References
* | 1 | Aasi, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Prospects for
Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo
Observatories”, arXiv, e-print, (2013). [![]() ![]() |
* | 2 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Predictions for the
rates of compact binary coalescences observable by ground-based gravitational-wave detectors”,
Class. Quantum Grav., 27, 173001 (2010). [![]() ![]() ![]() |
* | 3 | Abadie, J. et al. (LIGO Scientific Collaboration and Virgo Collaboration), “Search for
gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and
Virgo’s science runs 2 and 3”, Phys. Rev. D, 85, 082002 (2012). [![]() ![]() ![]() |
* | 4 | Abel, T., Bryan, G. L. and Norman, M. L., “The Formation of the First Star in the Universe”,
Science, 295, 93–98 (2002). [![]() ![]() ![]() |
* | 5 | Abt, H. A., “Normal and abnormal binary frequencies”, Annu. Rev. Astron. Astrophys., 21,
343–372 (1983). [![]() |
* | 6 | Acernese, F. et al. (VIRGO Collaboration), “The status of VIRGO”, Class. Quantum Grav.,
23, S63–S69 (2006). [![]() ![]() |
* | 7 | Ahmad, A. and Jeffery, C. S., “The evolution of helium-rich subdwarf-B stars”, Astrophys.
Space Sci., 291, 253–260 (2004). [![]() |
* | 8 | Alexander, M. E., Chau, W. Y. and Henriksen, R. N., “Orbital evolution of a singly
condensed, close binary, by mass loss from the primary and by accretion drag on the condensed
member”, Astrophys. J., 204, 879–888 (1976). [![]() ![]() |
* | 9 | Althaus, L. G., Miller Bertolami, M. M. and Córsico, A. H., “New evolutionary sequences
for extremely low-mass white dwarfs. Homogeneous mass and age determinations and
asteroseismic prospects”, Astron. Astrophys., 557, A19 (2013). [![]() ![]() ![]() |
* | 10 | Amaro-Seoane, P. et al., “Low-frequency gravitational-wave science with eLISA/NGO”, Class.
Quantum Grav., 29, 124016 (2012). [![]() ![]() ![]() |
* | 11 | Amaro-Seoane, P. et al., “eLISA: Astrophysics and cosmology in the millihertz regime”, GW
Notes, 6, 4–110 (2013). [![]() ![]() ![]() |
* | 12 | Anderson, S. B., Gorham, P. W., Kulkarni, S. R., Prince, T. A. and Wolszczan, A.,
“Discovery of two radio pulsars in the globular cluster M15”, Nature, 346, 42–44 (1990). [![]() |
* | 13 | Andersson, N. et al., “The transient gravitational-wave sky”, Class. Quantum Grav., 30,
193002 (2013). [![]() ![]() ![]() |
* | 14 | André, P. et al., “From filamentary clouds to prestellar cores to the stellar IMF: Initial
highlights from the Herschel Gould Belt Survey”, Astron. Astrophys., 518, L102 (2010). [![]() ![]() ![]() |
* | 15 | Ashok, N. M., “Infrared study of the first identified helium nova V445 Puppis”, Bull. Astr.
Soc. India, 33, 75 (2005). [![]() |
* | 16 | Astier, P. et al., “The Supernova Legacy Survey: measurement of ΩM, ΩΛ and w from the first
year data set”, Astron. Astrophys., 447, 31–48 (2006). [![]() ![]() ![]() |
* | 17 | Babak, S. and Grishchuk, L. P., “Energy-momentum tensor for the gravitational field”, Phys. Rev. D, 61, 024038 (2000). |
* | 18 | Badenes, C., Hughes, J. P., Bravo, E. and Langer, N., “Are the Models for Type Ia Supernova
Progenitors Consistent with the Properties of Supernova Remnants?”, Astrophys. J., 662,
472–486 (2007). [![]() ![]() |
* | 19 | Bagot, P., “On the progenitors of double neutron star systems”, Astron. Astrophys., 322, 533–544 (1997). |
* | 20 | Bailes, M., “Pulsar Velocities”, in van Paradijs, J., van den Heuvel, E. P. J. and Kuulkers, E.,
eds., Compact Stars in Binaries, Proceedings of IAU Symposium 165, 15 – 19 August 1994, The
Hague, Netherlands, IAU Symposium, 165, pp. 213–223, (Kluwer, Dordrecht, 1996). [![]() |
* | 21 | Bailyn, C. D. and Grindlay, J. E., “Neutron stars and millisecond pulsars from
accretion-induced collapse in globular clusters”, Astrophys. J., 353, 159–167 (1990). [![]() ![]() |
* | 22 | Bailyn, C. D., Jain, R. K., Coppi, P. and Orosz, J. A., “The Mass Distribution of Stellar
Black Holes”, Astrophys. J., 499, 367 (1998). [![]() ![]() ![]() |
* | 23 | Barish, B. C. and Weiss, R., “LIGO and the detection of gravitational waves”, Phys. Today,
52, 44–50 (1999). [![]() ![]() |
* | 24 | Barkat, Z., Reiss, Y. and Rakavy, G., “Stars in the mass range from 7 to 10 as candidates for
pulsar progenitors”, Astrophys. J. Lett., 193, L21–L23 (1974). [![]() |
* | 25 | Barkov, M. V., Bisnovatyi-Kogan, G. S. and Lamzin, S. A., “The Thermal Evolution of
Thorne–Zytkow Objects”, Astron. Rep., 45, 230–235 (2001). [![]() ![]() |
* | 26 | Barone-Nugent, R. L. et al., “Near-infrared observations of Type Ia supernovae: the best
known standard candle for cosmology”, Mon. Not. R. Astron. Soc., 425, 1007–1012 (2012).
[![]() ![]() ![]() |
* | 27 | Baryshev, Y. V. and Paturel, G., “Statistics of the detection rates for tensor and scalar
gravitational waves from the Local Galaxy universe”, Astron. Astrophys., 371, 378–392 (2001).
[![]() ![]() |
* | 28 | Bate, M. R., “Stellar, brown dwarf and multiple star properties from a radiation
hydrodynamical simulation of star cluster formation”, Mon. Not. R. Astron. Soc., 419,
3115–3146 (2012). [![]() ![]() ![]() |
* | 29 | Bear, E. and Soker, N., “Spinning-up the envelope before entering a common envelope phase”,
New Astronomy, 15, 483–490 (2010). [![]() ![]() ![]() |
* | 30 | Beer, M. E., Dray, L. M., King, A. R. and Wynn, G. A., “An alternative to common
envelope evolution”, Mon. Not. R. Astron. Soc., 375, 1000–1008 (2007). [![]() ![]() ![]() |
* | 31 | Behroozi, P. S., Ramirez-Ruiz, E. and Fryer, C. L., “Reinterpreting Short Gamma Ray Burst
Progenitor Kicks and Time Delays Using the Host Galaxy-Dark Matter Halo Connection”,
arXiv, e-print, (2014). [![]() ![]() |
* | 32 | Belczynski, K., Bulik, T. and Bailyn, C., “The Fate of Cyg X-1: An Empirical Lower Limit
on Black-hole-Neutron-star Merger Rate”, Astrophys. J. Lett., 742, L2 (2011). [![]() ![]() ![]() |
* | 33 | Belczynski, K., Bulik, T., Mandel, I., Sathyaprakash, B. S., Zdziarski, A. A. and
Mikołajewska, J., “Cyg X-3: A Galactic Double Black Hole or Black-hole-Neutron-star
Progenitor”, Astrophys. J., 764, 96 (2013). [![]() ![]() ![]() |
* | 34 | Belczynski, K., Kalogera, V. and Bulik, T., “A Comprehensive Study of Binary Compact
Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical
Properties”, Astrophys. J., 572, 407–431 (2002). [![]() ![]() |
* | 35 | Belczynski, K., Kalogera, V., Rasio, F. A., Taam, R. E., Zezas, A., Bulik, T., Maccarone,
T. J. and Ivanova, N., “Compact Object Modeling with the StarTrack Population Synthesis
Code”, Astrophys. J. Suppl. Ser., 174, 223–260 (2008). [![]() ![]() ![]() |
* | 36 | Belczynski, K. and Taam, R. E., “Galactic Populations of Ultracompact Binaries”, Astrophys.
J., 603, 690–696 (2004). [![]() ![]() |
* | 37 | Belczynski, K., Wiktorowicz, G., Fryer, C. L., Holz, D. E. and Kalogera, V., “Missing Black
Holes Unveil the Supernova Explosion Mechanism”, Astrophys. J., 757, 91 (2012). [![]() ![]() ![]() |
* | 38 | Belkus, H., Van Bever, J. and Vanbeveren, D., “The Evolution of Very Massive Stars”,
Astrophys. J., 659, 1576–1581 (2007). [![]() ![]() ![]() |
* | 39 | Benacquista, M. J. and Downing, J. M. B., “Relativistic Binaries in Globular Clusters”, Living
Rev. Relativity, 16, lrr-2013-4 (2013). [![]() ![]() ![]() http://www.livingreviews.org/lrr-2013-4. |
* | 40 | Bender, P. L., Begelman, M. C. and Gair, J. R., “Possible LISA follow-on mission scientific
objectives”, Class. Quantum Grav., 30, 165017 (2013). [![]() ![]() |
* | 41 | Benson, R. S., “Mass Exchange in Close Binaries: Accretion by the Secondary”, Bull. Am.
Astron. Soc., 2, 295 (1970). [![]() |
* | 42 | Benz, W., Bowers, R. L., Cameron, A. G. W. and Press, W. H., “Dynamic Mass Exchange
in Doubly Degenerate Binaries. I. 0.9 and 1.2 M⊙ Stars”, Astrophys. J., 348, 647–667 (1990).
[![]() ![]() |
* | 43 | Berger, E., Fong, W. and Chornock, R., “An r-process Kilonova Associated with the
Short-hard GRB 130603B”, Astrophys. J. Lett., 774, L23 (2013). [![]() ![]() ![]() |
* | 44 | Bethe, H. A. and Brown, G. E., “Evolution of Binary Compact Objects That Merge”,
Astrophys. J., 506, 780–789 (1998). [![]() |
* | 45 | Bhattacharya, D. and van den Heuvel, E. P. J., “Formation and evolution of binary and
millisecond radio pulsars”, Phys. Rep., 203, 1–124 (1991). [![]() ![]() |
* | 46 | Bianco, F. B. et al., “Constraining Type Ia Supernovae Progenitors from Three Years of
Supernova Legacy Survey Data”, Astrophys. J., 741, 20 (2011). [![]() ![]() ![]() |
* | 47 | Bildsten, L., “Propagation of nuclear burning fronts on accreting neutron stars: X-ray bursts
and sub-hertz noise”, Astrophys. J., 438, 852–875 (1995). [![]() ![]() |
* | 48 | Bildsten, L., Shen, K. J., Weinberg, N. N. and Nelemans, G., “Faint Thermonuclear
Supernovae from AM Canum Venaticorum Binaries”, Astrophys. J. Lett., 662, L95–L98 (2007).
