposium, Held on 13 – 16 May 1997, (ESA, Noordwijk, Netherlands, 1997). URL (accessed 10 June 2014):
External Link
166 Fujii, Y., “Oklo Constraint on the Time-Variability of the Fine-Structure Constant”, in Karshenboim, S. G. and Peik, E., eds., Astrophysics, Clocks and Fundamental Constants, 302nd WE-Heraeus-Seminar, June 2003, Bad Honnef, Germany, Lecture Notes in Physics, 648, pp. 167–185, (Springer, Berlin; New York, 2004). [External Linkhep-ph/0311026].
167 Fujii, Y. and Maeda, K.-I., The Scalar–Tensor Theory of Gravitation, Cambridge Monographs on Mathematical Physics, (Cambridge University Press, Cambridge; New York, 2007). [External LinkADS].
168 Fujita, R., “Gravitational Waves from a Particle in Circular Orbits around a Schwarzschild Black Hole to the 22nd Post-Newtonian Order”, Prog. Theor. Phys., 128, 971–992 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1211.5535 [gr-qc]].
169 “Gaia: Science Home Page”, project homepage, ESA. URL (accessed 28 March 2014):
External Link
170 Gair, J. R., Vallisneri, M., Larson, S. L. and Baker, J. G., “Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors”, Living Rev. Relativity, 16, lrr-2013-7 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1212.5575 [gr-qc]]. URL (accessed 28 March 2014):
171 Gasperini, M., “On the response of gravitational antennas to dilatonic waves”, Phys. Lett. B, 470, 67–72 (1999). [External LinkDOI], [External Linkgr-qc/9910019].
172 Geraci, A. A., Smullin, S. J., Weld, D. M., Chiaverini, J. and Kapitulnik, A., “Improved constraints on non-Newtonian forces at 10 microns”, Phys. Rev. D, 78, 022002 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0802.2350 [hep-ex]].
173 Gleiser, R. J. and Kozameh, C. N., “Astrophysical limits on quantum gravity motivated birefringence”, Phys. Rev. D, 64, 083007 (2001). [External LinkDOI], [External LinkarXiv:gr-qc/0102093].
174 Godone, A., Novero, C. and Tavella, P., “Null gravitational redshift experiment with nonidentical atomic clocks”, Phys. Rev. D, 51, 319–323 (1995). [External LinkDOI].
175 Gopakumar, A. and Iyer, B. R., “Gravitational waves from inspiraling compact binaries: Angular momentum flux, evolution of the orbital elements and the waveform to the second post-Newtonian order”, Phys. Rev. D, 56, 7708–7731 (1997). [External LinkDOI], [External LinkarXiv:gr-qc/9710075].
176 Gourgoulhon, E., 3+1 Formalism in General Relativity: Bases of Numerical Relativity, Lecture Notes in Physics, 846, (Springer, Berlin; New York, 2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0703035 [gr-qc]].
177 “Gravity Probe B: Testing Einstein’s Universe”, project homepage, Stanford University. URL (accessed 28 March 2014):
External Link
178 Grishchuk, L. P. and Kopeikin, S. M., “The Motion of a Pair of Gravitating Bodies Including the Radiation Reaction Force”, Sov. Astron. Lett., 9, 230–232 (1983). [External LinkADS].
179 Guéna, J., Abgrall, M., Rovera, D., Rosenbusch, P., Tobar, M. E., Laurent, P., Clairon, A. and Bize, S., “Improved Tests of Local Position Invariance Using Rb87 and Cs133 Fountains”, Phys. Rev. Lett., 109, 080801 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1205.4235 [physics.atom-ph]].
180 Guenther, D. B., Krauss, L. M. and Demarque, P., “Testing the Constancy of the Gravitational Constant Using Helioseismology”, Astrophys. J., 498, 871–876 (1998). [External LinkDOI], [External LinkADS].
181 Haugan, M. P., “Energy conservation and the principle of equivalence”, Ann. Phys. (N.Y.), 118, 156–186 (1979). [External LinkDOI].
182 Haugan, M. P. and Lämmerzahl, C., “On the interpretation of Michelson–Morley experiments”, Phys. Lett. A, 282, 223–229 (2001). [External Linkgr-qc/0103052].
183 Haugan, M. P. and Lämmerzahl, C., “Principles of Equivalence: Their Role in Gravitation Physics and Experiments That Test Them”, in Lämmerzahl, C., Everitt, C. W. F. and Hehl, F. W., eds., Gyros, Clocks, Interferometers...: Testing Relativistic Gravity in Space, Proceedings of a meeting held at Bad Honnef, Germany, 21 – 7 August 1999, Lecture Notes in Physics, 562, pp. 195–212, (Springer, Berlin; New York, 2001). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0103067].
184 Haugan, M. P. and Will, C. M., “Modern tests of special relativity”, Phys. Today, 40, 69–76 (1987). [External LinkDOI].
185 Hawking, S. W., “Black holes in the Brans-Dicke Theory of gravitation”, Commun. Math. Phys., 25, 167–171 (1972). [External LinkDOI], [External LinkADS].
186 Hees, A., Folkner, W. M., Jacobson, R. A. and Park, R. S., “Constraints on MOND theory from radio tracking data of the Cassini spacecraft”, arXiv, e-print, (2014). [External LinkADS], [External LinkarXiv:1402.6950 [gr-qc]].
187 Hellings, R. W. and Nordtvedt Jr, K. L., “Vector-Metric Theory of Gravity”, Phys. Rev. D, 7, 3593–3602 (1973). [External LinkDOI].
188 Hinterbichler, K., “Theoretical aspects of massive gravity”, Rev. Mod. Phys., 84, 671–710 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1105.3735 [hep-th]].
