Aperiodic Compositions and Classical Integer Sequences

Margherita Maria Ferrari and Norma Zagaglia Salvi*
Department of Mathematics
Politecnico di Milano
Milano, 20133
Italy
margheritamaria.ferrari@polimi.it
norma.zagaglia@polimi.it

Abstract
In this paper we define the notion of singular composition of a positive integer. We provide a characterization of these compositions, together with methods for decomposing and also extending a singular composition in terms of other singular compositions. Consecutive extensions of particular compositions determine sequences of integers which coincide with classical integer sequences involving Fibonacci and Lucas numbers.

1 Introduction
Let k, n be integers where $1 \leq k \leq n$, and let $\alpha = (a_1, a_2, \ldots, a_k)$ denote a composition of n into k parts [3]. We call α (h, i)-singular if

$$ (a_1, a_2, \ldots, a_i + a_{i+1}, \ldots, a_k) = (a_{1+h}, a_{2+h}, \ldots, a_{i+h} + a_{i+1+h}, \ldots, a_{k+h}), $$

(1)

where $1 \leq h \leq k - 1$, $1 \leq i \leq k$ and the indices are modulo k. Note that shifting a (h, i)-singular composition of one position to the right, we obtain a $(h, i+1)$-singular composition. Consequently, the choice of a single index i is sufficient for identifying such compositions.

* Work partially supported by MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca).
Thus we fix $i = 1$ and we call the composition $\alpha = (a_1, a_2, \ldots, a_k)$ h-singular if
\[
(a_1 + a_2, a_3, \ldots, a_k) = (a_{1+h}, a_{2+h}, a_{3+h}, \ldots, a_{k+h}).
\]

A k-composition of n is singular when it is h-singular for a suitable value of $1 \leq h \leq k-1$.

Example 1. The 5-composition $(1, 2, 2, 1, 2)$ of $n = 8$ is 2-singular.

Kramer [2] used singular compositions in order to define the middle levels partition graph of n.

The concatenation of the compositions $\alpha = (a_1, a_2, \ldots, a_k)$ and $\beta = (b_1, b_2, \ldots, b_h)$ of the positive integers n and m respectively is the composition $\alpha \beta = (a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_h)$ of $n + m$. We let α^i denote the concatenation of α with itself i times. A composition α is periodic if $\alpha = \pi^j$, where $1 < j \leq k$ and π is a suitable composition.

Fibonacci and Lucas numbers will appear in some of our results. Recall that the Fibonacci sequence $(F_n)_{n \geq 0}$ is defined by setting $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$, for $n \geq 2$. The Lucas sequence $(L_n)_{n \geq 0}$ is defined by setting $L_0 = 2$, $L_1 = 1$ and $L_n = L_{n-1} + L_{n-2}$, for $n \geq 2$.

The paper is outlined as follows. In Section 2 we determine a characterization of aperiodic singular compositions which allows us to obtain a method for constructing such compositions (Theorem 11). In Section 3 we study decompositions (Theorem 14) and also extensions (Theorem 18) of a singular composition in terms of other singular compositions. In Section 4 we prove that consecutive extensions of particular compositions determine sequences of integers which coincide with classical sequences involving Fibonacci and Lucas numbers. We conclude the paper by posing a more general definition of singular composition together with an open problem.

2 A characterization of singular compositions

Let α be an h-singular k-composition of n; from (2) it follows that $(a_3, \ldots, a_k) = (a_{3+h}, \ldots, a_{k+h})$.

This equality determines the function $f_h : \{3, 4, \ldots, k\} \to \{3+h, 4+h, \ldots, k+h\}$ on the indices of the elements of previous sequences such that
\[
f_h(i) = i + h,
\]
where $3 \leq i \leq k$ and the integers are modulo k. We may represent f_h in two-line notation
\[
\begin{pmatrix}
3 & 4 & \cdots & k \\
3+h & 4+h & \cdots & k+h
\end{pmatrix}.
\]

Note that the second line is obtained by shifting of h positions to the left the elements of the sequence $(1, 2, 3, 4, \ldots, k)$ and ignoring the first two elements $1+h$ and $2+h$. A consequence is that the elements 1 and 2, which do not belong to the first line, belong to the second one,
except for \(h = 1 \) and \(h = k - 1 \). Indeed for \(h = 1 \) the second line contains 1, but not 2; for \(h = k - 1 \) the second line contains 2, but not 1. In a similar way, the elements \(1 + h \) and \(2 + h \) do not belong to the second line while they belong to the first one, except for \(h = 1 \) and \(h = k - 1 \).