[![]() ![]() ![]() |
* | 49 | Bildsten, L., Townsley, D. M., Deloye, C. J. and Nelemans, G., “The Thermal State of the
Accreting White Dwarf in AM Canum Venaticorum Binaries”, Astrophys. J., 640, 466–473
(2006). [![]() ![]() |
* | 50 | Birnholtz, O. and Piran, T., “Gravitational wave memory from gamma ray bursts’ jets”, Phys.
Rev. D, 87(12), 123007 (2013). [![]() ![]() ![]() |
* | 51 | Bisnovatyi-Kogan, G. S., Stellar Physics. Vol. 1: Fundamental Concepts and Stellar
Equilibrium, Astronomy and Astrophysics Library, (Springer, Berlin; New York, 2001). [![]() |
* | 52 | Bisnovatyi-Kogan, G. S., “Binary and recycled pulsars: 30 years after observational discovery”,
Phys. Usp., 176, 53–68 (2006). [![]() ![]() |
* | 53 | Bisnovatyi-Kogan, G. S., Stellar Physics. Vol. 2: Stellar Evolution and Stability, Astronomy
and Astrophysics Library, (Springer, Berlin; New York, 2011), 2nd edition. [![]() ![]() |
* | 54 | Bisnovatyi-Kogan, G. S. and Komberg, B. V., “Pulsars and close binary systems”, Sov. Astron., 18, 217–221 (1974). |
* | 55 | Blaauw, A., “On the origin of the O- and B-type stars with high velocities (the ‘run-away’ stars), and some related problems”, Bull. Astron. Inst. Neth., 15, 265–290 (1961). |
* | 56 | Blanchet, L., “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact
Binaries”, Living Rev. Relativity, 17, lrr-2014-2 (2014). [![]() ![]() ![]() http://www.livingreviews.org/lrr-2014-2. |
* | 57 | Bloom, J. S. et al., “A Compact Degenerate Primary-star Progenitor of SN 2011fe”, Astrophys.
J. Lett., 744, L17 (2012). [![]() ![]() ![]() |
* | 58 | Blundell, K. M., Bowler, M. G. and Schmidtobreick, L., “SS 433: Observation of the
Circumbinary Disk and Extraction of the System Mass”, Astrophys. J. Lett., 678, L47–L50
(2008). [![]() ![]() |
* | 59 | Boersma, J., “Mathematical theory of the two-body problem with one of the masses decreasing
with time”, Bull. Astron. Inst. Neth., 15, 291–301 (1961). [![]() |
* | 60 | Boffi, F. R. and Branch, D., “Radio Emission from Type Ia Supernovae as a Test of Symbiotic
Star Progenitor Systems”, Publ. Astron. Soc. Pac., 107, 347 (1995). [![]() ![]() |
* | 61 | Bogomazov, A. I., Lipunov, V. M. and Tutukov, A. V., “Evolution of close binaries and
gamma-ray bursts”, Astron. Rep., 51, 308–317 (2007). [![]() ![]() ![]() |
* | 62 | Bondi, H., “On spherically symmetrical accretion”, Mon. Not. R. Astron. Soc., 112, 195 (1952).
[![]() |
* | 63 | Botticella, M. T., Smartt, S. J., Kennicutt, R. C., Cappellaro, E., Sereno, M. and Lee, J. C.,
“A comparison between star formation rate diagnostics and rate of core collapse supernovae
within 11 Mpc”, Astron. Astrophys., 537, A132 (2012). [![]() ![]() ![]() |
* | 64 | Bours, M. C. P., Toonen, S. and Nelemans, G., “Single degenerate supernova type Ia
progenitors. Studying the influence of different mass retention efficiencies”, Astron. Astrophys.,
552, A24 (2013). [![]() ![]() |
* | 65 | Bours, M. C. P. et al., “Precise parameters for both white dwarfs in the eclipsing binary
CSS 41177”, Mon. Not. R. Astron. Soc., 438, 3399–3408 (2014). [![]() ![]() ![]() |
* | 66 | Bragaglia, A., Greggio, L., Renzini, A. and D’Odorico, S., “Double Degenerates among DA
white dwarfs”, Astrophys. J., 365, L13–L17 (1990). [![]() |
* | 67 | Branch, D., Livio, M., Yungelson, L. R., Boffi, F. R. and Baron, E., “In Search of the
Progenitors of Type Ia Supernovae”, Publ. Astron. Soc. Pac., 107, 1019–1029 (1995). [![]() ![]() |
* | 68 | Brandt, N. and Podsiadlowski, P., “The effects of high-velocity supernova kicks on the orbital properties and sky distributions of neutron-star binaries”, Mon. Not. R. Astron. Soc., 274, 461–484 (1995). |
* | 69 | Brott, I. et al., “Rotating massive main-sequence stars. I. Grids of evolutionary models and
isochrones”, Astron. Astrophys., 530, A115 (2011). [![]() ![]() ![]() |
* | 70 | Brown, G. E., Heger, A., Langer, N., Lee, C.-H., Wellstein, S. and Bethe, H. A., “Formation
of high mass X-ray black hole binaries”, New Astronomy, 6, 457–470 (2001). [![]() ![]() ![]() |
* | 71 | Brown, G. E., Lee, C.-H., Wijers, R. A. M. J. and Bethe, H. A., “Evolution of black holes in
the Galaxy”, Phys. Rep., 333, 471–504 (2000). [![]() ![]() |
* | 72 | Brown, W. R., Kilic, M., Allende Prieto, C., Gianninas, A. and Kenyon, S. J., “The ELM
Survey. V. Merging Massive White Dwarf Binaries”, Astrophys. J., 769, 66 (2013). [![]() ![]() ![]() |
* | 73 | Brown, W. R., Kilic, M., Hermes, J. J., Allende Prieto, C., Kenyon, S. J. and Winget, D. E.,
“A 12 Minute Orbital Period Detached White Dwarf Eclipsing Binary”, Astrophys. J. Lett.,
737, L23 (2011). [![]() ![]() ![]() |
* | 74 | Brumberg, V. A., Zel’dovich, Y. B., Novikov, I. D. and Shakura, N. I., “Component masses and inclination of binary systems containing a pulsar, determined from relativistic effects”, Sov. Astron. Lett., 1, 2–4 (1975). |
* | 75 | Bulik, T., Belczynski, K. and Prestwich, A., “IC10 X-1/NGC300 X-1: The Very Immediate
Progenitors of BH-BH Binaries”, Astrophys. J., 730, 140 (2011). [![]() ![]() ![]() |
* | 76 | Büning, A. and Ritter, H., “Numerical stability of mass transfer driven by Roche lobe overflow
in close binaries”, Astron. Astrophys., 445, 647–652 (2006). [![]() ![]() |
* | 77 | Burgay, M. et al., “An increased estimate of the merger rate of double neutron stars from
observations of a highly relativistic system”, Nature, 426, 531–533 (2003). [![]() ![]() ![]() |
* | 78 | Burgay, M. et al., “Long-Term Variations in the Pulse Emission from PSR J0737–3039B”,
Astrophys. J. Lett., 624, L113–L116 (2005). [![]() ![]() |
* | 79 | Burrows, A., “Colloquium: Perspectives on core-collapse supernova theory”, Rev. Mod. Phys.,
85, 245–261 (2013). [![]() ![]() ![]() |
* | 80 | Burrows, A. and Hayes, J., “Pulsar Recoil and Gravitational Radiation Due to Asymmetrical
Stellar Collapse and Explosion”, Phys. Rev. Lett., 76, 352–355 (1996). [![]() ![]() ![]() |
* | 81 | Burrows, A., Hubbard, W. B., Saumon, D. and Lunine, J. I., “An expanded set of brown dwarf
and very low mass star models”, Astrophys. J., 406, 158–171 (1993). [![]() ![]() |
* | 82 | Camilo, F. and Rasio, F. A., “Pulsars in Globular Clusters”, in Rasio, F. A. and Stairs, I. H.,
eds., Binary Radio Pulsars, Proceedings of a meeting held at the Aspen Center for Physics,
Colorado, USA, 12 – 16 January 2004, ASP Conference Series, 328, pp. 147–169, (Astronomical
Society of the Pacific, San Francisco, 2005). [![]() |
* | 83 | Canal, R., Isern, J. and Labay, J., “Neutron star formation by collapse of white dwarfs”, Space
Sci. Rev., 27, 595–600 (1980). [![]() ![]() |
* | 84 | Canal, R., Ruiz-Lapuente, P. and Burkert, A., “The Single-Degenerate Scenario for Type
Ia Supernovae in Cosmic Perspective”, Astrophys. J. Lett., 456, L101 (1996). [![]() ![]() ![]() |
* | 85 | Canal, R. and Schatzman, E., “Non explosive collapse of white dwarfs”, Astron. Astrophys.,
46, 229–235 (1976). [![]() |
* | 86 | Cappellaro, E., “The rate of supernovae”, Mem. Soc. Astron. Ital., 72, 863–866 (2001). [![]() |
* | 87 | Cappellaro, E. and Turatto, M., “Supernova Types and Rates”, in Vanbeveren, D., ed.,
The Influence of Binaries on Stellar Population Studies, Conference in Brussels, Belgium,
21 – 25 August 2000, Astrophysics and Space Science Library, 264, p. 199, (Kluwer Academic
Publishers, Dordrecht; Boston, 2001). [![]() |
* | 88 | Carter, P. J., Steeghs, D., Marsh, T. R., Kupfer, T., Copperwheat, C. M., Groot, P. J. and
Nelemans, G., “The AM Canum Venaticorum binary SDSS J173047.59+554518.5”, Mon. Not.
R. Astron. Soc., 437, 2894–2900 (2014). [![]() ![]() ![]() |
* | 89 | Carter, P. J. et al., “The helium-rich cataclysmic variable SBSS 1108+574”, Mon. Not. R.