189 Hojjati, A., Zhao, G.-B., Pogosian, L., Silvestri, A., Crittenden, R. and Koyama, K., “Cosmological tests of general relativity: A principal component analysis”, Phys. Rev. D, 85, 043508 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.3960 [astro-ph.CO]].
190 Hořava, P., “Quantum gravity at a Lifshitz point”, Phys. Rev. D, 79, 084008 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0901.3775 [hep-th]].
191 Horbatsch, M. W. and Burgess, C. P., “Cosmic black-hole hair growth and quasar OJ287”, J. Cosmol. Astropart. Phys., 2012(05), 010 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.4009 [gr-qc]].
192 Hoyle, C. D., Kapner, D. J., Heckel, B. R., Adelberger, E. G., Gundlach, J. H., Schmidt, U. and Swanson, H. E., “Submillimeter tests of the gravitational inverse-square law”, Phys. Rev. D, 70, 042004 (2004). [External LinkDOI], [External LinkarXiv:hep-ph/0405262].
193 Hoyle, C. D., Schmidt, U., Heckel, B. R., Adelberger, E. G., Gundlach, J. H., Kapner, D. J. and Swanson, H. E., “Submillimeter Test of the Gravitational Inverse-Square Law: A Search for ‘large’ Extra Dimensions”, Phys. Rev. Lett., 86, 1418–1421 (2001). [External LinkDOI], [External LinkarXiv:hep-ph/0011014].
194 Hughes, V. W., Robinson, H. G. and Beltran-Lopez, V., “Upper limit for the anisotropy of inertial mass from nuclear resonance experiments”, Phys. Rev. Lett., 4, 342–344 (1960). [External LinkDOI].
195 Hulse, R. A., “Nobel Lecture: The discovery of the binary pulsar”, Rev. Mod. Phys., 66, 699–710 (1994). [External LinkDOI].
196 Hulse, R. A. and Taylor, J. H., “Discovery of a pulsar in a binary system”, Astrophys. J. Lett., 195, L51–L53 (1975). [External LinkDOI], [External LinkADS].
197 Iorio, L., “On the reliability of the so-far performed tests for measuring the Lense–Thirring effect with the LAGEOS satellites”, New Astron., 10, 603–615 (2005). [External LinkDOI], [External Linkgr-qc/0411024].
198 Itoh, Y. and Futamase, T., “New derivation of a third post-Newtonian equation of motion for relativistic compact binaries without ambiguity”, Phys. Rev. D, 68, 121501(R) (2003). [External LinkDOI].
199 Ivanchik, A., Petitjean, P., Varshalovich, D., Aracil, B., Srianand, R., Chand, H., Ledoux, C. and Boissé, P., “A new constraint on the time dependence of the proton-to-electron mass ratio: Analysis of the Q 0347-383 and Q 0405-443 spectra”, Astron. Astrophys., 440, 45–52 (2005). [External LinkDOI], [External Linkastro-ph/0507174].
200 Ives, H. E. and Stilwell, G. R., “An experimental study of the rate of a moving atomic clock”, J. Opt. Soc. Am., 28, 215–226 (1938). [External LinkDOI].
201 Jackiw, R. and Pi, S.-Y., “Chern-Simons modification of general relativity”, Phys. Rev. D, 68, 104012 (2003). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0308071].
202 Jacobson, T., “Primordial Black Hole Evolution in Tensor-Scalar Cosmology”, Phys. Rev. Lett., 83, 2699–2702 (1999). [External LinkDOI], [External LinkADS], [External Linkastro-ph/9905303].
203 Jacobson, T., “Undoing the twist: The Hořava limit of Einstein-æther theory”, Phys. Rev. D, 89, 081501 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1310.5115 [gr-qc]].
204 Jacobson, T. and Mattingly, D., “Gravity with a dynamical preferred frame”, Phys. Rev. D, 64, 024028 (2001). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0007031].
205 Jacobson, T. and Mattingly, D., “Einstein-aether waves”, Phys. Rev. D, 70, 024003 (2004). [External LinkDOI], [External LinkarXiv:gr-qc/0402005 [gr-qc]].
206 Jaranowski, P. and Schäfer, G., “3rd post-Newtonian higher order Hamilton dynamics for two-body point-mass systems”, Phys. Rev. D, 57, 7274–7291 (1998). [External LinkDOI], [External Linkgr-qc/9712075]. Erratum: Phys. Rev. D, 63 (2001) 029902.
207 Jaranowski, P. and Schäfer, G., “Binary black-hole problem at the third post-Newtonian approximation in the orbital motion: Static part”, Phys. Rev. D, 60, 124003 (1999). [External LinkDOI], [External Linkgr-qc/9906092].
208 Jaseja, T. S., Javan, A., Murray, J. and Townes, C. H., “Test of special relativity or of the isotropy of space by use of infrared masers”, Phys. Rev., 133, A1221–A1225 (1964). [External LinkDOI].
209 Jones, D. I., “Bounding the Mass of the Graviton Using Eccentric Binaries”, Astrophys. J. Lett., 618, L115–L118 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0411123].
210 Kanekar, N., Langston, G. I., Stocke, J. T., Carilli, C. L. and Menten, K. M., “Constraining Fundamental Constant Evolution with H I and OH Lines”, Astrophys. J. Lett., 746, L16 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1201.3372 [astro-ph.CO]].
211 Kapner, D. J., Cook, T. S., Adelberger, E. G., Gundlach, J. H., Heckel, B. R., Hoyle, C. D. and Swanson, H. E., “Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale”, Phys. Rev. Lett., 98, 021101 (2007). [External LinkDOI], [External LinkADS], [External Linkhep-ph/0611184].