Proposition 2. An \(h \)-singular \(k \)-composition of \(n \), where \(h \) and \(k \) are not coprime, is periodic.

Proof. Let \(\gcd(k, h) = t > 1 \), where \(h = th', k = tk' \) and \(\gcd(k', h') = 1 \). Note that the sets \(H_i = \{i, i+h, \ldots, i+(k'-1)h\} \), \(1 \leq i \leq t \), determine a partition of the set \([k]\). Then, for an \(h \)-singular \(k \)-composition \(\alpha = (a_1, a_2, \ldots, a_k) \), the elements of the sets \(\{a_i, a_i+h, \ldots, a_i+(k'-1)h\} \), \(1 \leq i \leq t \), coincide and \(\alpha \) turns out to be the concatenation \((a_1, a_2, \ldots, a_t)^{k'} \).

Throughout the paper we consider only aperiodic compositions.

Beggas et al. [1] proved that a particular bijection, called widened permutation, between two \(n \)-sets having \(n - 1 \) elements in common has a decomposition into a linear order and a possible permutation. In this case we have a similar function in which the two sets have \(n - 2 \) elements in common, but for \(h = 1 \) and \(h = k - 1 \).

Lemma 3. Let \(h, k \) be coprime integers, where \(1 \leq h \leq k - 1 \). The function \(f_h \) does not contain cycles.

Proof. By way of contradiction we assume there is a cycle

\[
C = (d, d + h, \ldots, d + (r - 1)h),
\]

where \(1 \leq d \leq k \) and \(d + rh \equiv d \pmod{k} \). This means that \(rh \equiv 0 \pmod{k} \) and therefore \(k \) divides \(rh \). Then, because \(\gcd(k, h) = 1 \), \(k \) divides \(r \). The unique possibility is \(r = k \); so the cycle contains all the elements. But this implies the impossible condition that also every line of \((3)\) contains all the elements. \(\square \)

Theorem 4. Let \(h, k \) be coprime integers, where \(1 \leq h \leq k - 1 \). The function \(f_h \) is decomposed into the linear orders:

1. \(E_h = (1 + h, 1 + 2h, \ldots, 1 + rh) \) (4)
 \[
 \text{and} \quad F_h = (2 + h, 2 + 2h, \ldots, 2 + sh),
 \]
 \(\text{where } r = h^{-1}, s = (k - 1)h^{-1} \text{ in } \mathbb{Z}_k, \text{ for } h \neq 1, k - 1; \)
2. \(E_1 = (2) \) and \(F_1 = (3, 4, \ldots, k, 1) \), for \(h = 1 \);
3. \(E_{k-1} = (k, k - 1, \ldots, 2) \) and \(F_{k-1} = (1) \), for \(h = k - 1 \).
Proof. Let $h \neq 1, k-1$. Starting from $1+h$ we obtain the sequence $(1+h, 1+2h, \ldots, 1+rh = a)$, where a is one of the two elements which are in the second but not in the first line. So we have either $a = 1$ or $a = 2$. If $a = 1$, we obtain the impossible relation $rh \equiv 0 \pmod{k}$.

If $a = 2$, we obtain $rh \equiv 1 \pmod{k}$, which is satisfied for $r = h^{-1}$ in \mathbb{Z}_k. Now starting from $2+h$ we obtain the sequence $(2+h, 2+2h, \ldots, 2+sh = b)$, where either $b = 1$ or $b = 2$. The unique possibility is $b = 1$, which holds for $s = (k-1)h^{-1}$ in \mathbb{Z}_k. By Lemma 3 the function does not contain cycles; therefore it is decomposed into the previous linear orders.