Astron. Soc., 431, 372–382 (2013). [![]() ![]() ![]() |
* | 90 | Carter, P. J. et al., “A search for the hidden population of AM CVn binaries in the Sloan
Digital Sky Survey”, Mon. Not. R. Astron. Soc., 429, 2143–2160 (2013). [![]() ![]() ![]() |
* | 91 | Carter, P. J. et al., “Two new AM Canum Venaticorum binaries from the Sloan Digital Sky
Survey III”, Mon. Not. R. Astron. Soc., 439, 2848–2853 (2014). [![]() ![]() ![]() |
* | 92 | Cartwright, T. F., Engel, M. C., Heinke, C. O., Sivakoff, G. R., Berger, J. J., Gladstone,
J. C. and Ivanova, N., “Galactic Ultracompact X-Ray Binaries: Empirical Luminosities”,
Astrophys. J., 768, 183 (2013). [![]() |
* | 93 | Casares, J., Negueruela, I., Ribó, M., Ribas, I., Paredes, J. M., Herrero, A. and Simón-Díaz,
S., “A Be-type star with a black-hole companion”, Nature, 505, 378–381 (2014). [![]() ![]() ![]() |
* | 94 | Cassisi, S., Iben Jr, I. and Tornambe, A., “Hydrogen-accreting Carbon-Oxygen White Dwarfs”,
Astrophys. J., 496, 376 (1998). [![]() |
* | 95 | Chamel, N., Haensel, P., Zdunik, J. L. and Fantina, A. F., “On the Maximum Mass of Neutron
Stars”, Int. J. Mod. Phys. E, 22, 1330018 (2013). [![]() ![]() ![]() |
* | 96 | Champion, D. J., Lorimer, D. R., McLaughlin, M. A., Cordes, J. M., Arzoumanian, Z.,
Weisberg, J. M. and Taylor, J. H., “PSR J1829+2456: a relativistic binary pulsar”, Mon. Not.
R. Astron. Soc., 350, L61–L65 (2004). [![]() ![]() ![]() |
* | 97 | Chen, H.-L., Woods, T. E., Yungelson, L. R., Gilfanov, M. and Han, Z., “Next generation
population synthesis of accreting white dwarfs: I. Hybrid calculations using BSE + MESA”,
arXiv, e-print, (2014). [![]() ![]() |
* | 98 | Chen, M. C., Herwig, F., Denissenkov, P. A. and Paxton, B., “The dependence of the evolution
of SN type Ia progenitors on the C burning rate uncertainty and parameters of convective
boundary mixing”, arXiv, e-print, (2013). [![]() ![]() |
* | 99 | Cherepashchuk, A. M., “Masses of black holes in binary stellar systems”, Phys. Usp., 39,
759–780 (1996). [![]() ![]() |
* | 100 | Cherepashchuk, A. M., “Search for black holes”, Phys. Usp., 46, 335–371 (2003). [![]() ![]() |
* | 101 | Cherepashchuk, A. M., Sunyaev, R. A., Postnov, K. A., Antokhina, E. A. and Molkov, S. V.,
“Peculiar nature of hard X-ray eclipse in SS433 from INTEGRAL observations”, Mon. Not. R.
Astron. Soc., 397, 479–487 (2009). [![]() ![]() ![]() |
* | 102 | Chevalier, R. A., “The radio and X-ray emission from type II supernovae”, Astrophys. J., 259,
302–310 (1982). [![]() ![]() |
* | 103 | Chevalier, R. A., “Self-similar solutions for the interaction of stellar ejecta with an external
medium”, Astrophys. J., 258, 790–797 (1982). [![]() ![]() |
* | 104 | Chevalier, R. A., “Neutron star accretion in a stellar envelope”, Astrophys. J. Lett., 411,
L33–L36 (1993). [![]() ![]() |
* | 105 | Chevalier, R. A., “Common Envelope Evolution Leading to Supernovae with Dense
Interaction”, Astrophys. J. Lett., 752, L2 (2012). [![]() ![]() ![]() |
* | 106 | Chini, R., Hoffmeister, V. H., Nasseri, A., Stahl, O. and Zinnecker, H., “A spectroscopic survey
on the multiplicity of high-mass stars”, Mon. Not. R. Astron. Soc., 424, 1925–1929 (2012).
[![]() ![]() ![]() |
* | 107 | Chomiuk, L., “SN 2011fe: A Laboratory for Testing Models of Type Ia Supernovae”, Publ.
Astron. Soc. Australia, 30, e046 (2013). [![]() ![]() ![]() |
* | 108 | Chomiuk, L. and Povich, M. S., “Toward a Unification of Star Formation Rate Determinations
in the Milky Way and Other Galaxies”, Astron. J., 142, 197 (2011). [![]() ![]() ![]() |
* | 109 | Chugai, N. N., “Pulsar Space Velocities and Neutrino Chirality”, Sov. Astron. Lett., 10, 87 (1984). |
* | 110 | Chugai, N. N., “Circumstellar Na I and Ca II absorption lines of type Ia supernovae in the
symbiotic scenario”, Astron. Lett., 34, 389–396 (2008). [![]() ![]() ![]() |
* | 111 | Chugai, N. N. and Yungelson, L. R., “Type Ia supernovae in dense circumstellar gas”, Astron.
Lett., 30, 65–72 (2004). [![]() ![]() |
* | 112 | Claeys, J. S. W., Pols, O. R., Izzard, R. G., Vink, J. and Verbunt, F. W. M., “Theoretical
uncertainties of the Type Ia supernova rate”, Astron. Astrophys., 563, A83 (2014). [![]() ![]() ![]() |
* | 113 | Clark, J. P. A. and Eardley, D. M., “Evolution of close neutron star binaries”, Astrophys. J.,
215, 311–322 (1977). [![]() ![]() |
* | 114 | Clark, J. P. A., van den Heuvel, E. P. J. and Sutantyo, W., “Formation of neutron star binaries and their importance for gravitational radiation”, Astron. Astrophys., 72, 120–128 (1979). |
* | 115 | Close, L. M., Thatte, N., Nielsen, E. L., Abuter, R., Clarke, F. and Tecza, M., “New
Photometry and Spectra of AB Doradus C: An Accurate Mass Determination of a Young
Low-Mass Object with Theoretical Evolutionary Tracks”, Astrophys. J., 665, 736–743 (2007).
[![]() ![]() ![]() |
* | 116 | Colgate, S. A., “Neutron-Star Formation, Thermonuclear Supernovae, and Heavy-Element
Reimplosion”, Astrophys. J., 163, 221–230 (1971). [![]() ![]() |
* | 117 | Cooray, A., Farmer, A. J. and Seto, N., “The Optical Identification of Close White Dwarf
Binaries in the Laser Interferometer Space Antenna Era”, Astrophys. J. Lett., 601, L47–L50
(2004). [![]() ![]() |
* | 118 | Cornish, N. J. and Larson, S. L., “LISA data analysis: Source identification and subtraction”,
Phys. Rev. D, 67, 103001 (2003). [![]() ![]() ![]() |
* | 119 | Corongiu, A., Kramer, M., Stappers, B. W., Lyne, A. G., Jessner, A., Possenti, A., D’Amico,
N. and Löhmer, O., “The binary pulsar PSR J1811–1736: evidence of a low amplitude
supernova kick”, Astron. Astrophys., 462, 703–709 (2007). [![]() ![]() ![]() |
* | 120 | Corradi, R. L. M., “Close binary central stars of planetary nebulae and V458 Vul”, Mem. Soc.
Astron. Ital., 83, 811 (2012). [![]() |
* | 121 | Cox, J. P. and Giuli, R. T., Principles of Stellar Structure, (Gordon and Breach, New York, 1968). |
* | 122 | Crowder, J. and Cornish, N. J., “Beyond LISA: Exploring future gravitational wave missions”,
Phys. Rev. D, 72, 083005 (2005). [![]() ![]() ![]() |
* | 123 | Crowther, P. A., “Physical Properties of Wolf-Rayet Stars”, Annu. Rev. Astron. Astrophys.,
45, 177–219 (2007). [![]() ![]() ![]() |
* | 124 | Crowther, P. A., Barnard, R., Carpano, S., Clark, J. S., Dhillon, V. S. and Pollock, A. M. T.,
“NGC 300 X-1 is a Wolf-Rayet/black hole binary”, Mon. Not. R. Astron. Soc., 403, L41–L45
(2010). [![]() ![]() ![]() |
* | 125 | Crowther, P. A., Schnurr, O., Hirschi, R., Yusof, N., Parker, R. J., Goodwin, S. P. and Kassim,
H. A., “The R136 star cluster hosts several stars whose individual masses greatly exceed the
accepted 150M⊙ stellar mass limit”, Mon. Not. R. Astron. Soc., 408, 731–751 (2010). [![]() ![]() ![]() |
* | 126 | Cutler, C. and Thorne, K. S., “An Overview of Gravitational-Wave Sources”, in Bishop,
N. T. and Maharaj, S. D., eds., General Relativity and Gravitation, Proceedings of the 16th
International Conference on General Relativity and Gravitation, Durban, South Africa, 15 – 21
July, 2001, pp. 72–111, (World Scientific, Singapore; River Edge, NJ, 2002). [![]() |
* | 127 | Dale, D. A. et al., “The Wyoming Survey for Hα. II. Hα Luminosity Functions at z ≈ 0.16,
0.24, 0.32, and 0.40”, Astrophys. J. Lett., 712, L189–L193 (2010). [![]() ![]() ![]() |
* | 128 | Dan, M., Rosswog, S., Brüggen, M. and Podsiadlowski, P., “The structure and fate of
white dwarf merger remnants”, Mon. Not. R. Astron. Soc., 438, 14–34 (2014). [![]() ![]() ![]() |
* | 129 | Dan, M., Rosswog, S., Guillochon, J. and Ramirez-Ruiz, E., “Prelude to A Double Degenerate
Merger: The Onset of Mass Transfer and Its Impact on Gravitational Waves and Surface
Detonations”, Astrophys. J., 737, 89 (2011). [![]() ![]() ![]() |
* | 130 | Dan, M., Rosswog, S., Guillochon, J. and Ramirez-Ruiz, E., “How the merger of two white
dwarfs depends on their mass ratio: orbital stability and detonations at contact”, Mon. Not.
R. Astron. Soc., 422, 2417–2428 (2012). [![]() ![]() ![]() |
* | 131 | D’Antona, F., Ventura, P., Burderi, L. and Teodorescu, A., “Modeling the Closest Double
Degenerate System RX J0806.3+1527 and Its Decreasing Period”, Astrophys. J., 653,
1429–1434 (2006). [![]() ![]() ![]() |
* | 132 | Davydov, V. V., Esipov, V. F. and Cherepashchuk, A. M., “Spectroscopic monitoring of SS
433: A search for long-term variations of kinematic model parameters”, Astron. Rep., 52,
487–506 (2008). [![]() ![]() |
* | 133 | De Donder, E. and Vanbeveren, D., “The influence of binaries on galactic chemical evolution”,
New Astron. Rev., 48, 861–975 (2004). [![]() ![]() ![]() |
* | 134 | De Donder, E. and Vanbeveren, D., “The influence of neutron star mergers on the galactic
chemical enrichment of r-process elements”, New Astronomy, 9, 1–16 (2004). [![]() ![]() |
* | 135 | De Donder, E., Vanbeveren, D. and van Bever, J., “The number of O-type runaways, the
number of O and Wolf-Rayet stars with a compact companion and the formation rate of double
pulsars predicted by massive close binary evolution.”, Astron. Astrophys., 318, 812–818 (1997).