212 Katz, J. I., “Comment on ‘Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration”’, Phys. Rev. Lett., 83, 1892 (1999). [External LinkDOI], [External LinkADS], [External Linkgr-qc/9809070].
213 Kennefick, D., “Einstein versus the Physical Review”, Phys. Today, 58, 43–48 (2005). [External LinkDOI], [External LinkADS].
214 Kennefick, D., Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves, (Princeton University Press, Princeton; Woodstock, UK, 2007). [External LinkADS], [External LinkGoogle Books].
215 Kennefick, D., “Testing relativity from the 1919 eclipse – a question of bias”, Phys. Today, 62, 37 (2009). [External LinkDOI], [External LinkADS].
216 Khoury, J. and Weltman, A., “Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space”, Phys. Rev. Lett., 93, 171104 (2004). [External LinkDOI], [External LinkADS], [External Linkastro-ph/0309300].
217 King, J. A., Webb, J. K., Murphy, M. T., Flambaum, V. V., Carswell, R. F., Bainbridge, M. B., Wilczynska, M. R. and Koch, F. E., “Spatial variation in the fine-structure constant - new results from VLT/UVES”, Mon. Not. R. Astron. Soc., 422, 3370–3414 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1202.4758 [astro-ph.CO]].
218 Klimchitskaya, G. L., Mohideen, U. and Mostepanenko, V. M., “Constraints on corrections to Newtonian gravity from two recent measurements of the Casimir interaction between metallic surfaces”, Phys. Rev. D, 87, 125031 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1306.4979 [gr-qc]].
219 Kokkotas, K. D. and Schmidt, B. G., “Quasi-Normal Modes of Stars and Black Holes”, Living Rev. Relativity, 2, lrr-1999-2 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9909058]. URL (accessed 28 March 2014):
220 Konopliv, A. S., Asmar, S. W., Folkner, W. M., Karatekin, Ö., Nunes, D. C., Smrekar, S. E., Yoder, C. F. and Zuber, M. T., “Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters”, Icarus, 211, 401–428 (2011). [External LinkDOI], [External LinkADS].
221 Kopeikin, S. M., “Testing the relativistic effect of the propagation of gravity by very long baseline interferometry”, Astrophys. J. Lett., 556, L1–L5 (2001). [External LinkDOI], [External Linkgr-qc/0105060].
222 Kopeikin, S. M., “The post-Newtonian treatment of the VLBI experiment on September 8, 2002”, Phys. Lett. A, 312, 147–157 (2003). [External LinkDOI], [External Linkgr-qc/0212121].
223 Kopeikin, S. M., “The speed of gravity in general relativity and theoretical interpretation of the Jovian deflection experiment”, Class. Quantum Grav., 21, 3251–3286 (2004). [External LinkDOI], [External Linkgr-qc/0310059].
224 Kopeikin, S. M., “Comment on ‘Model-dependence of Shapiro time delay and the ‘speed of gravity/speed of light’ controversy”’, Class. Quantum Grav., 22, 5181 (2005). [External LinkDOI], [External Linkgr-qc/0501048].
225 Kopeikin, S. M., “Comments on ‘On the Speed of Gravity and the Jupiter/quasar Measurement’ by S. Samuel”, Int. J. Mod. Phys. D, 15, 273–288 (2006). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0501001].
226 Kopeikin, S. M. and Fomalont, E. B., “General relativistic model for experimental measurement of the speed of propagation of gravity by VLBI”, in Ros, E., Porcas, R. W., Lobanov, A. P. and Zensus, J. A., eds., Proceedings of the 6th European VLBI Network Symposium, June 25–28 2002, Bonn, Germany, pp. 49–52, (Max-Planck-Institut für Radioastronomie, Bonn, 2002). [External Linkgr-qc/0206022].
227 Kostelecký, V. A. and Lane, C. D., “Constraints on Lorentz violation from clock-comparison experiments”, Phys. Rev. D, 60, 116010 (1999). [External LinkDOI], [External LinkarXiv:hep-ph/9908504].
228 Kostelecký, V. A. and Mewes, M., “Signals for Lorentz violation in electrodynamics”, Phys. Rev. D, 66, 056005 (2002). [External LinkDOI], [External LinkarXiv:hep-ph/0205211].
229 Kostelecký, V. A. and Russell, N., “Data tables for Lorentz and CPT violation”, Rev. Mod. Phys., 83, 11–31 (2011). [External LinkDOI], [External LinkarXiv:0801.0287 [hep-ph]].
230 Kostelecký, V. A. and Samuel, S., “Gravitational phenomenology in higher-dimensional theories and strings”, Phys. Rev. D, 40, 1886–1903 (1989). [External LinkDOI].
231 Kramer, M., “Determination of the geometry of the PSR B1913+16 system by geodetic precession”, Astrophys. J., 509, 856–860 (1998). [External LinkDOI], [External Linkastro-ph/9808127].
232 Kramer, M. et al., “Tests of General Relativity from Timing the Double Pulsar”, Science, 314, 97–102 (2006). [External LinkDOI], [External LinkADS], [External LinkarXiv:astro-ph/0609417].
233 Krisher, T. P., Anderson, J. D. and Campbell, J. K., “Test of the gravitational redshift effect at Saturn”, Phys. Rev. Lett., 64, 1322–1325 (1990). [External LinkDOI].
234 Krisher, T. P., Maleki, L., Lutes, G. F., Primas, L. E., Logan, R. T., Anderson, J. D. and Will, C. M., “Test of the isotropy of the one-way speed of light using hydrogen-maser frequency standards”, Phys. Rev. D, 42, 731–734 (1990). [External LinkDOI].
235 Krisher, T. P., Morabito, D. D. and Anderson, J. D., “The Galileo solar redshift experiment”, Phys. Rev. Lett., 70, 2213–2216 (1993). [External LinkDOI].
