
23 11

Article 18.1.4
Journal of Integer Sequences, Vol. 21 (2018),2

3

6

1

47

Words and Linear Recurrences

Milan Janjić
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Abstract

In previous papers, we defined functions fm and cm based on an arithmetical func-

tion f0, and determined numbers of restricted words over a finite alphabet counted by

these functions. In this paper, we examine the reverse problem: for each of the five

specific types of restricted words, we find the initial function f0 such that fm and cm
enumerate these words. We derive explicit formulas for fm and cm.

Fibonacci, Mersenne, Pell, Jacosthal, Tribonacci, and Padovan numbers all appear

as values of fm. We derive their new combinatorial interpretations and the explicit

formulas.

1 Introduction

We continue the investigation of restricted word enumeration from previous papers Janji̧ [2,
3, 4], where functions fm and cm were defined as follows. For an initial arithmetic function
f0 and m ≥ 1, the function fm is the mth invert transform of f0. The function cm(n, k) was
defined as

cm(n, k) =
∑

i1+i2+···+ik=n

fm−1(i1) · fm−1(i2) · · · fm−1(ik), (1)

where the sum is over positive integers i1, i2, . . . , ik.
The functions fm and cm depend only on the initial function f0 and are related to the

enumeration of weighted compositions. Namely, if the value of fm−1(i) is the weight of i, then
the value of fm(n) is the number of weighted compositions of n, and the value of cm(n, k) is
the number of weighted compositions of n into k parts.
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In [2, 3, 4] weighted compositions were related to restricted words over a finite alphabet.
For a given initial function f0, we investigated restricted words counted by fm and cm. In
this paper, we consider the reverse problem. For each of the five types of restricted words,
we first find the initial function f0 which counts these words. We then derive formulas for
fm and cm and give their combinatorial meanings in term of restricted words.

To begin with, we restate the results from papers [2, 3, 4] that we will use in this work.

(A) [2, Theorem 6] Let f0 be an arithmetic function and let k be a positive integer. Assume
that there exist constants a0(1), a0(2), . . . , a0(k) such that

f0(n+ k; k) =
k
∑

i=1

a0(i)f0(n+ k − i; k), (n ≥ 1),

where f0(1; k), f0(2; k), . . . , f0(k; k) are arbitrary numbers. Then, we have

f1(i; k) =
i
∑

j=1

f0(j; k)f1(i− j; k), (i = 1, 2, . . . , k),

f1(n+ k; k) =
k
∑

i=1

a1(i)f1(n+ k − i; k), (n ≥ 1),

where

a1(1) = a0(1) + f0(1; k),

a1(i) = a0(i) + f0(i; k)−
i−1
∑

j=1

a0(j)f0(i− j; k), (2 ≤ i ≤ k).

(B) [2, Corollary 9] If f0(1), f0(2), a0(1), a0(2) are arbitrary, and

f0(n+ 2) = a0(1)f0(n+ 1) + a0(2)f0(n),

then

fm(1) = f0(1), fm(2) = mf0(1)
2 + f0(2),

fm(n+ 2) = am(1)fm(n+ 1) + am(2)fm(n),

where

am(1) = a0(1) +mf0(1),

am(2) = a0(2)−ma0(1)f0(1) +mf0(2).
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(C) [2, Proposition 23] Assume that f0(1) = 0 and f0(i) = 1, (i > 1). Then, we have

fm(1) = 0, fm(2) = 1,

fm(n+ 2) = fm(n+ 1) +mfm(n).

(D) [3, Corollary 2] The following formula holds:

fm(n) =
n
∑

k=1

cm(n, k).

(E) [4, Proposition 6] The following formula holds:

cm(n, k) =
n
∑

i=k

(m− 1)i−k

(

i− 1

k − 1

)

c1(n, i), (1 ≤ k ≤ n).

(F) [4, Propositions 12] Assume that f0(1) = 1, and that m > 1. Assume next that, for
n ≥ 1, we have fm−1(n) words of length n − 1 over a finite alphabet α. Let x be a
letter which is not in α. Then, the value of cm(n, k) is the number of words of length
n− 1 over the alphabet α ∪ {x} in which x appears exactly k − 1 times.

We proceed to consider the following five types of restricted words over a finite alphabet:

1. Words over {0, 1, . . . , a−1, . . .} such that no two adjacent letters from {0, 1, . . . , a−1}
are the same (Property P1).