Now let $h = 1$. The function f_1 is decomposed into $F_1 = (3, 4, \ldots, k, 1)$ and $E_1 = (2)$. In the case $h = k - 1$, f_{k-1} is decomposed into $E_{k-1} = (k, k-1, \ldots, 2)$ and $F_{k-1} = (1)$. This completes the proof of the theorem.

In the following we let E_h and F_h also denote the sets of the elements of the assigned linear orders.

Corollary 5. For every $1 \leq h \leq k-1$ such that $\gcd(k, h) = 1$, $E_h \cup F_h = [k]$ and, for $k > 2$, $|E_h| \neq |F_h|$.

Proof. If $k-h^{-1} = h^{-1}$, then $k = 2h^{-1}$ and $kh = 2$ in \mathbb{Z}_k. This implies that $2 \equiv 0 \pmod{k}$, a contradiction for $k > 2$.

Lemma 6. Let h_1, h_2 be two integers such that $1 \leq h_1 < h_2 \leq k-1$ and $\gcd(k, h_1) = \gcd(k, h_2) = 1$. Then $E_{h_1} \neq E_{h_2}$ and $F_{h_1} \neq F_{h_2}$.

Proof. The cardinalities of E_{h_1} and E_{h_2} coincide with h_1^{-1} and h_2^{-1} in \mathbb{Z}_k respectively. Because $h_1 < h_2$, their inverses are distinct; then also the sets E_{h_1} and E_{h_2} are distinct. The same argument applies for F_{h_1} and F_{h_2}.

The following result is straightforward.

Corollary 7. If k is a prime integer, then all the sets E_h (respectively F_h), $1 \leq h \leq k-1$, are distinct.

Note that when k and h are coprime, then also k and $k-h$ are coprime. In the following result we establish a relation between E_{k-h} (respectively F_{k-h}) and F_h (respectively E_h).

Proposition 8. For every $1 \leq h \leq \left\lfloor \frac{k}{2} \right\rfloor$ such that $\gcd(k, h) = 1$, $E_{k-h} = (F_h \setminus \{1\}) \cup \{2\}$ and $F_{k-h} = (E_h \setminus \{2\}) \cup \{1\}$.

Proof. The result is easy to prove for $h = 1$. Let $h' = k-h$. Since $\gcd(k, h) = 1$, then $\gcd(k, h') = 1$, $E_{h'} = \{1+h', 1+2h', \ldots, 1+(r'-1)h', 2\}$ and $F_{h'} = \{2+h', 2+2h', \ldots, 2+(s'-1)h', 1\}$, where $r' = (h')^{-1}$ and $s' = k-(h')^{-1}$ in \mathbb{Z}_k.

Let s denote $k-h^{-1}$ in \mathbb{Z}_k; it follows that

\[1+k-h \equiv 2 + (s-1)h \pmod{k}.
\]

Then $1+2(k-h) \equiv 2+(s-2)h$ and so on until $1+(s-1)(k-h) \equiv 2+h$ and $1+s(k-h) \equiv 2 \pmod{k}$. Thus $E_{k-h} = \{2+(s-1)h, 2+(s-2)h, \ldots, 2+h, 2\} = (F_h \setminus \{1\}) \cup \{2\}$.

Moreover, $2+k-h \equiv 1+(r-1)h \pmod{k}$, where $r = h^{-1}$ in \mathbb{Z}_k; thus $F_{k-h} = \{1+(r-1)h, 1+(r-2)h, \ldots, 1+h, 1\} = (E_h \setminus \{2\}) \cup \{1\}$.

\[\square\]

4
Corollary 9. If \(\alpha = (a_1, a_2, \ldots, a_k) \) is an aperiodic \(h \)-singular \(k \)-composition of \(n \), then every \(a_i \) is equal to \(a_1 \) or \(a_2 \), \(1 \leq i \leq k \), as long as \(i \in F_h \) or \(i \in E_h \) respectively. Then \(a_1 \) and \(a_2 \) are distinct, and they satisfy the relation
\[
(k - h^{-1})a_1 + h^{-1}a_2 = n. \tag{6}
\]

Corollary 10. If an aperiodic composition contains more than two distinct elements, then it is not singular.

Previous results allow us to give a characterization of singular compositions, which turns out to be a method for their construction.