236 Królak, A., Kokkotas, K. D. and Schäfer, G., “Estimation of the post-Newtonian parameters in the gravitational-wave emission of a coalescing binary”, Phys. Rev. D, 52, 2089–2111 (1995). [External Linkgr-qc/9503013].
237 Lambert, S. B. and Le Poncin-Lafitte, C., “Determining the relativistic parameter γ using very long baseline interferometry”, Astron. Astrophys., 499, 331–335 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.1615 [gr-qc]].
238 Lambert, S. B. and Le Poncin-Lafitte, C., “Improved determination of γ by VLBI”, Astron. Astrophys., 529, A70 (2011). [External LinkDOI], [External LinkADS].
239 Lämmerzahl, C., “The Einstein equivalence principle and the search for new physics”, in Giulini, D. J. W., Kiefer, C. and Lämmerzahl, C., eds., Quantum Gravity: From Theory to Experimental Search, Lecture Notes in Physics, 631, pp. 367–394, (Springer, Berlin; New York, 2003). [External LinkGoogle Books].
240 Lamoreaux, S. K., Jacobs, J. P., Heckel, B. R., Raab, F. J. and Fortson, E. N., “New limits on spatial anisotropy from optically-pumped 201Hg and 199Hg”, Phys. Rev. Lett., 57, 3125–3128 (1986). [External LinkDOI], [External LinkADS].
241 Lang, R. N., “Compact binary systems in scalar-tensor gravity. II. Tensor gravitational waves to second post-Newtonian order”, Phys. Rev. D, 89, 084014 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1310.3320 [gr-qc]].
242 Lazaridis, K. et al., “Generic tests of the existence of the gravitational dipole radiation and the variation of the gravitational constant”, Mon. Not. R. Astron. Soc., 400, 805–814 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0908.0285 [astro-ph.GA]].
243 Lebach, D. E., Corey, B. E., Shapiro, I. I., Ratner, M. I., Webber, J. C., Rogers, A. E. E., Davis, J. L. and Herring, T. A., “Measurement of the Solar Gravitational Deflection of Radio Waves Using Very-Long-Baseline Interferometry”, Phys. Rev. Lett., 75, 1439–1442 (1995). [External LinkDOI].
244 Lee, K., Jenet, F. A., Price, R. H., Wex, N. and Kramer, M., “Detecting Massive Gravitons Using Pulsar Timing Arrays”, Astrophys. J., 722, 1589–1597 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1008.2561 [astro-ph.HE]].
245 Lee, K. J., Jenet, F. A. and Price, R. H., “Pulsar Timing as a Probe of Non-Einsteinian Polarizations of Gravitational Waves”, Astrophys. J., 685, 1304–1319 (2008). [External LinkDOI], [External LinkADS].
246 Leefer, N., Weber, C. T. M., Cingöz, A., Torgerson, J. R. and Budker, D., “New Limits on Variation of the Fine-Structure Constant Using Atomic Dysprosium”, Phys. Rev. Lett., 111, 060801 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1304.6940 [physics.atom-ph]].
247 Lehner, L., “Numerical relativity: a review”, Class. Quantum Grav., 18, R25–R86 (2001). [External LinkDOI], [External Linkgr-qc/0106072].
248 Lentati, L. et al., “Variations in the fundamental constants in the QSO host J1148+5251 at z = 6.4 and the BR1202-0725 system at z = 4.7”, Mon. Not. R. Astron. Soc., 430, 2454–2463 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1211.3316 [astro-ph.CO]].
249 Levi-Civita, T., “Astronomical consequences of the relativistic two-body problem”, Am. J. Math., 59, 225–334 (1937). [External LinkDOI].
250 Li, T. G. F. et al., “Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations”, J. Phys.: Conf. Ser., 363, 012028 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1111.5274 [gr-qc]].
251 Liberati, S., “Tests of Lorentz invariance: a 2013 update”, Class. Quantum Grav., 30, 133001 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1304.5795 [gr-qc]].
252 Lightman, A. P. and Lee, D. L., “Restricted proof that the weak equivalence principle implies the Einstein equivalence principle”, Phys. Rev. D, 8, 364–376 (1973). [External LinkDOI].
253 Lineweaver, C. H., Tenorio, L., Smoot, G. F., Keegstra, P., Banday, A. J. and Lubin, P., “The dipole observed in the COBE DMR 4 year data”, Astrophys. J., 470, 38–42 (1996). [External LinkDOI].
254 Lipa, J. A., Nissen, J. A., Wang, S., Stricker, D. A. and Avaloff, D., “New limit on signals of Lorentz violation in electrodynamics”, Phys. Rev. Lett., 90, 060403 (2003). [External LinkDOI], [External Linkphysics/0302093].
255 Liu, K., Wex, N., Kramer, M., Cordes, J. M. and Lazio, T. J. W., “Prospects for probing the spacetime of Sgr A* with pulsars”, Astrophys. J., 747, 1 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1112.2151 [astro-ph.HE]].
256 Lobo, J. A., “Spherical GW detectors and geometry”, in Coccia, E., Veneziano, G. and Pizzella, G., eds., Second Edoardo Amaldi Conference on Gravitational Waves, Proceedings of the conference, held at CERN, Switzerland, 1 – 4 July, 1997, Edoardo Amaldi Foundation Series, pp. 168–179, (World Scientific, Singapore, 1998). [External LinkADS].
257 Long, J. C., Chan, H. W., Churnside, A. B., Gulbis, E. A., Varney, M. C. M. and Price, J. C., “Upper limits to submillimetre-range forces from extra space-time dimensions”, Nature, 421, 922–925 (2003). [External LinkDOI], [External Linkhep-ph/0210004].