2. Words over {0, 1, . . . , a − 1, . . .} such that letters 0, 1, . . . , a − 1 avoid a run of odd
length (Property P2).

3. Words over {0, 1, . . . , a, . . .} avoiding subwords of the form 0i, (i = 1, . . . , b) for b < a

(Property P3).

4. Words over {0, 1, . . .} such that 0 and 1 appear only as subwords of the form 1i, where
i is a run of zeros (Property P4).

5. Words over {0, 1, . . .} in which 0 appears only in a run of even length, and 1 appears
only in a run of a length divisible by 3 (Property P5).

We also note that, in all types, the initial function f0 is defined by a linear homogenous
recurrence.

3



2 Type 1

In this case, we consider the following linear recurrence:

f0(1) = 1, f0(2) = a,

f0(n+ 2) = (a− 1)f0(n+ 1), (n ≥ 1),

where a > 0. It is easy to see that

f0(n) = a(a− 1)n−2, (n ≥ 2).

Remark 1. This formula appears in Birmajer at al. [1, Example 17]. Also, the case a = 1 is
considered in [4, Example 18].

The function f0 has the following combinatorial interpretation.

Proposition 2. The value of f0(n) is the number of words of length n−1 over {0, 1, . . . , a−1}
satisfying P1.

Proof. We have f0(1) = 1 since only the empty word has length 0. Also, f0(2) = a since a
word of length 1 may consist of an arbitrary letter. To obtain a word of length n + 2 for
n > 0, we need to insert a− 1 letters in front of each word of length n+ 1.

As an immediate consequence of (B), we obtain the following result.

Corollary 3. For m ≥ 0, the following recurrence holds:

fm(1) = 1, fm(2) = m+ a,

fm(n+ 2) = (m+ a− 1)fm(n+ 1) +mfm(n), (n ≥ 1).

We now describe words counted by fm.

Proposition 4. The number of words of length n − 1 over the alphabet {0, 1, . . . , a −
1, a, . . . ,m+ a− 1} satisfying P1 is the value of fm(n).

Proof. We have fm(1) = 1, since only the empty word has length 0. Also, fm(2) = m + a

since a word of length 1 may consist of any letter of the alphabet. Assume that n > 2.
Consider a word of length n+1. At the front of such a word, we insert a letter different from
the first letter of the word. In this way, we obtain all the words of length n + 2 beginning
with two different letters. The remaining words must begin with two identical letters. Since
there are mfm(n) such words, the statement is true.

Remark 5. For a = 2, the continued fraction [f0(1), f0(2), f0(3), . . .] equals
√
2. The sequence

f1(1), f1(2), . . . , f1(n) is the numerator of the nth convergent of
√
2. Also, the value of f1(n)

is the number of ternary words of length n− 1 avoiding 00 and 11.

Since fm(1) = 1, we may apply (F) to obtain the following result.
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Proposition 6. The number of words of length n− 1 over {0, 1, . . . , a− 1, . . . ,m + a− 1}
in which k − 1 letters equal m+ a− 1, and which satisfy P1 equals the value of cm(n, k).

We next derive an explicit formula for c1(n, k).

Proposition 7. We have

c1(n, n) = 1,

c1(n, k) =
k−1
∑

i=0

ak−i(a− 1)n−2k+i

(

k

i

)(

n− k − 1

k − i− 1

)

, (k < n).

Proof. From (1), we first obtain c1(n, n) = 1. Assume that k < n. Since at most k − 1 of
it, (t = 1, 2, . . . , k) may equal 1, then

c1(n, k) =
k−1
∑

i=0

(

k

i

)

∑

j1+j2+···+jk−i=n−i

f0(j1)f0(j2) · · · f0(jk−i)

=
k−1
∑

i=0

(

k

i

)

ak−i(a− 1)n−2k+i
∑

j1+j2+···+jk−i=n−i

1,

where the last sum is taken over jt ≥ 2. Then we have

c1(n, k) =
k−1
∑

i=0

ak−i(a− 1)n−2k+i

(

k

i

)(

n− k − 1

k − i− 1

)

. (2)

Remark 8. In the preceding formula, terms in which i < 2k − n equal zero.

We use (E) to derive an explicit formula for cm(n, k). Extracting the term for i = n

yields

cm(n, k) = (m− 1)n−k

(

n− 1

k − 1

)

+
n−1
∑

i=k

(m− 1)i−k

(

i− 1

k − 1

)

c1(n, i).