[![]() |
* | 136 | de Freitas Pacheco, J. A., Regimbau, T., Vincent, S. and Spallicci, A., “Expected coalescence
rates of NS-NS binaries for laser beam interferometers”, Int. J. Mod. Phys. D, 15, 235–250
(2006). [![]() ![]() ![]() |
* | 137 | De Greve, J. P. and Vanbeveren, D., “Close binary systems before and after mass transfer:
A comparison of observations and theory”, Astrophys. Space Sci., 68, 433–457 (1980). [![]() ![]() |
* | 138 | de Kool, M., “Common envelope evolution and double cores of planetary nebulae”, Astrophys.
J., 358, 189–195 (1990). [![]() |
* | 139 | De Marco, O., Passy, J.-C., Moe, M., Herwig, F., Mac Low, M.-M. and Paxton, B., “On the α
formalism for the common envelope interaction”, Mon. Not. R. Astron. Soc., 411, 2277–2292
(2011). [![]() ![]() ![]() |
* | 140 | De Marco, O., Sandquist, E. L., Mac Low, M.-M., Herwig, F. and Taam, R. E., “Wolf-Rayet
Central Stars and the Binary Evolution Channel”, in Reyes-Ruiz, M. and Vázquez-Semadeni,
E., eds., Energetics of Cosmic Plasmas, The eight Mexico-Texas Conference on Astrophysics,
held in Mexico City, Mexico, October 31 – November 2, 2002, Rev. Mex. Astron. Astrof. (SC),
18, pp. 24–30, (UNAM, Mexico City, 2003). [![]() |
* | 141 | de Val-Borro, M., Karovska, M. and Sasselov, D., “Numerical Simulations of Wind Accretion
in Symbiotic Binaries”, Astrophys. J., 700, 1148–1160 (2009). [![]() ![]() |
* | 142 | Deloye, C. J., Taam, R. E., Winisdoerffer, C. and Chabrier, G., “The thermal evolution of the
donors in AM Canum Venaticorum binaries”, Mon. Not. R. Astron. Soc., 381, 525–542 (2007).
[![]() ![]() |
* | 143 | Denissenkov, P. A., Herwig, F., Bildsten, L. and Paxton, B., “MESA Models of Classical Nova
Outbursts: The Multicycle Evolution and Effects of Convective Boundary Mixing”, Astrophys.
J., 762, 8 (2013). [![]() ![]() ![]() |
* | 144 | Dermine, T., Jorissen, A., Siess, L., Frankowski, A. and Dermine, T., “Radiation Pressure
Effect on the Roche Lobe”, in Prša, A. and Zejda, M., eds., Binaries – Key to Comprehension
of the Universe, Proceedings of a conference held June 8 – 12, 2009 in Brno, Czech Republic,
ASP Conference Series, 435, p. 85, (Astronomical Society of the Pacific, San Francisco, 2010).
[![]() |
* | 145 | Dessart, L., Blondin, S., Hillier, D. J. and Khokhlov, A., “Constraints on the explosion
mechanism and progenitors of type Ia supernovae”, arXiv, e-print, (2013). [![]() ![]() |
* | 146 | Dessart, L., Burrows, A., Ott, C. D., Livne, E., Yoon, S.-C. and Langer, N., “Multidimensional
Simulations of the Accretion-induced Collapse of White Dwarfs to Neutron Stars”, Astrophys.
J., 644, 1063–1084 (2006). [![]() ![]() |
* | 147 | Dewey, R. J. and Cordes, J. M., “Monte Carlo simulations of radio pulsars and their
progenitors”, Astrophys. J., 321, 780–798 (1987). [![]() |
* | 148 | Dewi, J. D. M. and Pols, O. R., “The late stages of evolution of helium star-neutron star
binaries and the formation of double neutron star systems”, Mon. Not. R. Astron. Soc., 344,
629–643 (2003). [![]() ![]() |
* | 149 | Dewi, J. D. M. and van den Heuvel, E. P. J., “The formation of the double neutron star pulsar
J0737-3039”, Mon. Not. R. Astron. Soc., 349, 169–172 (2004). [![]() |
* | 150 | Dhurandhar, S. V. and Tinto, M., “Time-Delay Interferometry”, Living Rev. Relativity, 8,
lrr-2005-4 (2005). [![]() ![]() http://www.livingreviews.org/lrr-2005-4. |
* | 151 | Di Stefano, R., “The Progenitors of Type Ia Supernovae. I. Are they Supersoft Sources?”,
Astrophys. J., 712, 728–733 (2010). [![]() ![]() |
* | 152 | Di Stefano, R. and Kilic, M., “The Absence of Ex-companions in Type Ia Supernova
Remnants”, Astrophys. J., 759, 56 (2012). [![]() ![]() ![]() |
* | 153 | Di Stefano, R., Voss, R. and Claeys, J. S. W., “Spin-up/Spin-down Models for Type Ia
Supernovae”, Astrophys. J. Lett., 738, L1 (2011). [![]() ![]() ![]() |
* | 154 | Domínguez, I., Piersanti, L., Bravo, E., Tornambé, A., Straniero, O. and Gagliardi, S.,
“Rotating Type Ia SN Progenitors: Explosion and Light Curves”, Astrophys. J., 644, 21–29
(2006). [![]() ![]() |
* | 155 | Domínguez, I., Piersanti, L., Straniero, O. and Tornambè, A., “Is the cosmological use of
SNe Ia reliable?”, Mem. Soc. Astron. Ital., 78, 549 (2007). [![]() |
* | 156 | Dominguez, I., Straniero, O., Tornambe, A. and Isern, J., “On the Formation of Massive C-O
White Dwarfs: The Lifting Effect of Rotation”, Astrophys. J., 472, 783 (1996). [![]() ![]() |
* | 157 | Dominik, M., Belczynski, K., Fryer, C. L., Holz, D. E., Berti, E., Bulik, T., Mandel, I. and
O’Shaughnessy, R., “Double Compact Objects. I. The Significance of the Common Envelope
on Merger Rates”, Astrophys. J., 759, 52 (2012). [![]() ![]() ![]() |
* | 158 | Dominik, M., Belczynski, K., Fryer, C. L., Holz, D. E., Berti, E., Bulik, T., Mandel, I. and
O’Shaughnessy, R., “Double Compact Objects. II. Cosmological Merger Rates”, Astrophys. J.,
779, 72 (2013). [![]() ![]() ![]() |
* | 159 | Dong, S., Katz, B., Kushnir, D. and Prieto, J. L., “Type Ia Supernovae with Bi-Modal
Explosions Are Common – Possible Smoking Gun for Direct Collisions of White-Dwarfs”, arXiv,
e-print, (2014). [![]() ![]() |
* | 160 | Dorofeev, O. F., Rodionov, V. N. and Ternov, I. M., “Anisotropic Neutrino Emission from Beta-Decays in a Strong Magnetic Field”, Sov. Astron. Lett., 11, 123 (1985). |
* | 161 | Downes, R. A., Webbink, R. F., Shara, M. M., Ritter, H., Kolb, U. and Duerbeck, H. W.,
“Catalog of Cataclysmic Variables (Downes+ 2001–2006)”, web interface to database,
Harvard-Smithsonian Center for Astrophysics, (2006). URL (accessed 17 March 2014): ![]() |
* | 162 | Downes, R. et al., “A Catalog and Atlas of Cataclysmic Variables”, project homepage, Space
Telescope Science Institute, (2006). URL (accessed 17 March 2014): ![]() |
* | 163 | Drake, A. J. et al., “Cataclysmic Variables from the Catalina Real-time Transient Survey”,
arXiv, e-print, (2014). [![]() ![]() |
* | 164 | Drake, J. J. and Sarna, M. J., “X-Ray Evidence of the Common Envelope Phase of V471
Tauri”, Astrophys. J. Lett., 594, L55–L58 (2003). [![]() |
* | 165 | Drout, M. R. et al., “The Fast and Furious Decay of the Peculiar Type Ic Supernova 2005ek”,
Astrophys. J., 774, 58 (2013). [![]() ![]() ![]() |
* | 166 | D’Souza, M. C. R., Motl, P. M., Tohline, J. E. and Frank, J., “Numerical Simulations of the
Onset and Stability of Dynamical Mass Transfer in Binaries”, Astrophys. J., 643, 381–401
(2006). [![]() ![]() ![]() |
* | 167 | Duchêne, G. and Kraus, A., “Stellar Multiplicity”, Annu. Rev. Astron. Astrophys., 51,
269–310 (2013). [![]() ![]() ![]() |
* | 168 | Duquennoy, A. and Mayor, M., “Multiplicity among solar-type stars in the solar neighbourhood.
II. Distribution of the orbital elements in an unbiased sample”, Astron. Astrophys., 248,
485–524 (1991). [![]() |
* | 169 | Durisen, R. H., “Viscous Effects in Rapidly Rotating Stars with Application to White-Dwarf
Models. II. Numerical Results”, Astrophys. J., 183, 215–232 (1973). [![]() ![]() |
* | 170 | Edlund, J. A., Tinto, M., Królak, A. and Nelemans, G., “White-dwarf–white-dwarf
galactic background in the LISA data”, Phys. Rev. D, 71, 122003 (2005). [![]() ![]() ![]() |
* | 171 | Eggleton, P., Evolutionary Processes in Binary and Multiple Stars, Cambridge Astrophysics
Series, 40, (Cambridge University Press, Cambridge; New York, 2006). [![]() |
* | 172 | Eggleton, P. P., “Approximations to the radii of Roche lobes”, Astrophys. J., 268, 368–369
(1983). [![]() |
* | 173 | Ekström, S. et al., “Grids of stellar models with rotation. I. Models from 0.8 to 120 M⊙
at solar metallicity (Z = 0.014)”, Astron. Astrophys., 537, A146 (2012). [![]() ![]() ![]() |
* | 174 | Endal, A. S. and Sofia, S., “The evolution of rotating stars. I - Method and exploratory
calculations for a 7-solar-mass star”, Astrophys. J., 210, 184–198 (1976). [![]() ![]() |
* | 175 | Epelstain, N., Yaron, O., Kovetz, A. and Prialnik, D., “A thousand and one nova outbursts”,
Mon. Not. R. Astron. Soc., 374, 1449–1456 (2007). [![]() ![]() ![]() |
* | 176 | Ergma, E. and van den Heuvel, E. P. J., “On the initial progenitor masses of stellar mass
black holes and neutron stars”, Astron. Astrophys., 331, L29–L32 (1998). [![]() |
* | 177 | Ergma, E. and Yungelson, L. R., “CYG X-3: can the compact object be a black hole?”, Astron. Astrophys., 333, 151–158 (1998). |
* | 178 | Espinosa Lara, F. and Rieutord, M., “Self-consistent 2D models of fast-rotating early-type
stars”, Astron. Astrophys., 552, A35 (2013). [![]() ![]() ![]() |
* | 179 | Esposito, P., Israel, G. L., Sidoli, L., Mapelli, M., Zampieri, L. and Motta, S. E., “Discovery
of a 6.4 h black hole binary in NGC 4490”, Mon. Not. R. Astron. Soc., 436, 3380–3387 (2013).