Theorem 11. Let \(h, k, n \) be positive integers such that \(1 \leq h < k \leq n \) and \(\gcd(k, h) = 1 \). An aperiodic \(k \)-composition \(\alpha = (a_1, a_2, \ldots, a_k) \) is \(h \)-singular if and only if \(a_1 \neq a_2 \) and the pair of elements \((a_1, a_2)\) is a solution of the equation
\[
(k - h^{-1})x_1 + h^{-1}x_2 = n, \tag{7}
\]
where \(h^{-1}, k - h^{-1} \in \mathbb{Z}_k \), and each \(a_i \) coincides with \(a_1 \) or \(a_2 \) for \(i \in F_h \) or \(i \in E_h \) respectively.

Proof. If \(\alpha \) is \(h \)-singular, then by Corollary 9 the property holds.

Now let us assume that the pair of distinct integers \((a_1, a_2)\) is solution of the equation (7) and each \(a_i \) coincides with \(a_1 \) or \(a_2 \) for \(i \in F_h \) or \(i \in E_h \) respectively. Hence, for \(h \neq 1, k - 1 \), the composition \(\alpha = (a_1, a_2, \ldots, a_k) \) which has the elements \(a_1 \) and \(a_2 \) in the positions given by (5) and (4) respectively, is \(h \)-singular. Lastly, if \(h = 1, \alpha = (a_1, a_2, a_3, \ldots, a_1) \) is 1-singular, while if \(h = k - 1, \alpha = (a_1, a_2, \ldots, a_2) \) is \((k - 1)\)-singular. \(\square \)

Example 12. The list of \(h \)-singular 9-compositions with \(a_1 = 1 \) and \(a_2 = 2 \) is

1. for \(h = 1, \alpha_1 = (1, 2, 1, 1, 1, 1, 1, 1, 1); \)
2. for \(h = 2, \alpha_2 = (1, 2, 2, 1, 2, 1, 2, 1, 2); \)
3. for \(h = 4, \alpha_4 = (1, 2, 2, 2, 2, 1, 2, 2, 2); \)
4. for \(h = 5, \alpha_5 = (1, 2, 1, 1, 1, 2, 1, 1, 1); \)
5. for \(h = 7, \alpha_7 = (1, 2, 1, 2, 2, 1, 2, 1, 2); \)
6. for \(h = 8, \alpha_8 = (1, 2, 2, 2, 2, 2, 2, 2, 2) \)

where the corresponding integers are \(n_1 = 10, n_2 = 14, n_4 = 16, n_5 = 11, n_7 = 13 \) and \(n_8 = 17 \). Note that the compositions \(\alpha_5, \alpha_7 \) and \(\alpha_8 \) are obtained from \(\alpha_4, \alpha_2 \) and \(\alpha_1 \) respectively, by exchanging 1 with 2 after the first two positions.
Let $\alpha = (a_1, a_2, \ldots, a_k)$ be an h-singular composition. By Proposition 8, it follows that by exchanging a_1 and a_2 after the first two positions, we obtain a $(k-h)$-singular composition. We now prove that by exchanging only the first two elements we obtain again a $(k-h)$-singular composition.

Proposition 13. Let $\alpha = (a_1, a_2, \ldots, a_k)$ be an aperiodic h-singular composition of n, where $1 \leq h \leq k-1$. Then $\alpha^* = (a_2, a_1, a_3, \ldots, a_k)$ is a $(k-h)$-singular composition of n, obtained from α by rotation.

Proof. Consider the composition $\alpha^* = (a_1^*, a_2^*, \ldots, a_k^*) = (a_2, a_1, a_3, \ldots, a_k)$ of n. The set E^* of indices of the elements equal to a_2^* in α^* satisfies $E^* = (F_h \setminus \{1\}) \cup \{2\} = E_{k-h}$ (Proposition 8). The same relation holds for $F^* = F_{k-h}$, where F^* is the set of indices of the elements equal to a_2^* in α^*. Then α^* is a $(k-h)$-singular composition of n. Note that the composition $\alpha' = (a_1+1, a_2+h, \ldots, a_k, a_1, \ldots, a_h)$ is $(k-h)$-singular and is obtained from α by rotation. Moreover $a_2 = a_{1+h}$ and $a_1 = a_{2+h}$. Since the first two elements of α^* coincide with the first two of α' and both the compositions are $(k-h)$-singular, $E^* = E'$ and $F^* = F'$. Thus $\alpha^* = \alpha'$, and the result follows.

\[\square\]

3 Decompositions and extensions

In this section we investigate two decompositions and some extensions of an aperiodic singular composition.