Using (2), we obtain

cm(n, k) = (m−1)n−k

(

n− 1

k − 1

)

+
n−1
∑

i=k

i−1
∑

j=0

(m−1)i−kai−j(a−1)n−2i+j

(

i

j

)(

i− 1

k − 1

)(

n− i− 1

i− j − 1

)

.

An explicit formula for fm(n) can easily be obtained from (C).
The following arrays in Sloane [5] are related to this type: A154929, A113413, A054458,

A116412.
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3 Type 2

Let a be a positive integer. Define f0 by

f0(1) = 1, f0(2) = 0,

f0(n+ 2) = af0(n), (n ≥ 1).

Proposition 9. For a > 0, the value of f0(n) is the number of words of length n − 1 over
the alphabet {0, 1, . . . , a− 1} satisfying P2.

Proof. Let d(n) denote the number of words of length n which we wish to count. Firstly,
d(0) = 1 since only the empty word has length 0. Next, d(1) = 0 as there are no runs of
length 1. Assume that n > 2. A word of length n must begin with two identical letters.
Hence, there are ad(n− 2) such words. We conclude that the following recurrence holds:

d(0) = 1, d(1) = 0, d(n) = ad(n− 2), (n ≥ 2), (3)

which yields d(n− 1) = f0(n), (n ≥ 1).

From (3), we easily obtain the following explicit formula for f0.

f0(n) =

{

0, if n = 2t;

at, if n = 2t+ 1.
(4)

Using (B), we obtain the following result.

Corollary 10. For m ≥ 0, we have

fm(1) = 1, fm(2) = m,

fm(n+ 2) = mfm(n+ 1) + afm(n), (n ≥ 1).

Proposition 11. The value of fm(n) is the number of words of length n−1 over {0, 1, . . . , a−
1, . . . , a+m− 1} which satisfy P2.

Proof. We let d(n) denote the number of words of length n− 1. It is clear that d(0) = 1 and
d(1) = m. A word of length n + 1 may begin with a letter from {a, a + 1, . . . , a +m − 1}.
There are md(n) such words. If a word begins with a letter from {0, 1, . . . , a−1}, the second
letter must be the same. Hence, there are ad(n − 1) such words. We conclude that next
d(n) = fm(n+ 1).

Some well-known classes of numbers satisfy the recurrence from Corollary 10. We give the
appropriate combinatorial meaning for the Fibonacci, the Pell, and the Jacobhstal numbers.

1. The case a = 1,m = 1 is related to the Fibonacci numbers. The number of binary
words of length n− 1 in which 0 avoids a run of odd length is Fn.
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2. The case a = 1,m = 2 is related to the Pell numbers Pn (A000129). The number of
ternary words of length n− 1 in which 0 avoids runs of odd length is Pn.

3. The case a = 2,m = 1 is related to the Jacobsthal numbers Jn (A001045). The number
of ternary words of length n− 1 in which 0 and 1 avoid runs of odd length is Jn.

From the combinatorial interpretation, we easily derive an explicit formula for fm(n).

Proposition 12. We have

fm(n) =

⌊n−1

2
⌋

∑

j=0

mn−2j−1aj
(

n− 1− j

j

)

. (5)

Proof. A word of length n−1 can contain 2j letters from {0, 1, . . . , a−1}, so that each letter
appears in a run of even length, where 0 ≤ j ≤ ⌊n−1

2
⌋. The remaining n− 1− 2j places are

filled by letters from {a, a+ 1, . . . , a+m− 1} arbitrarily. For a fixed j, we have aj ·
(

n−j−1
j

)

subwords from {0, 1, . . . , a−1} andmn−1−2j subwords from {a, a+1, . . . , a+m−1}. Summing
over j, we obtain (5).

As a consequence, we obtain the following explicit formulas for the Fibonacci, the Pell,
and the Jacobsthal numbers:

Fn =

⌊n−1

2 ⌋
∑

j=0

(

n− j − 1

j

)

, Pn =

⌊n−1

2 ⌋
∑

j=0

2n−2j−1

(

n− j − 1

j

)

,

Jn =

⌊n−1

2 ⌋
∑

j=0

2j
(

n− j − 1

j

)

.

From (F), we obtain the following result.

Proposition 13. The value of cm(n, k) is the number of words of length n − 1 over the
alphabet {0, 1, . . . , a − 1, . . . , a +m − 1} in which the letter a +m − 1 appears k − 1 times
and which satisfy P2.