[![]() ![]() ![]() |
* | 180 | Evans, C. R., Iben Jr, I. and Smarr, L. L., “Degenerate dwarf binaries as promising, detectable
sources of gravitational radiation”, Astrophys. J., 323, 129–139 (1987). [![]() ![]() |
* | 181 | Faber, J. A. and Rasio, F. A., “Binary Neutron Star Mergers”, Living Rev. Relativity, 15,
lrr-2012-8 (2012). [![]() ![]() ![]() http://www.livingreviews.org/lrr-2012-8. |
* | 182 | Fabian, A. C., Pringle, J. E. and Rees, M. J., “Tidal capture formation of binary systems and
X-ray sources in globular clusters”, Mon. Not. R. Astron. Soc., 172, 15–18 (1975). [![]() |
* | 183 | Fabrika, S., “The jets and supercritical accretion disk in SS433”, Astrophys. Space Phys. Rev.,
12, 1–152 (2004). [![]() ![]() |
* | 184 | Fadeyev, Y. A. and Novikova, M. F., “Radial Pulsations of Helium Stars with Masses from 1
to 10M⊙”, Astron. Lett., 29, 522–529 (2003). [![]() ![]() |
* | 185 | Fadeyev, Y. A. and Novikova, M. F., “Radial Pulsations of Helium Stars with Masses from 10
to 50M⊙”, Astron. Lett., 30, 707–714 (2004). [![]() ![]() |
* | 186 | Falcon, R. E., Winget, D. E., Montgomery, M. H. and Williams, K. A., “A Gravitational
Redshift Determination of the Mean Mass of White Dwarfs: DBA and DB Stars”, Astrophys.
J., 757, 116 (2012). [![]() ![]() ![]() |
* | 187 | Faller, J. E., Bender, P. L., Hall, J. L., Hils, D., Stebbins, R. T. and Vincent, M. A., “An
antenna for laser gravitational-wave observations in space”, Adv. Space Res., 9, 107–111 (1989).
[![]() ![]() |
* | 188 | Farmer, A. J. and Phinney, E. S., “The gravitational wave background from cosmological
compact binaries”, Mon. Not. R. Astron. Soc., 346, 1197–1214 (2003). [![]() ![]() ![]() |
* | 189 | Farr, W. M., Sravan, N., Cantrell, A., Kreidberg, L., Bailyn, C. D., Mandel, I. and Kalogera,
V., “The Mass Distribution of Stellar-mass Black Holes”, Astrophys. J., 741, 103 (2011). [![]() ![]() ![]() |
* | 190 | Faucher-Giguère, C.-A. and Kaspi, V. M., “Birth and Evolution of Isolated Radio Pulsars”,
Astrophys. J., 643, 332–355 (2006). [![]() ![]() ![]() |
* | 191 | Faucher-Giguère, C.-A. and Loeb, A., “Pulsar-black hole binaries in the Galactic Centre”,
Mon. Not. R. Astron. Soc., 415, 3951–3961 (2011). [![]() ![]() ![]() |
* | 192 | Faulkner, A. J. et al., “The Parkes Multibeam Pulsar Survey – V. Finding binary and
millisecond pulsars”, Mon. Not. R. Astron. Soc., 355, 147–158 (2004). [![]() |
* | 193 | Faulkner, A. J. et al., “PSR J1756–2251: A New Relativistic Double Neutron Star System”,
Astrophys. J. Lett., 618, L119–L122 (2005). [![]() |
* | 194 | Faulkner, J., “Ultrashort-Period Binaries, Gravitational Radiation, and Mass Transfer. I. The
Standard Model, with Applications to WZ Sagittae and Z Camelopardalis”, Astrophys. J., 170,
L99–L104 (1971). [![]() ![]() |
* | 195 | Faulkner, J., Flannery, B. P. and Warner, B., “Ultrashort-period binaries. II. HZ 29 (= AM
CVn): A double-white-dwarf semidetached postcataclysmic nova?”, Astrophys. J., 175, L79
(1972). [![]() |
* | 196 | Fedorova, A. V., Tutukov, A. V. and Yungelson, L. R., “Type Ia Supernovae in semi-detached
binary systems”, Astron. Lett., 30, 73–85 (2004). [![]() ![]() |
* | 197 | Fender, R. and Belloni, T., “GRS 1915+105 and the Disc-Jet Coupling in Accreting
Black Hole Systems”, Annu. Rev. Astron. Astrophys., 42, 317–364 (2004). [![]() ![]() ![]() |
* | 198 | Ferdman, R. D. et al., “The Double Pulsar: Evidence for Neutron Star Formation without an
Iron Core-collapse Supernova”, Astrophys. J., 767, 85 (2013). [![]() ![]() |
* | 199 | Fink, M., Röpke, F. K., Hillebrandt, W., Seitenzahl, I. R., Sim, S. A. and Kromer,
M., “Double-detonation sub-Chandrasekhar supernovae: can minimum helium shell masses
detonate the core?”, Astron. Astrophys., 514, A53 (2010). [![]() ![]() |
* | 200 | Flanagan, É.É. and Hughes, S. A., “Measuring gravitational waves from binary black hole
coalescences. I. Signal to noise for inspiral, merger, and ringdown”, Phys. Rev. D, 57, 4535–4565
(1998). [![]() ![]() ![]() |
* | 201 | Flannery, B. P. and van den Heuvel, E. P. J., “On the origin of the binary pulsar PSR 1913+16”, Astron. Astrophys., 39, 61–67 (1975). |
* | 202 | Foellmi, C. and Moffat, A. F. J., “Are Peculiar Wolf-Rayet Stars of Type WN8 Thorne-Zytkow
Objects?”, in Shara, M. M., ed., Stellar Collisions, Mergers and their Consequences,
Proceedings of Symposium held at the American Museum of Natural History, New York City,
NY, USA, May 30 – June 2, 2000, ASP Conference Series, 263, pp. 123–129, (Astronomical
Society of the Pacific, San Francisco, 2002). [![]() ![]() |
* | 203 | Foley, R. J. et al., “Type Iax Supernovae: A New Class of Stellar Explosion”, Astrophys. J.,
767, 57 (2013). [![]() ![]() ![]() |
* | 204 | Fong, W. and Berger, E., “The Locations of Short Gamma-Ray Bursts as Evidence for Compact
Object Binary Progenitors”, Astrophys. J., 776, 18 (2013). [![]() ![]() ![]() |
* | 205 | For, B.-Q. and Green, E. M., “Monte Carlo simulations of post-common envelope sdB star
plus white dwarf binaries”, Baltic Astron., 15, 183–186 (2006). [![]() |
* | 206 | Foss, D., Wade, R. A. and Green, R. F., “Limits on the space density of double degenerates
as type Ia supernova progenitors”, Astrophys. J., 374, 281–287 (1991). [![]() ![]() |
* | 207 | Foucart, F. et al., “Black-hole–neutron-star mergers at realistic mass ratios: Equation of state
and spin orientation effects”, Phys. Rev. D, 87, 084006 (2013). [![]() ![]() |
* | 208 | Fragos, T., Willems, B., Ivanova, N. and Kalogera, V., “Black Hole Formation in X-Ray
Binaries: The Case of XTE J1118+480”, in Di Salvo, T. et al., eds., The Multicolored
Landscape of Compact Objects and Their Explosive Origins, Proceedings of conference held
in Cefalu, Sicily, Italy, 11 – 18 and 19 – 24 June 2006, AIP Conference Proceedings, 924, pp.
673–676, (American Institute of Physics, Melville, 2007). [![]() ![]() ![]() |
* | 209 | Frieman, J. A. et al., “The Sloan Digital Sky Survey-II Supernova Survey: Technical
Summary”, Astron. J., 135, 338–347 (2008). [![]() ![]() ![]() |
* | 210 | Fryer, C. L., “Mass Limits For Black Hole Formation”, Astrophys. J., 522, 413–418 (1999).
[![]() ![]() ![]() |
* | 211 | Fryer, C. L., ed., Stellar Collapse, Proceedings of ‘Core Collapse of Massive Stars’, 200th AAS meeting, Albuquerque, NM, June 2002, Astrophysics and Space Science Library, 302, (Kluwer Academic Publishers, Dordrecht; Boston, 2004). |
* | 212 | Fryer, C. L., “Compact object formation and the supernova explosion engine”, Class. Quantum
Grav., 30(24), 244002 (2013). [![]() ![]() ![]() |
* | 213 | Fryer, C. L., Belczynski, K., Wiktorowicz, G., Dominik, M., Kalogera, V. and Holz, D. E.,
“Compact Remnant Mass Function: Dependence on the Explosion Mechanism and Metallicity”,
Astrophys. J., 749, 91 (2012). [![]() ![]() ![]() |
* | 214 | Fryer, C. L., Burrows, A. and Benz, W., “Population Syntheses for Neutron Star Systems with
Intrinsic Kicks”, Astrophys. J., 496, 333 (1998). [![]() ![]() |
* | 215 | Fryer, C. L. and Kalogera, V., “Theoretical Black Hole Mass Distributions”, Astrophys. J.,
554, 548–560 (2001). [![]() ![]() |
* | 216 | Fryer, C. L. and New, K. C. B., “Gravitational Waves from Gravitational Collapse”, Living
Rev. Relativity, 14, lrr-2011-1 (2011). [![]() ![]() http://www.livingreviews.org/lrr-2011-1. |
* | 217 | Fukugita, M. and Peebles, P. J. E., “The Cosmic Energy Inventory”, Astrophys. J., 616,
643–668 (2004). [![]() ![]() ![]() |
* | 218 | Fuller, J. and Lai, D., “Tidal Novae in Compact Binary White Dwarfs”, Astrophys. J. Lett.,
756, L17 (2012). [![]() ![]() ![]() |
* | 219 | Fuller, J. and Lai, D., “Dynamical tides in compact white dwarf binaries: helium core white
dwarfs, tidal heating and observational signatures”, Mon. Not. R. Astron. Soc., 430, 274–287
(2013). [![]() ![]() ![]() |
* | 220 | “Gaia”, project homepage, European Space Agency. URL (accessed 29 April 2014): ![]() |
* | 221 | Gair, J. R., Vallisneri, M., Larson, S. L. and Baker, J. G., “Testing General Relativity
with Low-Frequency, Space-Based Gravitational-Wave Detectors”, Living Rev. Relativity, 16,
lrr-2013-7 (2013). [![]() ![]() ![]() http://www.livingreviews.org/lrr-2013-7. |
* | 222 | Gänsicke, B. T., Koester, D., Girven, J., Marsh, T. R. and Steeghs, D., “Two White Dwarfs
with Oxygen-Rich Atmospheres”, Science, 327, 188 (2010). [![]() ![]() ![]() |
* | 223 | García-Berro, E., Lorén-Aguilar, P., Pedemonte, A. G., Isern, J., Bergeron, P., Dufour, P.