258 Long, J. C., Chan, H. W. and Price, J. C., “Experimental status of gravitational-strength forces in the sub-centimeter regime”, Nucl. Phys. B, 539, 23–34 (1999). [External LinkDOI], [External Linkhep-ph/9805217].
259 LoPresto, J. C., Schrader, C. and Pierce, A. K., “Solar gravitational redshift from the infrared oxygen triplet”, Astrophys. J., 376, 757–760 (1991). [External LinkDOI].
260 Lorentz, H. A. and Droste, J., “The motion of a system of bodies under the influence of their mutual attraction, according to Einstein’s theory”, in The Collected Papers of H.A. Lorentz, Vol. 5, pp. 330–355, (Nijhoff, The Hague, 1937). [External LinkDOI], Translated from Versl. K. Akad. Wetensch. Amsterdam, 26, 392, 1917.
261 Lorimer, D. R., “Binary and Millisecond Pulsars”, Living Rev. Relativity, 11, lrr-2008-8 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0811.0762]. URL (accessed 28 March 2014):
262 Lucchesi, D. M. and Peron, R., “Accurate Measurement in the Field of the Earth of the General-Relativistic Precession of the LAGEOS II Pericenter and New Constraints on Non-Newtonian Gravity”, Phys. Rev. Lett., 105, 231103 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1106.2905 [gr-qc]].
263 Lucchesi, D. M. and Peron, R., “LAGEOS II pericenter general relativistic precession (1993-2005): Error budget and constraints in gravitational physics”, Phys. Rev. D, 89, 082002 (2014). [External LinkDOI], [External LinkADS].
264 Lynch, R. S. et al., “The Green Bank Telescope 350 MHz drift-scan survey II: Data analysis and the timing of 10 new pulsars, including a relativistic binary”, Astrophys. J., 763, 81 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1209.4296 [astro-ph.HE]].
265 Lyne, A. G. et al., “A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics”, Science, 303, 1153–1157 (2004). [External LinkDOI], [External LinkarXiv:astro-ph/0401086].
266 Maeda, K.-I., “On time variation of fundamental constants in superstring theories”, Mod. Phys. Lett. A, 3, 243–249 (1988). [External LinkDOI].
267 Maggiore, M. and Nicolis, A., “Detection strategies for scalar gravitational waves with interferometers and resonant spheres”, Phys. Rev. D, 62, 024004 (2000). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/9907055].
268 Magueijo, J., “New varying speed of light theories”, Rep. Prog. Phys., 66, 2025–2068 (2003). [External LinkDOI], [External LinkarXiv:astro-ph/0305457].
269 Malaney, R. A. and Mathews, G. J., “Probing the early universe: A review of primordial nucleosynthesis beyond the standard big bang”, Phys. Rep., 229, 147–219 (1993). [External LinkDOI].
270 Maleki, L. and Prestage, J. D., “SpaceTime Mission: Clock test of relativity at four solar radii”, in Lämmerzahl, C., Everitt, C. W. F. and Hehl, F. W., eds., Gyros, Clocks, and Interferometers...: Testing Relativistic Gravity in Space, Proceedings of a meeting held in Bad Honnef, Germany, August 21 – 27, 1999, Lecture Notes in Physics, 562, p. 369, (Springer, Berlin; New York, 2001).
271 Marion, H. et al., “A search for variations of fundamental constants using atomic fountain clock”, Phys. Rev. Lett., 90, 150801 (2003). [External LinkDOI], [External Linkphysics/0212112].
272 Marka, Z. and Marka, S., “Selected articles from ‘The 8th Edoardo Amaldi Conference on Gravitational Waves (Amaldi 8)’, Columbia University, New York, 22 – 26 June 2009”, Class. Quantum Grav., 27, 080301 (2010). [External LinkDOI].
273 Mattingly, D., “Modern Tests of Lorentz Invariance”, Living Rev. Relativity, 8, lrr-2005-5 (2005). [External LinkDOI], [External LinkADS], [External LinkarXiv:gr-qc/0502097]. URL (accessed 28 March 2014):
274 Mattingly, D. and Jacobson, T. A., “Relativistic Gravity with a Dynamical Preferred Frame”, in Kostelecký, V. A., ed., CPT and Lorentz Symmetry II, Proceedings of the Second Meeting, held at Indiana University, Bloomington, August 15–18, 2001, pp. 331–335, (World Scientific, Singapore; River Edge, 2002). [External Linkgr-qc/0112012].
275 Mecheri, R., Abdelatif, T., Irbah, A., Provost, J. and Berthomieu, G., “New values of gravitational moments J2 and J4 deduced from helioseismology”, Solar Phys., 222, 191–197 (2004). [External LinkDOI], [External LinkADS].
276 Mercuri, S. and Taveras, V., “Interaction of the Barbero-Immirzi field with matter and pseudoscalar perturbations”, Phys. Rev. D, 80, 104007 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.4407 [gr-qc]].
277 Merkowitz, S. M., “Tests of Gravity Using Lunar Laser Ranging”, Living Rev. Relativity, 13, lrr-2010-7 (2010). [External LinkDOI], [External LinkADS]. URL (accessed 28 March 2014):
278 Merlet, S., Bodart, Q., Malossi, N., Landragin, A., Pereira Dos Santos, F., Gitlein, O. and Timmen, L., “Comparison between two mobile absolute gravimeters: optical versus atomic interferometers”, Metrologia, 47, L9–L11 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1005.0357 [physics.atom-ph]].