We now derive an explicit formula for c1(n, k).

Proposition 14. The following formula holds:

c1(n, k) =

{

a
n−k

2

(n+k

2
−1

k−1

)

, if n− k is even;

0, if n− k is odd.
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Proof. According to (4), each term in formula (1) equals zero if some it is even. Hence, (1)
becomes

c1(n, k) =
∑

2j1+1+2j2+1+···+2jk+1=n

aj1 · aj2 · · · ajk

= a
n−k

2

∑

s1+s2+···+sk=
n+k

2

1 = a
n−k

2

(

n+k
2

− 1

k − 1

)

.

Note that the last sum is over positive integers s1, s2, . . . , sk.

As a consequence of (D), we obtain the following explicit formulas for the Fibonacci and
the Jacobsthal numbers:

F2n =
n
∑

k=1

(

n+ k − 1

n− k

)

, F2n−1 =
n
∑

k=1

(

n+ k − 2

n− k

)

,

J2n =
n
∑

k=1

2n−k

(

n+ k − 1

n− k

)

, J2n−1 =
n
∑

k=1

2n−k

(

n+ k − 2

n− k

)

.

Now, we derive an explicit formula for c2(2n, k). Using (E), we obtain

c2(2n, k) =
2n
∑

i=k

(

i− 1

k − 1

)

c1(2n, i) =
n
∑

j=⌈ k

2
⌉

(

2j − 1

k − 1

)

c1(2n, 2j)

=
n
∑

j=⌈ k

2
⌉

an−j

(

2j − 1

k − 1

)(

n+ j − 1

n− j

)

.

Furthermore,

c2(2n− 1, k) =
2n−1
∑

i=k

(

i− 1

k − 1

)

c1(2n, i) =
n
∑

j=⌈ k+1

2
⌉

(

2j − 2

k − 1

)

c1(2n− 1, 2j − 1)

=
n
∑

j=⌈ k+1

2
⌉

an−j

(

2j − 2

k − 1

)(

n+ j − 2

n− j

)

.

In particular, for a = 1, we obtain the following formulas for the Pell numbers:

P2n =
2n
∑

k=1

n
∑

j=⌈ k

2
⌉

(

2j − 1

k − 1

)(

n+ j − 1

n− j

)

, P2n−1 =
2n−1
∑

k=1

n
∑

j=⌈ k+1

2
⌉

(

2j − 2

k − 1

)(

n+ j − 2

n− j

)

.

Remark 15. Using (E), we easily obtain an explicit formula for cm(n, k).

The following arrays in [5] are related to this type: A000129, A001045, A168561, A037027,
A054456, A132964, A073370.
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4 Type 3

Let a > b > 0 be integers. We define f0 by

f0(1) = 1, f0(2) = a, f0(n+ 2) = af0(n+ 1)− bf0(n), (n ≥ 1).

Proposition 16. The value of f0(n) is the number of words of length n−1 over {0, 1, . . . , a}
satisfying P3.

Proof. We let d(n) denote the number of words of length n− 1. Since only the empty word
has length 0, we have d(0) = 1. Since there are no restrictions on words of length 1, we
have d(1) = a. Assume that n > 1. We have a · d(n− 1) words beginning with an arbitrary
letter. From this number, we must subtract the number of words which begin with subwords
0i, (i = 1, 2, . . . , b). Hence, d(n) satisfies the same recurrence as f0(n) does.

Example 17. 1. If a = 2, b = 1, we have

f0(1) = 1, f0(2) = 2, f0(n+ 2) = 2f0(n+ 1)− f0(n), (n ≥ 1),

which yields f0(n) = n. Hence, n is the number of binary words of length n−1 avoiding
01, for obvious reasons.

2. If a = 3, b = 1, we have the well-known recurrence for the Fibonacci numbers F2n:

f0(1) = 1, f0(2) = 3, f0(n+ 2) = 3f0(n+ 1)− f0(n), (n ≥ 1).

Thus, we obtain the following combinatorial interpretation of the bisection of the Fi-
bonacci numbers.

Corollary 18. The number of ternary words of length n− 1 avoiding 01 is F2n.

We now consider the case when a = b+ 1.

Corollary 19. If b > 1 and a = b+ 1, then

f0(n) =
bn − 1

b− 1
.