and Brassard, P., “Evidence of a Merger of Binary White Dwarfs: The Case of GD 362”,
Astrophys. J. Lett., 661, L179–L182 (2007). [![]() ![]() ![]() |
* | 224 | Ge, H., Hjellming, M. S., Webbink, R. F., Chen, X. and Han, Z., “Adiabatic Mass Loss in
Binary Stars. I. Computational Method”, Astrophys. J., 717, 724–738 (2010). [![]() ![]() ![]() |
* | 225 | Ge, H., Webbink, R. F., Han, Z. and Chen, X., “Stellar adiabatic mass loss model and
applications”, Astrophys. Space Sci., 329, 243–248 (2010). [![]() ![]() ![]() |
* | 226 | Gehrels, N. et al., “A short γ-ray burst apparently associated with an elliptical galaxy at
redshift z = 0.225”, Nature, 437, 851–854 (2005). [![]() ![]() |
* | 227 | Geier, S., “Hot subdwarf formation: Confronting theory with observation”, in Montalbán,
J., Noels, A. and Van Grootel, V., eds., European Physical Journal Web of Conferences, 40th
Liège International Astrophysical Colloquium, Liège, Belgium, EPJ Web of Conferences, 43,
04001, (EDP Sciences, Les Ulis, France, 2013). [![]() ![]() ![]() |
* | 228 | Geier, S., Heber, U., Heuser, C., Classen, L., O’Toole, S. J. and Edelmann, H., “The subdwarf
B star SB 290 – A fast rotator on the extreme horizontal branch”, Astron. Astrophys., 551, L4
(2013). [![]() ![]() ![]() |
* | 229 | Geier, S., Heber, U. and Napiwotzki, R., “Metal abundances of subdwarf B stars from SPY -
a pattern emerges”, Mem. Soc. Astron. Ital., 79, 723 (2008). [![]() ![]() |
* | 230 | Geier, S., Napiwotzki, R., Heber, U. and Nelemans, G., “Binaries discovered by the SPY survey.
VI. Discovery of a low mass companion to the hot subluminous planetary nebula central star
EGB 5 - a recently ejected common envelope?”, Astron. Astrophys., 528, L16 (2011). [![]() ![]() |
* | 231 | Geier, S., Nesslinger, S., Heber, U., Przybilla, N., Napiwotzki, R. and Kudritzki, R.-P.,
“The Subdwarf B+ White Dwarf Binary KPD 1930+2752, a Supernova Type Ia Progenitor
Candidate”, in Napiwotzki, R. and Burleigh, M. R., eds., 15th European Workshop on White
Dwarfs, Proceedings of the conference held 7 – 11 August, 2006 in Leicester, United Kingdom,
ASP Conference Series, 372, p. 393, (Astronomical Society of the Pacific, San Francisco, 2007).
[![]() ![]() |
* | 232 | Geier, S. et al., “Hot subdwarfs in binary systems and the nature of their unseen companions”,
Astrophys. Space Sci., 329, 91–99 (2010). [![]() ![]() |
* | 233 | Geier, S. et al., “Orbital solutions of eight close sdB binaries and constraints on the nature of
the unseen companions”, Astron. Astrophys., 562, A95 (2014). [![]() ![]() ![]() |
* | 234 | Georgy, C., Ekström, S., Granada, A., Meynet, G., Mowlavi, N., Eggenberger, P. and Maeder,
A., “Populations of rotating stars. I. Models from 1.7 to 15 M⊙ at Z = 0.014, 0.006, and
0.002 with Ω/Ωcrit between 0 and 1”, Astron. Astrophys., 553, A24 (2013). [![]() ![]() ![]() |
* | 235 | Georgy, C., Meynet, G., Walder, R., Folini, D. and Maeder, A., “The different progenitors
of type Ib, Ic SNe, and of GRB”, Astron. Astrophys., 502, 611–622 (2009). [![]() ![]() ![]() |
* | 236 | Georgy, C. et al., “Grids of stellar models with rotation. III. Models from 0.8 to 120 M⊙ at
a metallicity Z = 0.002”, Astron. Astrophys., 558, A103 (2013). [![]() ![]() ![]() |
* | 237 | Gerosa, D., Kesden, M., Berti, E., O’Shaughnessy, R. and Sperhake, U., “Resonant-plane
locking and spin alignment in stellar-mass black-hole binaries: A diagnostic of compact-binary
formation”, Phys. Rev. D, 87, 104028 (2013). [![]() ![]() ![]() |
* | 238 | Ghosh, K. K., Rappaport, S., Tennant, A. F., Swartz, D. A., Pooley, D. and Madhusudhan,
N., “Discovery of a 3.6 hr Eclipsing Luminous X-Ray Binary in the Galaxy NGC 4214”,
Astrophys. J., 650, 872–878 (2006). [![]() ![]() |
* | 239 | Giacconi, R., Murray, S., Gursky, H., Kellogg, E., Schreier, E., Matilsky, T., Koch, D. and
Tananbaum, H., “The Third UHURU Catalog of X-Ray Sources”, Astrophys. J. Suppl. Ser.,
27, 37 (1974). [![]() ![]() |
* | 240 | Giampieri, G. and Polnarev, A. G., “Detecting an anisotropic gravitational wave background
with a space-borne interferometer”, Mon. Not. R. Astron. Soc., 291, 149–161 (1997). [![]() ![]() |
* | 241 | Gianninas, A., Hermes, J. J., Brown, W. R., Dufour, P., Barber, S. D., Kilic, M., Kenyon,
S. J. and Harrold, S. T., “SDSS J074511.56+194926.5: Discovery of a Metal-Rich and Tidally
Distorted Extremely Low Mass White Dwarf”, Astrophys. J., 781, 104 (2014). [![]() ![]() ![]() |
* | 242 | Gil-Pons, P., García-Berro, E., José, J., Hernanz, M. and Truran, J. W., “The frequency of
occurrence of novae hosting an ONe white dwarf”, Astron. Astrophys., 407, 1021–1028 (2003).
[![]() |
* | 243 | Gilfanov, M., “X-ray binaries and star formation”, Phys. Usp., 56, 714–722 (2013). [![]() |
* | 244 | Gilfanov, M. and Bogdán, Á., “An upper limit on the contribution of accreting white dwarfs
to the type Ia supernova rate”, Nature, 463, 924–925 (2010). [![]() ![]() |
* | 245 | Girven, J. et al., “The unseen population of F- to K-type companions to hot subdwarf stars”,
Mon. Not. R. Astron. Soc., 425, 1013–1041 (2012). [![]() ![]() ![]() |
* | 246 | Gokhale, V., Peng, X. M. and Frank, J., “Evolution of Close White Dwarf Binaries”, Astrophys.
J., 655, 1010–1024 (2007). [![]() ![]() |
* | 247 | Goranskij, V. P., Shugarov, S. Y., Zharova, A., Kroll, P. and Barsukova, E. A., “The
progenitor and remnant of the helium nova V445 Puppis”, Perem. Zvezdy (Var. Stars), 30(4)
(2010). [![]() ![]() ![]() |
* | 248 | Gosnell, N. M., Mathieu, R. D., Geller, A. M., Sills, A., Leigh, N. and Knigge, C., “Detection
of white dwarf companions to blue stragglers in the open cluster NGC 188: direct evidence
for recent mass transfer”, Astrophys. J. Lett., 783, L8 (2014). [![]() ![]() ![]() |
* | 249 | Graur, O. and Maoz, D., “Discovery of 90 Type Ia supernovae among 700 000 Sloan spectra:
the Type Ia supernova rate versus galaxy mass and star formation rate at redshift ∼0.1”, Mon.
Not. R. Astron. Soc., 430, 1746–1763 (2013). [![]() ![]() ![]() |
* | 250 | Graur, O. et al., “Supernovae in the Subaru Deep Field: the rate and delay-time distribution
of Type Ia supernovae out to redshift 2”, Mon. Not. R. Astron. Soc., 417, 916–940 (2011).
[![]() ![]() ![]() |
* | 251 | Green, E. M., Liebert, J. and Saffer, R. A., “On The Origin Of Subdwarf B Stars and Related
Metal-Rich Binaries”, in Provencal, J. L., Shipman, H. L., MacDonald, J. and Goodchild,
S., eds., 12th European Workshop on White Dwarfs, Proceedings of a conference held at the
University of Delaware, Newark, Delaware, USA, 12 – 16 June 2000, ASP Conference Series,
226, pp. 192–197, (Astronomical Society of the Pacific, San Francisco, 2001). [![]() |
* | 252 | Grishchuk, L. P., Lipunov, V. M., Postnov, K. A., Prokhorov, M. E. and Sathyaprakash,
B. S., “Gravitational Wave Astronomy: In Anticipation of First Sources to be Detected”, Phys.
Usp., 44, 1–51 (2001). [![]() |
* | 253 | Grossman, D., Korobkin, O., Rosswog, S. and Piran, T., “The long-term evolution of neutron
star merger remnants – II. Radioactively powered transients”, Mon. Not. R. Astron. Soc., 439,
757–770 (2014). [![]() ![]() ![]() |
* | 254 | Guillemot, L. et al., “Fermi LAT pulsed detection of PSR J0737-3039A in the double pulsar
system”, Astrophys. J., 768, 169 (2013). [![]() ![]() |
* | 255 | Guillochon, J., Dan, M., Ramirez-Ruiz, E. and Rosswog, S., “Surface Detonations in Double
Degenerate Binary Systems Triggered by Accretion Stream Instabilities”, Astrophys. J. Lett.,
709, L64–L69 (2010). [![]() ![]() ![]() |
* | 256 | Gunn, J. E. and Ostriker, J. P., “On the Nature of Pulsars. III. Analysis of Observations”,
Astrophys. J., 160, 979–1002 (1970). [![]() |
* | 257 | Hachisu, I., Kato, M. and Nomoto, K., “A New Model for Progenitor Systems of Type Ia
Supernovae”, Astrophys. J. Lett., 470, L97 (1996). [![]() ![]() |
* | 258 | Hachisu, I., Kato, M. and Nomoto, K., “The Delay-Time Distribution of Type Ia Supernovae
and the Single-Degenerate Model”, Astrophys. J. Lett., 683, L127–L130 (2008). [![]() ![]() ![]() |
* | 259 | Hachisu, I., Kato, M. and Nomoto, K., “Supersoft X-ray Phase of Single Degenerate Type Ia
Supernova Progenitors in Early-type Galaxies”, Astrophys. J. Lett., 724, L212–L216 (2010).