Theorem 14. Let $\alpha = (a_1, a_2, \ldots, a_k)$ be an aperiodic h-singular k-composition of n, where $k = hq + r$ and $1 \leq r < h$. Then $\alpha = \lambda \mu \lambda \cdots \lambda$, where $\lambda = (a_1, a_2, \ldots, a_h)$, μ is the sequence of the last r elements of λ and q is the multiplicity of λ. Moreover λ is a $(h-r)$-singular h-composition of $a_1 + \cdots + a_h$.

Proof. Since α is h-singular, the sequences $\beta = (a_1 + a_2, a_3, \ldots, a_k)$ and $\gamma = (a_{1+h} + a_{2+h}, a_{3+h}, \ldots, a_{k+h})$ coincide. In particular this holds for the subsequences β' and γ' obtained by deleting the first $h-1$ elements of β and γ respectively. If $1 \leq h \leq \lfloor \frac{k}{2} \rfloor$, by comparing $\beta' = (a_{1+h}, a_{2+h}, \ldots, a_k)$ and $\gamma' = (a_{1+2h}, a_{2+2h}, \ldots, a_k, a_1, \ldots, a_h) = (a_{1+2h}, \ldots, a_k) \lambda$, where $\lambda = (a_1, a_2, \ldots, a_h)$, we obtain that the sequence $(a_{k-(h-1)}, \ldots, a_k)$ formed by the last h elements of β' coincides with λ. Then the sequence of length h in γ' which precedes the last subsequence λ coincides again with λ. We continue until we find a subsequence μ of length less than h in β', which is formed by the last r elements of λ. Thus $\mu = (a_{h-(r-1)}, a_{h-(r-2)}, \ldots, a_h)$. If $\lfloor \frac{k}{2} \rfloor < h \leq k-1$, by comparing β' and $\gamma' = \mu$ we obtain $\alpha = \lambda \mu \lambda \cdots \lambda$, where λ occurs q times.

Let us assume that $r > 1$. Since α is h-singular, the sequence

$$(a_1 + a_2, a_3, \ldots, a_h, a_{h-(r-1)}, a_{h-(r-2)}, \ldots, a_h) \lambda^{q-1}$$

coincides with

$$(a_{h-(r-1)} + a_{h-(r-2)}, a_{h-(r-3)}, \ldots, a_h) \lambda^q.$$
Therefore the sequences of the first $h - 1$ elements coincide

$$(a_1 + a_2, a_3, \ldots, a_h) = (a_{h-(r-1)} + a_{h-(r-2)}, a_{h-(r-3)}, \ldots, a_h, a_1, \ldots, a_{h-r}).$$

Thus the composition λ is $(h-r)$-singular. A similar argument applies in the case $r = 1$. □

Proposition 15. Let $\alpha = (a_1, a_2, \ldots, a_k)$ be an aperiodic h-singular k-composition of n, where $k = hq + r$ and $1 < r < h$. Then $\alpha = \sigma \lambda \cdots \lambda$, where $\lambda = (a_1, a_2, \ldots, a_h)$, $\sigma = (a_1, a_2, \ldots, a_r)$ and the multiplicity of λ is q. Moreover λ is a $(h-r)$-singular h-composition of $a_1 + \cdots + a_h$.

Proof. Let $\lambda = (a_1, a_2, \ldots, a_h)$ and $\sigma = (a_1, a_2, \ldots, a_r)$. By applying the same argument used in the proof of Theorem 14 to the subsequences obtained by deleting the first $r - 1$ elements of β and γ, the result follows. □

Corollary 16. In the case of $r = 1$, there is not a decomposition $\alpha = \sigma \lambda \lambda \cdots \lambda$.