Proof. We denote bn−1
b−1

by g0(n). We have g0(1) = 1, g0(2) = 1 + b = a. Furthermore,

(b+ 1) · g0(n+ 1)− b · g0(n) = (b+ 1) · b
n+1 − 1

b− 1
− b · b

n − 1

b− 1
=

bn+2 − 1

b− 1
.

By induction, we conclude that g0 = f0.

In particular, for a = 3, b = 2, we have f0(n) = 2n − 1, which yields the following result.
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Corollary 20. The Mersenne number 2n− 1 is the number of ternary words of length n− 1
avoiding 01 and 02.

Using (B), we obtain

fm(1) = 1, fm(2) = m+ a, fm(n+ 2) = (a+m)fm(n+ 1)− bfm(n), (n ≥ 1).

This means that fm counts the same sort of words as f0, with m+ a instead of a.
Using (F) and (D), we obtain the following combinatorial interpretations of cm(n, k) and

fm(n).

Corollary 21. 1. The value of cm(n, k) is the number of words of length n − 1 over
{0, 1, . . . , b− 1, b . . . ,m+ a− 1} having k− 1 letters equal m+ a− 1 which satisfy P3.

2. The value of fm(n) is the number of words of length n−1 over the alphabet {0, 1, . . . , b−
1, b . . . ,m+ a− 1} which satisfy P3.

Next, we derive an explicit formula for c1(n, k). A generating function for the sequence
f0(1), f0(2), . . . is

1
bx2−ax+1

. According to [4, Equation (1)], we have

xk

(bx2 − ax+ 1)k
=

∞
∑

n=k

c1(n, k)x
k.

The numbers α = a+
√
a2−4b
2b

and β = a−
√
a2−4b
2b

are the solutions of the equation bx2−ax+1 =
0.

Proposition 22. The following equality holds:

c1(n, k) =
1

bk

n−k
∑

j=0

1

αj+kβn−j

(

n− j − 1

k − 1

)(

k + j − 1

k − 1

)

.

Proof. We expand xk

bk(α−x)k(β−x)k
into powers of x. Since

1

(γ − x)k
=

∞
∑

i=0

(

k + i− 1

k − 1

)

xi

γi+k
,

we easily obtain

xk

bk(α− x)k(β − x)k
=

∞
∑

i=0

[

i
∑

j=0

1

bkαj+kβi−j+k

(

k + j − 1

k − 1

)(

k + i− j − 1

k − 1

)

]

xi+k,

and the statement follows by replacing i with n− k.
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In the case a = b+ 1, we have α = 1 and β = 1
b
. Therefore, the following formula holds:

c1(n, k) =
n−k
∑

i=0

bn−k−i

(

n− i− 1

k − 1

)(

k + i− 1

k − 1

)

. (6)

Using (1), we obtain the following identity:

Identity 23.

∑

i1+i2+···+ik=n

[

k
∏

t=1

(bit − 1)

]

=
n−k
∑

i=0

bn−k−i

(

n− i− 1

k − 1

)(

k + i− 1

k − 1

)

,

where it, (t = 1, 2, . . . , k) are positive integers.

Remark 24. Using (D) and (E), we obtain explicit formulas for fm(n) and cm(n, k).

The following arrays in [5] are related to this type: A078812, A125662, A207823, A207824,
A110441, A116414.

5 Type 4

We solve the problem for binary words first.

Proposition 25. Let f0(n) be the number of binary words of length n − 1 satisfying P4.
Then,

f0(1) = 1, f0(2) = 0,

f0(n+ 2) = f0(n+ 1) + f0(n), (n > 1),

f0(n) = Fn−2, (n > 1).

Proof. We have f0(1) = 1, since only the empty word has length 0. Next, f0(2) = 0, since no
words of length 1 satisfy P4. Also, f0(3) = 1, since 10 is the only word of length 2 satisfying
P4. Next, f0(4) = 1, since 100 is the only word of length 3 which satisfies P4. Assume that
n > 1. Then,

f0(n+ 4) = f0(n+ 2) + f0(n+ 1) + · · · ,
since the word of length greater than 3 must begin with a subword of the form 10 . . . 0.
Analogously, we obtain

f0(n+ 5) = f0(n+ 3) + f0(n+ 2) + · · · .

Comparing these two equalities, we get

f0(n+ 5) = f0(n+ 4) + f0(n+ 3).