[![]() ![]() ![]() |
* | 260 | Hachisu, I., Kato, M. and Nomoto, K., “Final Fates of Rotating White Dwarfs and Their
Companions in the Single Degenerate Model of Type Ia Supernovae”, Astrophys. J. Lett., 756,
L4 (2012). [![]() ![]() ![]() |
* | 261 | Hachisu, I., Kato, M., Nomoto, K. and Umeda, H., “A New Evolutionary Path to Type Ia
Supernovae: A Helium-rich Supersoft X-Ray Source Channel”, Astrophys. J., 519, 314–323
(1999). [![]() ![]() |
* | 262 | Hachisu, I., Kato, M., Saio, H. and Nomoto, K., “A Single Degenerate Progenitor Model for
Type Ia Supernovae Highly Exceeding the Chandrasekhar Mass Limit”, Astrophys. J., 744, 69
(2012). [![]() ![]() ![]() |
* | 263 | Hamann, W.-R., Gräfener, G. and Liermann, A., “The Galactic WN stars. Spectral analyses
with line-blanketed model atmospheres versus stellar evolution models with and without
rotation”, Astron. Astrophys., 457, 1015–1031 (2006). [![]() ![]() |
* | 264 | Hamuy, M. et al., “An asymptotic-giant-branch star in the progenitor system of a type Ia
supernova”, Nature, 424, 651–654 (2003). [![]() ![]() |
* | 265 | Han, Z., “The formation of double degenerates and related objects”, Mon. Not. R. Astron.
Soc., 296, 1019–1040 (1998). [![]() ![]() |
* | 266 | Han, Z., Podsiadlowski, P. and Eggleton, P. P., “A possible criterion for envelope ejection in
asymptotic giant branch or first giant branch stars”, Mon. Not. R. Astron. Soc., 270, 121–130
(1994). [![]() |
* | 267 | Han, Z., Podsiadlowski, P., Maxted, P. F. L. and Marsh, T. R., “The origin of subdwarf B stars
- II”, Mon. Not. R. Astron. Soc., 341, 669–691 (2003). [![]() ![]() ![]() |
* | 268 | Han, Z., Podsiadlowski, P., Maxted, P. F. L., Marsh, T. R. and Ivanova, N., “The origin of
subdwarf B stars – I. The formation channels”, Mon. Not. R. Astron. Soc., 336, 449–466
(2002). [![]() |
* | 269 | Han, Z. and Webbink, R. F., “Stability and energetics of mass transfer in double white dwarfs”, Astron. Astrophys., 349, L17–L20 (1999). |
* | 270 | Hansen, B. M. S., “Cooling models for old white dwarfs”, Astrophys. J., 520, 680–695 (1999).
[![]() |
* | 271 | Harris, H. C. et al., “The Binary White Dwarf LHS 3236”, Astrophys. J., 779, 21 (2013).
[![]() ![]() ![]() |
* | 272 | Hayden, B. T. et al., “Single or Double Degenerate Progenitors? Searching for Shock Emission
in the SDSS-II Type Ia Supernovae”, Astrophys. J., 722, 1691–1698 (2010). [![]() ![]() ![]() |
* | 273 | Heber, U., “Hot Subdwarf Stars”, Annu. Rev. Astron. Astrophys., 47, 211–251 (2009). [![]() ![]() |
* | 274 | Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. and Hartmann, D. H., “How Massive Single
Stars End Their Life”, Astrophys. J., 591, 288–300 (2003). [![]() ![]() |
* | 275 | Heinke, C. O., Ivanova, N., Engel, M. C., Pavlovskii, K., Sivakoff, G. R., Cartwright, T. F.
and Gladstone, J. C., “Galactic Ultracompact X-Ray Binaries: Disk Stability and Evolution”,
Astrophys. J., 768, 184 (2013). [![]() |
* | 276 | Henze, M. et al., “Classical Novae as Supersoft X-ray Sources in the Andromeda Galaxy”, in
Di Stefano, R., Orio, M. and Moe, M., eds., Binary Paths to Type Ia Supernovae Explosions,
Proceedings of IAU Symposium 281, July 2011, IAU Symposium, 281, pp. 105–112, (Cambridge
University Press, Cambridge, 2013). [![]() ![]() |
* | 277 | Hermes, J. J. et al., “Rapid Orbital Decay in the 12.75-minute Binary White Dwarf
J0651+2844”, Astrophys. J. Lett., 757, L21 (2012). [![]() ![]() ![]() |
* | 278 | Herwig, F., “Evolution of Asymptotic Giant Branch Stars”, Annu. Rev. Astron. Astrophys.,
43, 435–479 (2005). [![]() ![]() |
* | 279 | Herwig, F., “Evolution of Solar and Intermediate-Mass Stars”, in Oswalt, T. D. and Barstow,
M. A., eds., Planets, Stars and Stellar Systems. Volume 4: Stellar Structure and Evolution,
pp. 397–445, (Springer, Berlin; New York, 2013). [![]() ![]() |
* | 280 | Hicken, M., Garnavich, P. M., Prieto, J. L., Blondin, S., DePoy, D. L., Kirshner, R. P.
and Parrent, J., “The Luminous and Carbon-rich Supernova 2006gz: A Double Degenerate
Merger?”, Astrophys. J. Lett., 669, L17–L20 (2007). [![]() ![]() |
* | 281 | Hils, D. and Bender, P. L., “Gravitational Radiation from Helium Cataclysmics”, Astrophys.
J., 537, 334–341 (2000). [![]() ![]() |
* | 282 | Hils, D., Bender, P. L. and Webbink, R. F., “Gravitational radiation from the Galaxy”,
Astrophys. J., 360, 75–94 (1990). [![]() |
* | 283 | Hjellming, M. S. and Webbink, R. F., “Thresholds for rapid mass transfer in binary systems.
I. Polytropic models”, Astrophys. J., 318, 794–808 (1987). [![]() |
* | 284 | Hobbs, G., Lorimer, D. R., Lyne, A. G. and Kramer, M., “A statistical study of 233
pulsar proper motions”, Mon. Not. R. Astron. Soc., 360, 974–992 (2005). [![]() ![]() ![]() |
* | 285 | Hoeflich, P. and Khokhlov, A., “Explosion Models for Type Ia Supernovae: A Comparison with
Observed Light Curves, Distances, H 0, and Q 0”, Astrophys. J., 457, 500 (1996). [![]() ![]() ![]() |
* | 286 | Höflich, P., Khokhlov, A., Wheeler, J. C., Phillips, M. M., Suntzeff, N. B. and Hamuy, M.,
“Maximum Brightness and Postmaximum Decline of Light Curves of Type Ia Supernovae: A
Comparison of Theory and Observations”, Astrophys. J. Lett., 472, L81–L84 (1996). [![]() ![]() |
* | 287 | Holcomb, C., Guillochon, J., De Colle, F. and Ramirez-Ruiz, E., “Conditions for Successful
Helium Detonations in Astrophysical Environments”, Astrophys. J., 771, 14 (2013). [![]() ![]() ![]() |
* | 288 | Horiuchi, S., Beacom, J. F., Bothwell, M. S. and Thompson, T. A., “Effects of Stellar Rotation
on Star Formation Rates and Comparison to Core-collapse Supernova Rates”, Astrophys. J.,
769, 113 (2013). [![]() ![]() ![]() |
* | 289 | Hotan, A. W., Bailes, M. and Ord, S. M., “Geodetic Precession in PSR J1141–6545”,
Astrophys. J., 624, 906–913 (2005). [![]() |
* | 290 | Hotokezaka, K., Kyutoku, K., Tanaka, M., Kiuchi, K., Sekiguchi, Y., Shibata, M. and Wanajo,
S., “Progenitor Models of the Electromagnetic Transient Associated with the Short Gamma
Ray Burst 130603B”, Astrophys. J. Lett., 778, L16 (2013). [![]() ![]() ![]() |
* | 291 | Howell, D. A. et al., “The type Ia supernova SNLS–03D3bb from a super-Chandrasekhar-mass
white dwarf star”, Nature, 443, 308–311 (2006). [![]() ![]() |
* | 292 | Hulse, R. A. and Taylor, J. H., “Discovery of a pulsar in a binary system”, Astrophys. J., 195,
L51–L53 (1975). [![]() ![]() |
* | 293 | Hurley, J. R., Pols, O. R. and Tout, C. A., “Comprehensive analytic formulae for stellar
evolution as a function of mass and metallicity”, Mon. Not. R. Astron. Soc., 315, 543–569
(2000). [![]() ![]() ![]() |
* | 294 | Hurley, J. R., Tout, C. A. and Pols, O. R., “Evolution of binary stars and the effect of
tides on binary populations”, Mon. Not. R. Astron. Soc., 329, 897–928 (2002). [![]() ![]() ![]() |
* | 295 | Ibeling, D. and Heger, A., “The Metallicity Dependence of the Minimum Mass for Core-collapse
Supernovae”, Astrophys. J. Lett., 765, L43 (2013). [![]() ![]() ![]() |
* | 296 | Iben Jr, I., “Hot accreting white dwarfs in the quasi-static approximation”, Astrophys. J., 259,
244–266 (1982). [![]() ![]() |
* | 297 | Iben Jr, I., Stellar Evolution Physics, Volume 1: Physical Processes in Stellar Interiors,
(Cambridge University Press, Cambridge; New York, 2013). [![]() |
* | 298 | Iben Jr, I., Stellar Evolution Physics, Volume 2: Advanced Evolution of Single Stars,
(Cambridge University Press, Cambridge; New York, 2013). [![]() |
* | 299 | Iben Jr, I. and Livio, M., “Common envelopes in binary star evolution”, Publ. Astron. Soc.