Proof. In the case of $r = 1$, σ is reduced to the element a_1. This implies the relation $a_1 + a_2 = 2a_1$; then $a_2 = a_1$, a contradiction to the assumption that α is aperiodic. □

Corollary 17. If $k = hq + r$ and $1 < r < h$, then $\sigma \lambda = \lambda \mu$.

Now we investigate an operation which can be considered the inverse of the decomposition; namely we want to determine an extension of a singular composition which turns out to be again a singular composition.

Theorem 18. Let α be an aperiodic h-singular k-composition of n, and let ν denote the sequence formed by the last $k - h$ elements of α. The k'-composition $\beta = \alpha \nu \alpha \cdots \alpha$, where $k' = kq' + k - h$ and q' is the multiplicity of α, is k-singular.

Proof. Let $\alpha = (a_1, a_2, \ldots, a_k)$ be an aperiodic h-singular k-composition of n, where $k > 2$ and $1 \leq h < k - 1$. The composition $\beta = \alpha \nu \alpha \cdots \alpha$, where ν denotes the sequence formed by the last $k - h$ elements of α, is k-singular if

$$(a_1 + a_2, \ldots, a_k, a_{1+h}, \ldots, a_k)\alpha^{q'-1} = (a_{1+h} + a_{2+h}, \ldots, a_k)\alpha^{q'}.$$

In order to prove the equality, it is sufficient to show that

$$(a_1 + a_2, a_3, \ldots, a_k, a_{1+h}, \ldots, a_k) = (a_{1+h} + a_{2+h}, \ldots, a_k, a_1, \ldots, a_k). \quad (8)$$

Since α is h-singular, $(a_1 + a_2, a_3, \ldots, a_k) = (a_{1+h} + a_{2+h}, \ldots, a_k, a_1, \ldots, a_h)$. Thus the left side of (8) coincides with $(a_{1+h} + a_{2+h}, \ldots, a_k, a_1, \ldots, a_h, a_{1+h}, \ldots, a_k)$ and the result follows. A similar argument applies in the cases $k = 2$ and $h = k - 1$. □
4 Classical integer sequences

Let α be an h-singular k-composition of n. The composition $\beta = \alpha \nu \alpha \ldots \alpha$, where ν is the sequence formed by the last $k - h$ elements of α and α is repeated q times, is called a q-extension of α. By consecutive extensions, we determine a sequence of singular compositions and therefore a sequence of integers corresponding to the numbers of their parts.

4.1 Fibonacci sequences

Let us consider the h_0-singular k_0-composition $\alpha_0 = (a, b)$, with $a \neq b$, $k_0 = 2$ and $h_0 = 1$. The 2-extension of α_0 is the h_1-singular k_1-composition $\alpha_1 = \alpha_0 \nu_0 \alpha_0 = (a, b, b, a, b)$, where $k_1 = k_0 \cdot 2 + 1$, $h_1 = k_0 = 2$ and ν_0 is the composition formed by last $(k_0 - h_0) = 1$ element of α_0. The consecutive 2-extension is the h_2-singular k_2-composition $\alpha_2 = \alpha_1 \nu_1 \alpha_1 = (a, b, b, a, b, a, b, a, b, b, a, b)$, where $k_2 = k_1 \cdot 2 + 3$, $h_2 = k_1$ and ν_1 is the composition formed by last $(k_1 - h_1) = 3$ elements of α_1 and so on.

The first values of the sequence of the numbers $(k_n)_{n \geq 0}$ of parts of the 2-extensions of α_0 are

$$2, 5, 13, 34, 89, 233, \ldots$$

These numbers appear as the first integers, but the first two, in the sequence A001519 [4], which is obtained from the recursive relation

$$a_n = 3a_{n-1} - a_{n-2}, \quad (9)$$

with the initial conditions $a_0 = 1$, $a_1 = 1$. We prove that the integers k_n satisfy the same recursive relation.

Lemma 19. The integers k_n of the parts of the 2-extensions of the 1-singular 2-composition (a, b), with $a \neq b$, satisfy the recursive relation:

$$k_n = 3k_{n-1} - k_{n-2}$$

with the initial conditions $k_0 = 2$, $k_1 = 5$.

Proof. Recall that, by Theorem 18,

$$k_n = 2k_{n-1} + k_{n-1} - h_{n-1}.$$

Because $h_{n-1} = k_{n-2}$, the result follows. \qed

The following corollary is straightforward.