279 Michelson, A. A. and Morley, E. W., “On the Relative Motion of the Earth and the Luminiferous Ether”, Am. J. Sci., 34, 333–345 (1887). [External LinkDOI]. Online version (accessed 28 March 2014):
External Link
280 “MICROSCOPE (MICRO-Satellite à traînée Compensée pour l’Observation du Principe d’Equivalence)”, project homepage, CNES. URL (accessed 28 March 2014):
External Link
281 Mignard, F., “Fundamental Physics with GAIA”, in Bienaymé, O. and Turon, C., eds., GAIA: A European Space Project, Summer School, held in Les Houches, France, 14 – 18 May 2001, EAS Publications Series, 2, pp. 107–121, (EDP Sciences, Les Ulis, 2002). [External LinkDOI], [External LinkADS].
282 Milani, A., Vokrouhlický, D., Villani, D., Bonanno, C. and Rossi, A., “Testing general relativity with the BepiColombo radio science experiment”, Phys. Rev. D, 66, 082001 (2002). [External LinkDOI].
283 Milgrom, M., “A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis”, Astrophys. J., 270, 365–370 (1983). [External LinkDOI], [External LinkADS].
284 Milgrom, M., “MOND effects in the inner Solar system”, Mon. Not. R. Astron. Soc., 399, 474–486 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0906.4817 [astro-ph.CO]].
285 Mino, Y., Sasaki, M., Shibata, M., Tagoshi, H. and Tanaka, T., “Black Hole Perturbation”, Prog. Theor. Phys. Suppl., 128, 1–121 (1997). [External LinkDOI], [External Linkgr-qc/9712057].
286 Mirshekari, S. and Will, C. M., “Compact binary systems in scalar-tensor gravity: Equations of motion to 2.5 post-Newtonian order”, Phys. Rev. D, 87, 084070 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1301.4680 [gr-qc]].
287 Mirshekari, S., Yunes, N. and Will, C. M., “Constraining Lorentz-violating, modified dispersion relations with gravitational waves”, Phys. Rev. D, 85, 024041 (2012). [External LinkDOI], [External LinkADS], [External LinkarXiv:1110.2720 [gr-qc]].
288 Mishra, C. K., Arun, K. G., Iyer, B. R. and Sathyaprakash, B. S., “Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope”, Phys. Rev. D, 82, 064010 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:1005.0304 [gr-qc]].
289 Misner, C. W., Thorne, K. S. and Wheeler, J. A., Gravitation, (W. H. Freeman, San Francisco, 1973). [External LinkADS].
290 Mitchell, T. and Will, C. M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. V. Evidence for the strong equivalence principle to second post-Newtonian order”, Phys. Rev. D, 75, 124025 (2007). [External LinkDOI], [External LinkADS], [External LinkarXiv:0704.2243 [gr-qc]].
291 Modenini, D. and Tortora, P., “Pioneer 10 and 11 orbit determination analysis shows no discrepancy with Newton-Einstein’s laws of gravity”, arXiv, e-print, (2013). [External LinkADS], [External LinkarXiv:1311.4978 [gr-qc]].
292 Moura, F. and Schiappa, R., “Higher-derivative-corrected black holes: perturbative stability and absorption cross section in heterotic string theory”, Class. Quantum Grav., 24, 361–386 (2007). [External LinkDOI], [External LinkADS], [External Linkhep-th/0605001].
293 Müller, H., Herrmann, S., Braxmaier, C., Schiller, S. and Peters, A., “Modern Michelson–Morley experiment using cryogenic optical resonators”, Phys. Rev. Lett., 91, 020401 (2003). [External LinkDOI], [External Linkphysics/0305117].
294 Müller, H., Peters, A. and Chu, S., “A precision measurement of the gravitational redshift by the interference of matter waves”, Nature, 463, 926–929 (2010). [External LinkDOI], [External LinkADS].
295 Müller, J., Schneider, M., Nordtvedt Jr, K. L. and Vokrouhlický, D., “What can LLR provide to relativity?”, in Piran, T., ed., The Eighth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Proceedings of the meeting held at the Hebrew University of Jerusalem, June 22–27, 1997, pp. 1151–1153, (World Scientific, Singapore, 1999).
296 Murphy, M. T., Webb, J. K., Flambaum, V. V., Dzuba, V. A., Churchill, C. W., Prochaska, J. X., Barrow, J. D. and Wolfe, A. M., “Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results”, Mon. Not. R. Astron. Soc., 327, 1208–1222 (2001). [External LinkDOI], [External Linkastro-ph/0012419].
297 Murphy, T. W. et al., “Laser ranging to the lost Lunokhod 1 reflector”, Icarus, 211, 1103–1108 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1009.5720 [astro-ph.EP]].
298 Murphy Jr, T. W., Adelberger, E. G., Battat, J. B. R., Hoyle, C. D., Johnson, N. H., McMillan, R. J., Stubbs, C. W. and Swanson, H. E., “APOLLO: millimeter lunar laser ranging”, Class. Quantum Grav., 29, 184005 (2012). [External LinkDOI], [External LinkADS].
299 Narayan, R. and McClintock, J. E., “Advection-dominated accretion and the black hole event horizon”, New Astron. Rev., 51, 733–751 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0803.0322].
300 Ni, W.-T., “Equivalence principles and electromagnetism”, Phys. Rev. Lett., 38, 301–304 (1977). [External LinkDOI].
301 Nishizawa, A., Taruya, A., Hayama, K., Kawamura, S. and Sakagami, M.-A., “Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers”, Phys. Rev. D, 79, 082002 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.0528 [astro-ph.CO]].
302 Nishizawa, A., Taruya, A. and Kawamura, S., “Cosmological test of gravity with polarizations of stochastic gravitational waves around 0.1–1 Hz”, Phys. Rev. D, 81, 104043 (2010). [External LinkDOI], [External LinkADS], [External LinkarXiv:0911.0525 [gr-qc]].