Pac., 105, 1373–1406 (1993). [![]() |
* | 300 | Iben Jr, I. and Tutukov, A. V., “Supernovae of type I as end products of the evolution of
binaries with components of moderate initial mass (M ≲ 9M⊙)”, Astrophys. J. Suppl. Ser.,
54, 335–372 (1984). [![]() ![]() |
* | 301 | Iben Jr, I. and Tutukov, A. V., “On the evolution of close binaries with components of initial mass between 3 solar masses and 12 solar masses”, Astrophys. J. Suppl. Ser., 58, 661–710 (1985). |
* | 302 | Iben Jr, I. and Tutukov, A. V., “Helium star cataclysmics”, Astrophys. J., 370, 615–629
(1991). [![]() |
* | 303 | Iben Jr, I. and Tutukov, A. V., “On the Evolution of Symbiotic Stars and Other Binaries with
Accreting Degenerate Dwarfs”, Astrophys. J. Suppl. Ser., 105, 145 (1996). [![]() |
* | 304 | Iben Jr, I., Tutukov, A. V. and Fedorova, A. V., “On the Luminosity of White Dwarfs in
Close Binaries Merging under the Influence of Gravitational Wave Radiation”, Astrophys. J.,
503, 344 (1998). [![]() ![]() |
* | 305 | Iben Jr, I., Tutukov, A. V. and Yungelson, L. R., “A Model of the Galactic X-Ray Binary Population. II. Low-Mass X-Ray Binaries in the Galactic Disk”, Astrophys. J. Suppl. Ser., 100, 233 (1995). |
* | 306 | Iben Jr, I., Tutukov, A. V. and Yungelson, L. R., “On the Origin of Hydrogen-deficient
Supergiants and Their Relation to R Coronae Borealis Stars and Non-DA White Dwarfs”,
Astrophys. J., 456, 750 (1996). [![]() ![]() |
* | 307 | Idan, I., Shaviv, N. J. and Shaviv, G., “The fate of a WD accreting H-rich material at high
accretion rates”, Mon. Not. R. Astron. Soc., 433, 2884–2892 (2013). [![]() ![]() |
* | 308 | Ilkov, M. and Soker, N., “Type Ia supernovae from very long delayed explosion of
core-white dwarf merger”, Mon. Not. R. Astron. Soc., 419, 1695–1700 (2012). [![]() ![]() ![]() |
* | 309 | in’t Zand, J. J. M., Jonker, P. G. and Markwardt, C. B., “Six new candidate ultracompact
X-ray binaries”, Astron. Astrophys., 465, 953–963 (2007). [![]() ![]() |
* | 310 | Isern, J., García-Berro, E. and Lorén-Aguilar, P., “Type Ia Supernovae and the DD
Scenario”, in Capuzzo-Dolcetta, R., Limongi, M. and Tornambè, A., eds., Advances in
Computational Astrophysics: Methods, Tools, and Outcome, ASP Conference Series, 453,
p. 99, (Astronomical Society of the Pacific, San Francisco, 2012). [![]() ![]() |
* | 311 | Isern, J., Labay, J., Hernanz, M. and Canal, R., “Collapse and explosion of white dwarfs. I.
Precollapse evolution”, Astrophys. J., 273, 320–329 (1983). [![]() ![]() |
* | 312 | Israel, G. L., Panzera, M. R., Campana, S., Lazzati, D., Covino, S., Tagliaferri, G. and
Stella, L., “The discovery of 321 S pulsations in the ROSAT HRI light curves of 1BMW
J080622.8+152732 = RX J0806.3+1527”, Astron. Astrophys., 349, L1–L4 (1999). [![]() |
* | 313 | Ivanova, N., “Common Envelope: On the Mass and the Fate of the Remnant”, Astrophys. J.,
730, 76 (2011). [![]() ![]() ![]() |
* | 314 | Ivanova, N., Belczynski, K., Kalogera, V., Rasio, F. A. and Taam, R. E., “The Role of Helium
Stars in the Formation of Double Neutron Stars”, Astrophys. J., 592, 475–485 (2003). [![]() |
* | 315 | Ivanova, N. and Chaichenets, S., “Common Envelope: Enthalpy Consideration”, Astrophys. J.
Lett., 731, L36 (2011). [![]() ![]() ![]() |
* | 316 | Ivanova, N., Justham, S., Avendano Nandez, J. L. and Lombardi, J. C., “Identification
of the Long-Sought Common-Envelope Events”, Science, 339, 433 (2013). [![]() ![]() ![]() |
* | 317 | Ivanova, N., Rasio, F. A., Lombardi, J. C., Dooley, K. L. and Proulx, Z. F., “Formation of
Ultracompact X-Ray Binaries in Dense Star Clusters”, Astrophys. J. Lett., 621, L109–L112
(2005). [![]() ![]() |
* | 318 | Ivanova, N. and Taam, R. E., “Thermal Timescale Mass Transfer and the Evolution of White
Dwarf Binaries”, Astrophys. J., 601, 1058–1066 (2004). [![]() ![]() ![]() |
* | 319 | Ivanova, N. et al., “Common envelope evolution: where we stand and how we can move
forward”, Astron. Astrophys. Rev., 21, 59 (2013). [![]() ![]() ![]() |
* | 320 | Janka, H.-T., “Explosion Mechanisms of Core-Collapse Supernovae”, Annu. Rev. Nucl. Part.
Sci., 62, 407–451 (2012). [![]() ![]() ![]() |
* | 321 | Janka, H.-T., “Natal kicks of stellar mass black holes by asymmetric mass ejection in fallback
supernovae”, Mon. Not. R. Astron. Soc., 434, 1355–1361 (2013). [![]() ![]() ![]() |
* | 322 | Ji, S. et al., “The Post-merger Magnetized Evolution of White Dwarf Binaries: The
Double-degenerate Channel of Sub-Chandrasekhar Type Ia Supernovae and the Formation of
Magnetized White Dwarfs”, Astrophys. J., 773, 136 (2013). [![]() ![]() |
* | 323 | Johansson, J., Woods, T. E., Gilfanov, M., Sarzi, M., Chen, Y.-M. and Oh, K., “Diffuse Gas
in Galaxies Sheds New Light on the Origin of Type Ia Supernovae”, arXiv, e-print, (2014).
[![]() ![]() |
* | 324 | Johnston, S., Hobbs, G., Vigeland, S. J., Kramer, M., Weisberg, J. M. and Lyne, A. G.,
“Evidence for alignment of the rotation and velocity vectors in pulsars”, Mon. Not. R. Astron.
Soc., 364, 1397–1412 (2005). [![]() ![]() |
* | 325 | Jones, S., Hirschi, R., Herwig, F., Paxton, B., Timmes, F. X. and Nomoto, K., “Progenitors of
electron-capture supernovae”, in Roming, P., Kawai, N. and Pian, E., eds., Death of Massive
Stars: Supernovae and Gamma-Ray Burst, Proceedings of IAU Symposium 279, April 2011,
Proc. IAU, 279, pp. 341–342, (Cambridge University Press, Cambridge, 2012). [![]() ![]() |
* | 326 | Jones, S. et al., “Advanced Burning Stages and Fate of 8−−10M⊙ Stars”, Astrophys. J., 772,
150 (2013). [![]() ![]() ![]() |
* | 327 | Jonker, P. G. and Nelemans, G., “The distances to Galactic low-mass X-ray binaries:
Consequences for black hole luminosities and kicks”, Mon. Not. R. Astron. Soc., 354, 355–366
(2004). [![]() ![]() |
* | 328 | Justham, S., “Single-degenerate Type Ia Supernovae Without Hydrogen Contamination”,
Astrophys. J. Lett., 730, L34 (2011). [![]() ![]() ![]() |
* | 329 | Kahabka, P., “Recurrent supersoft X-ray sources”, Astron. Astrophys., 304, 227 (1995). [![]() |
* | 330 | Kahabka, P. and van den Heuvel, E. P. J., “Luminous supersoft X-ray sources”, Annu. Rev.
Astron. Astrophys., 35, 69–100 (1997). [![]() |
* | 331 | Kalogera, V., “Spin-Orbit Misalignment in Close Binaries with Two Compact Objects”,
Astrophys. J., 541, 319–328 (2000). [![]() ![]() |
* | 332 | Kalogera, V., Belczynski, K., Kim, C., O’Shaughnessy,
R. and Willems, B., “Formation of double compact objects”, Phys. Rep., 442, 75–108 (2007).
[![]() ![]() ![]() |
* | 333 | Kalogera, V., Narayan, R., Spergel, D. N. and Taylor, J. H., “The Coalescence Rate of Double
Neutron Star Systems”, Astrophys. J., 556, 340–356 (2001). [![]() ![]() |
* | 334 | Kalogera, V. and Webbink, R. F., “Formation of Low-Mass X-Ray Binaries. I. Constraints on
Hydrogen-rich Donors at the Onset of the X-Ray Phase”, Astrophys. J., 458, 301–311 (1996).
[![]() |
* | 335 | Kalogera, V. and Webbink, R. F., “Formation of Low-Mass X-Ray Binaries. II. Common
Envelope Evolution of Primordial Binaries with Extreme Mass Ratios”, Astrophys. J., 493,
351–368 (1998). [![]() |
* | 336 | Kalogera, V. et al., “The Cosmic Coalescence Rates for Double Neutron Star Binaries”,
Astrophys. J. Lett., 601, L179–L182 (2004). [![]() ![]() |
* | 337 | Kaplan, D. L., Bildsten, L. and Steinfadt, J. D. R., “Orbital Evolution of Compact White
Dwarf Binaries”, Astrophys. J., 758, 64 (2012). [![]() ![]() ![]() |
* | 338 | Karakas, A. I., “Current Status of Stellar Evolutionary Models for AGB Stars”, in Kerschbaum,
F., Lebzelter, T. and Wing, R. F., eds., Why Galaxies Care about AGB Stars II: Shining
Examples and Common Inhabitants, Proceedings of a conference held at University Campus,
Vienna, Austria, 16 – 20 August 2010, ASP Conference Series, 445, pp. 3–12, (Astronomical
Society of the Pacific, San Francisco, 2011). [![]() |
* | 339 | Karl, C., Heber, U. and Napiwotzki, R., “Subdwarf B Binaries from the SPY Project”, in
Koester, D. and Moehler, S., eds., 14th European Workshop on White Dwarfs, Proceedings
of a meeting held at Kiel, July 19 – 23, 2004, ASP Conference Series, 334, pp. 369–374,
(Astronomical Society of the Pacific, San Francisco, 2005). [![]() |
* | 340 | Kasen, D., “Seeing the Collision of a Supernova with its Companion Star”, Astrophys. J., 708,
1025–1031 (2010). [![]() ![]() |