The explicit formula follows from the preceding recurrence.
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Since f0(1) = 1, and so fm(1) = 1, using (D) and (F), we obtain the following combina-
torial interpretations of fm and cm(n, k).

Corollary 26. 1. The value of cm(n, k) is the number of words of length n − 1 over
{0, 1, . . . ,m+ 1} having k − 1 letters equal m+ 1 and satisfying P4.

2. The value of fm(n) is the number of words of length n−1 over the alphabet {0, 1, . . . ,m+
1} which satisfy P4.

We next derive an explicit formula for c1(n, k). It is known that c1(n, k) is the coefficient

of xn in the expansion of (
∑∞

i=1 Fi−2x
i)
k
into powers of x. We consider the following auxiliary

initial function:
f 0(1) = 0, f 0(n) = 1, (n > 1).

From [2, Proposition 23], we obtain f 1(n) = Fn−1. It is proved in [3, Proposition 13] that

c1(n, k) =

(

n− k − 1

k − 1

)

,
(

k = 1, 2, . . . ,
⌊n

2

⌋)

,

and c1(n, k) = 0, otherwise.
Using (E) implies

c2(n, k) =

⌊n

2 ⌋
∑

i=k

(

i− 1

k − 1

)(

n− i− 1

i− 1

)

.

Hence,
( ∞
∑

i=1

Fi−1x
i

)k

=
∞
∑

n=k

c2(n, k)x
n. (7)

Let X denote
∑∞

i=1 Fi−1x
i. We expand the expression Y k, where Y =

∑∞
i=1 Fi−2x

i. Since
F−1 = 1, we have Y = x(1 +X), which yields

Y k = xk

(

1 +
k
∑

i=1

(

k

i

)

X i

)k

=
∞
∑

n=k

c1(n, k)x
n.

Using the binomial theorem and (7) yields

Y k = xk +
k
∑

i=1

∞
∑

j=i

(

k

i

)

c2(j, i)x
j+k.

For j + k = n, the coefficient of xn on the right-hand side is
∑k

i=1

(

k

i

)

c2(n− k, i).

12



Proposition 27. We have

c1(n, n) = 1,

c1(n, k) =
k
∑

t=1

⌊n−k

2 ⌋
∑

j=t

(

k

t

)(

j − 1

t− 1

)(

n− k − j − 1

j − 1

)

, (n > k).

Using (B), we easily obtain

fm(1) = 1, fm(2) = m,

fm(n+ 2) = (m+ 1)fm(n+ 1)− (m− 1)fm(n).

We examine two particular cases. In the case m = 1, we obtain

f1(1) = 1, f1(2) = 1,

f1(n+ 2) = 2f1(n+ 1), (n > 1),

which implies

f1(1) = f1(2) = 1, f1(n) = 2n−2, (n > 2).

Thus we obtain the following property of powers of 2.

Corollary 28. For n ≥ 2, the number 2n−2 is the number of ternary words of length n− 1
which satisfy P4.

As a consequence, the following Euler-type identity holds.

Identity 29. For n > 2, the number of binary words of length n − 2 equals the number of
ternary words of length n− 1, in which 0 and 1 appear only in a run of the form 1i, where
i is the run of zeros of length i ≥ 1.

From Propositions 27 and (D), we obtain the following identity for the Mersenne numbers.

Identity 30.

2n−2 − 1 =
n
∑

k=1

k
∑

i=1

⌊n−k

2 ⌋
∑

j=i

(

k

i

)(

j − 1

i− 1

)(

n− k − j − 1

j − 1

)

, (n > 2).

We now consider the case m = 2. We have

f2(1) = 1, f2(2) = 2,

f2(n+ 2) = 3f2(n+ 1)− f2(n),

which is the recurrence for the Fibonacci numbers F2n−1.

13



Corollary 31. The number F2n−1 is the number of quaternary words of length n− 1 which
satisfy P4.

Calculating values for c2(n, k), we obtain a peculiar expression for F2n−1.

Identity 32.

F2n−1 =
n
∑

k=1

n
∑

i=k

i
∑

t=0

⌊n−i

2 ⌋
∑

j=t

(

i− 1

k − 1

)(

i

t

)(

j − 1

t− 1

)(

n− i− j − 1

j − 1

)

.

Remark 33. Using (E) and (D), we obtain the explicit formulas for cm(n, k) and fm(n).

The following arrays in [5] are related to this type: A105422, A105306, A062110, A188137.

6 Type 5

Again, we consider binary words first.