303 Nordström, G., “Zur Theorie der Gravitation vom Standpunkt des Relativitätsprinzips”, Ann. Phys. (Leipzig), 42, 533–554 (1913). [External LinkDOI].
304 Nordtvedt Jr, K. L., “Equivalence Principle for Massive Bodies. I. Phenomenology”, Phys. Rev., 169, 1014–1016 (1968). [External LinkDOI], [External LinkADS].
305 Nordtvedt Jr, K. L., “Equivalence Principle for Massive Bodies. II. Theory”, Phys. Rev., 169, 1017–1025 (1968). [External LinkDOI], [External LinkADS].
306 Nordtvedt Jr, K. L., “Existence of the gravitomagnetic interaction”, Int. J. Theor. Phys., 27, 1395–1404 (1988). [External LinkDOI].
307 Nordtvedt Jr, K. L., “Gravitomagnetic interaction and laser ranging to Earth satellites”, Phys. Rev. Lett., 61, 2647–2649 (1988). [External LinkDOI].
308 Nordtvedt Jr, K. L., “Ġ∕G and a cosmological acceleration of gravitationally compact bodies”, Phys. Rev. Lett., 65, 953–956 (1990). [External LinkDOI].
309 Nordtvedt Jr, K. L., “The Relativistic Orbit Observables in Lunar Laser Ranging”, Icarus, 114, 51–62 (1995). [External LinkDOI].
310 Nordtvedt Jr, K. L., “Testing Newton’s third law using lunar laser ranging”, Class. Quantum Grav., 18, L133–L137 (2001). [External LinkDOI].
311 Ohanian, H. C., “Comment on the Schiff Conjecture”, Phys. Rev. D, 10, 2041–2042 (1974). [External LinkDOI].
312 Olive, K. A., Pospelov, M., Qian, Y.-Z., Manhès, G., Vangioni-Flam, E., Coc, A. and Cassé, M., “Reexamination of the 187Re bound on the variation of fundamental couplings”, Phys. Rev. D, 69, 027701 (2004). [External LinkDOI], [External Linkastro-ph/0309252].
313 Palenzuela, C., Barausse, E., Ponce, M. and Lehner, L., “Dynamical scalarization of neutron stars in scalar-tensor gravity theories”, Phys. Rev. D, 89, 044024 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1310.4481 [gr-qc]].
314 Pani, P. and Cardoso, V., “Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-dilaton-Gauss-Bonnet black holes”, Phys. Rev. D, 79, 084031 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0902.1569 [gr-qc]].
315 Paolozzi, A. and Ciufolini, I., “LARES successfully launched in orbit: Satellite and mission description”, Acta Astronaut., 91, 313–321 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1305.6823 [astro-ph.IM]].
316 Pati, M. E. and Will, C. M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations: Foundations”, Phys. Rev. D, 62, 124015 (2000). [External LinkDOI], [External Linkgr-qc/0007087].
317 Pati, M. E. and Will, C. M., “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to second post-Newtonian order, and radiation reaction to 3.5 post-Newtonian order”, Phys. Rev. D, 65, 104008 (2002). [External LinkDOI], [External LinkADS], [External Linkgr-qc/0201001].
318 Peik, E., Lipphardt, B., Schnatz, H., Schneider, T. and Tamm, C., “Limit on the Present Temporal Variation of the Fine Structure Constant”, Phys. Rev. Lett., 93, 170801 (2004). [External LinkDOI], [External Linkphysics/0402132].
319 Peil, S., Crane, S., Hanssen, J. L., Swanson, T. B. and Ekstrom, C. R., “Tests of local position invariance using continuously running atomic clocks”, Phys. Rev. A, 87, 010102 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1301.6145 [physics.atom-ph]].
320 Petrov, Y. V., Nazarov, A. I., Onegin, M. S., Petrov, V. Y. and Sakhnovsky, E. G., “Natural nuclear reactor at Oklo and variation of fundamental constants: Computation of neutronics of a fresh core”, Phys. Rev. C, 74, 064610 (2006). [External LinkDOI], [External LinkADS], [External Linkhep-ph/0506186].
321 Pitjeva, E. V., “Relativistic Effects and Solar Oblateness from Radar Observations of Planets and Spacecraft”, Astron. Lett., 31, 340–349 (2005). [External LinkDOI], [External LinkADS].
322 Poisson, E., “Measuring black-hole parameters and testing general relativity using gravitational-wave data from space-based interferometers”, Phys. Rev. D, 54, 5939–5953 (1996). [External LinkDOI], [External Linkgr-qc/9606024].
323 Poisson, E. and Will, C. M., “Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian wave forms”, Phys. Rev. D, 52, 848–855 (1995). [External LinkDOI], [External LinkarXiv:gr-qc/9502040].
324 Poisson, E. and Will, C. M., Gravity: Newtonian, Post-Newtonian, Relativistic, (Cambridge University Press, Cambridge, 2014).
325 Prestage, J. D., Bollinger, J. J., Itano, W. M. and Wineland, D. J., “Limits for Spatial Anisotropy by Use of Nuclear-Spin–Polarized 9Be+ Ions”, Phys. Rev. Lett., 54, 2387–2390 (1985). [External LinkDOI].
326 Prestage, J. D., Tjoelker, R. L. and Maleki, L., “Atomic clocks and variation of the fine structure constant”, Phys. Rev. Lett., 74, 3511–3514 (1995). [External LinkDOI].
327 Psaltis, D., “Measurements of black hole spins and tests of strong-field general relativity”, in Kaaret, P., Lamb, F. K. and Swank, J. H., eds., X-Ray Timing 2003: Rossi and Beyond, Proceedings of the conference held 3–5 November 2003 in Cambridge, MA, AIP Conference Proceedings, 714, pp. 29–35, (American Institute of Physics, Melville, NY, 2004). [External Linkastro-ph/0402213].
328 Psaltis, D., “Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum”, Living Rev. Relativity, 11, lrr-2008-9 (2008). [External LinkDOI], [External LinkADS], [External LinkarXiv:0806.1531]. URL (accessed 28 March 2014):
329 Quast, R., Reimers, D. and Levshakov, S. A., “Probing the variability of the fine-structure constant with the VLT/UVES”, Astron. Astrophys., 415, L7–L11 (2004). [External LinkDOI], [External Linkastro-ph/0311280].
330 Randall, L. and Sundrum, R., “An Alternative to Compactification”, Phys. Rev. Lett., 83, 4690–4693 (1999). [External LinkDOI], [External LinkADS], [External LinkarXiv:hep-th/9906064].
331 Randall, L. and Sundrum, R., “Large Mass Hierarchy from a Small Extra Dimension”, Phys. Rev. Lett., 83, 3370–3373 (1999). [External LinkDOI], [External Linkhep-ph/9905221].
332 Ransom, S. M. et al., “A millisecond pulsar in a stellar triple system”, Nature, 505, 520–524 (2014). [External LinkDOI], [External LinkADS], [External LinkarXiv:1401.0535 [astro-ph.SR]].
333 Reasenberg, R. D. et al., “Viking relativity experiment: Verification of signal retardation by solar gravity”, Astrophys. J. Lett., 234, L219–L221 (1979). [External LinkDOI], [External LinkADS].
334 Reeves, H., “On the origin of the light elements (Z < 6)”, Rev. Mod. Phys., 66, 193–216 (1994). [External LinkDOI].
335 Reynaud, S., Salomon, C. and Wolf, P., “Testing General Relativity with Atomic Clocks”, Space Sci. Rev., 148, 233–247 (2009). [External LinkDOI], [External LinkADS], [External LinkarXiv:0903.1166 [quant-ph]].
336 Reynolds, C. S., “Measuring Black Hole Spin Using X-Ray Reflection Spectroscopy”, Space Sci. Rev. (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1302.3260 [astro-ph.HE]].
337 Reynolds, C. S., “The spin of supermassive black holes”, Class. Quantum Grav., 30, 244004 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1307.3246 [astro-ph.HE]].
338 Ries, J. C., Eanes, R. J., Tapley, B. D. and Peterson, G. E., “Prospects for an Improved Lense–Thirring Test with SLR and the GRACE Gravity Mission”, in Noomen, R., Klosko, S., Noll, C. and Pearlman, M., eds., 13th International Workshop on Laser Ranging, Proceedings from the Science Session and Full Proceedings CD-ROM, Washington, DC, October 07 – 11, 2002, NASA Conference Proceedings, 2003-212248, pp. 211–248. NASA, (2003). URL (accessed 28 March 2014):
External Link
339 Rievers, B. and Lämmerzahl, C., “High precision thermal modeling of complex systems with application to the flyby and Pioneer anomaly”, Ann. Phys. (Berlin), 523, 439–449 (2011). [External LinkDOI], [External LinkADS], [External LinkarXiv:1104.3985 [gr-qc]].
340 Riis, E., Anderson, L.-U. A., Bjerre, N., Poulson, O., Lee, S. A. and Hall, J. L., “Test of the Isotropy of the Speed of Light Using Fast-Beam Laser Spectroscopy”, Phys. Rev. Lett., 60, 81–84 (1988). [External LinkDOI].
341 Robertson, H. P., “The two-body problem in general relativity.”, Ann. Math., 39, 101–104 (1938). [External LinkDOI].
342 Roll, P. G., Krotkov, R. and Dicke, R. H., “The equivalence of inertial and passive gravitational mass”, Ann. Phys. (N.Y.), 26, 442–517 (1964). [External LinkDOI].
343 Rossi, B. and Hall, D. B., “Variation of the rate of decay of mesotrons with momentum”, Phys. Rev., 59, 223–228 (1941). [External LinkDOI].
344 Rozelot, J.-P. and Damiani, C., “History of solar oblateness measurements and interpretation”, Eur. Phys. J. H, 36, 407–436 (2011). [External LinkDOI], [External LinkADS].
345 Ryan, F. D., “Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments”, Phys. Rev. D, 52, 5707–5718 (1995). [External LinkDOI], [External LinkADS].
346 Sagi, E., “Preferred frame parameters in the tensor-vector-scalar theory of gravity and its generalization”, Phys. Rev. D, 80, 044032 (2009). [External LinkDOI], [External LinkADS], [External Link0905.4001 [gr-qc]].
347 Sampson, L., Yunes, N. and Cornish, N., “Rosetta stone for parametrized tests of gravity”, Phys. Rev. D, 88, 064056 (2013). [External LinkDOI], [External LinkADS], [External LinkarXiv:1307.8144 [gr-qc]].
348 Samuel, S., “On the speed of gravity and the v/c corrections to the Shapiro time delay”, Phys. Rev. Lett., 90, 231101 (2003). [External LinkDOI], [External Linkastro-ph/0304006].
349 Samuel, S., “On the Speed of Gravity and the Jupiter/quasar Measurement”, Int. J. Mod. Phys. D, 13, 1753–1770 (2004). [External LinkDOI], [External Linkastro-ph/0412401].
350 Santiago, D. I., Kalligas, D. and Wagoner, R. V., “Nucleosynthesis constraints on scalar-tensor theories of gravity”, Phys. Rev. D, 56, 7627–7637 (1997). [External LinkDOI].
351 Sasaki, M. and Tagoshi, H., “Analytic Black Hole Perturbation Approach to Gravitational Radiation”, Living Rev. Relativity, 6, lrr-2003-6 (2003). [External LinkDOI], [External LinkADS], [