Proposition 34. The following recurrence holds:

f0(1) = 1, f0(2) = 0, f0(3) = 1,

f0(n+ 3) = f0(n+ 1) + f0(n), (n ≥ 1).

We have f0(n) = pn+2, where pn is the nth Padovan number (A000931).

Proof. It is easy to see that the initial conditions are satisfied. A word of length n+2 begins
with either two zeros or three ones and the recurrence follows.

Since we have a recurrence for the Padovan numbers, the second statement is true.

This means that the Padovan number pn+2 is the number of binary words of length n− 1
in which 0 appears in runs of even length, while 1 appears in runs of lengths divisible by 3.
This is equivalent to the fact that the Padovan numbers count the compositions into parts
2 and 3 (see the comment in A000931).

Corollary 35. 1. The function fm satisfies

fm(1) = 1, fm(2) = m, fm(3) = m2 + 1,

fm(n+ 3) = mfm(n+ 2) + fm(n+ 1) + fm(n), (n > 1).

2. The value cm(n, k) is the number of words of length n−1 over {0, 1, . . . ,m+1} having
k − 1 letters equal to m+ 1, and satisfying P5.

3. The value fm(n) is the number of words of length n − 1 over {0, 1, . . . ,m + 1} which
satisfy P5.
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Proof. Claim 1 follows from (A) easily. Claims 2 and 3 follow from (F) and (D).
We add a short combinatorial proof of 2. Equality fm(1) = 1 means that the empty word

satisfies P5. Furthermore, fm(2) = m means that a word of length 1 may consist of any
letter except 0 and 1. Next, fm(3) = m2 + 1 means that a word of length 2 may consist of
pairs from {2, 3, . . . ,m + 1}, which are m2 in number, plus the word 00. Finally, a word of
length n > 2 may begin with any letter from {2, 3, . . . ,m+ 1}, or with 00, or with 111.

The case m = 1 in Corollary 35 is the recurrence for Tribonacci numbers.

Corollary 36. The sequence 1, 1, 2, 4, 7, . . . of the Tribonacci numbers is the invert transform
of the sequence 1, 0, 1, 1, 1, 2, . . . of the Padovan numbers. Also, the Tribonacci numbers count
ternary words satisfying P5.

Finally, we calculate c1(n, k). We define the arithmetic function f 0 such that f 0(2) =
f 0(3) = 1, and f 0(n) = 0 otherwise. It is proved in [3, Propositon 5] that c1(n, k) =

(

k

n−2k

)

,
and

f 1(1) = 0, f 1(2) = 1, f 1(3) = 1,

f 1(n+ 3) = f 0(n+ 1) + f 0(n).

This implies that f 1(n) = f0(n− 1), (n > 1). The sequence f0(1), f0(2), . . . is thus obtained
by inserting 1 at the beginning of the sequence f 1(1), f 1(2), . . ..

Using (E), we obtain

c2(n, k) =
n
∑

i=k

(

i− 1

k − 1

)

·
(

i

n− 2 · i

)

,

which implies
( ∞
∑

i=1

f 1(i)x
i

)k

=
∞
∑

n=k

c2(n, k)x
n. (8)

To obtain an explicit formula for c1(n, k), we need to expand the expression X given by

X = (
∑∞

i=1 f0(i)x
i)
k
into powers of x. We have

X =

(

x+
∞
∑

i=2

f0(i)x
i

)k

= (x+ xY )k,

where Y =
∑∞

i=1 f 1(i)x
i. Hence,

X = xk

k
∑

i=0

(

k

i

)

Y i.
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Applying (8) implies

X =
k
∑

i=0

(

k

i

) ∞
∑

j=i

c2(j, i)x
j+k.

Taking n = j + k, we get the following result.

Proposition 37. The following formulas hold:

c1(n, n) = 1,

c1(n, k) =
k
∑

i=0

n−k
∑

j=i

(

k

i

)(

j − 1

i− 1

)(

j

n− k − 2j

)

, (k < n).

In particular, we have the following identity for the Tribonacci numbers.

Identity 38.

Tn = 1 +
n−1
∑

k=1

k
∑

i=0

n−k
∑

j=i

(

k

i

)(

j − 1

i− 1

)(

j

n− k − 2j

)

.

Remark 39. Using (E) and (D), we obtain explicit formulas for cm(n, k) and fm(n).

The following arrays in Sloane [5] are related to this type: A104578, A104580.
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