Corollary 20. The integers h_n associated to the 2-extensions of the 1-singular 2-composition (a, b), with $a \neq b$, satisfy the recursive relation:

$$h_n = 3h_{n-1} - h_{n-2}$$

with the initial conditions $h_0 = 1$, $h_1 = 2$.

8
It is easy to prove that the generating function of the sequence of the integers \(k_n \) is
\[
\frac{2 - x}{1 - 3x + x^2},
\]
and
\[
k_n = \frac{2 + \sqrt{5}}{\sqrt{5}} \left(\frac{3 + \sqrt{5}}{2} \right)^n + \frac{-2 + \sqrt{5}}{\sqrt{5}} \left(\frac{3 - \sqrt{5}}{2} \right)^n.
\]

Proposition 21. The sequence
\[k_0, k_1 - h_1, k_1, k_2 - h_2, k_2, k_3 - h_3, \ldots \quad (10) \]
coincides with the sequence of Fibonacci numbers \(F_n \), with initial conditions \(F_2 = 2, F_3 = 3 \).

Proof. We have to prove that every element of (10) is the sum of the preceding two elements and the initial conditions coincide. For \(i \geq 1 \), \(k_i = k_i - h_i + k_{i-1} \), because \(h_i = k_{i-1} \). Moreover, for \(i \geq 2 \), \(k_i - h_i = k_{i-1} + k_{i-1} - h_{i-1} \) by Lemma 19. Because \(k_0 = 2, k_1 = 5 \) and \(h_1 = 2 \), the initial conditions are 2 and 3, which coincide with \(F_2 \) and \(F_3 \) of the Fibonacci sequence \(A000045 \).

Another consequence of Proposition 21 is that the elements \(k_i, i \geq 0 \), form a bisection of the Fibonacci sequence; this result turns out to be one of the comments to \(A001519 \).

By repeating the previous procedure for \(q > 2 \), we easily obtain a sequence satisfying the recursive relation
\[a_n = (q + 1)a_{n-1} - a_{n-2}, \]
with the initial conditions \(a_0 = 2, a_1 = 2q + 1 \).

In the particular case of \(q = 3 \), we obtain the sequence whose first elements are
\[2, 7, 26, 97, \ldots \]
which coincides with \(A001075 \), but the first element.

Again, for \(q = 4 \) we obtain a sequence whose first elements are
\[2, 9, 43, 206, \ldots \]
which coincides with \(A002310 \), but the first element.

4.2 Lucas sequences

The first values of the sequence of the numbers \((p_n)_{n \geq 0} \) of parts of the 2-extensions of the 2-singular 3-composition \((a, b, b) \), with \(a \neq b \), are
\[3, 7, 18, 47, 123, \ldots \]
These integers coincide with the first integers, but the first one, of A005248, which is obtained from the recursive relation (9), with the initial conditions \(a_0 = 2, a_1 = 3\).

Using the same procedure of Lemma 19, the numbers \(p_n\) satisfy the same recursive relation with initial conditions \(p_0 = 3\) and \(p_1 = 7\). Moreover the generating function of the sequence of the integers \(p_n\) is

\[
\frac{3 - 2x}{1 - 3x + x^2},
\]

and

\[
p_n = \left(\frac{3 + \sqrt{5}}{2}\right)^{n+1} + \left(\frac{3 - \sqrt{5}}{2}\right)^{n+1}.
\]

Proposition 22. The sequence

\[
h_0, p_0 - h_0, p_0, p_1 - h_1, p_1, p_2 - h_2, p_2, p_3 - h_3, \ldots
\]

(11)

coincides with the sequence of Lucas numbers \(L_n\), with initial conditions \(L_0 = 2, L_1 = 1\).

Another consequence of the previous result is that the elements \(p_i, i \geq 0\), form a bisection of the Lucas sequence A000032, as noted in a comment to A005248.

4.3 Other integer sequences

We now consider the sequence of the numbers \((t_n)_{n \geq 0}\) of parts of 2-extensions of the 3-singular 4-compositions \((a, b, b, b)\), with \(a \neq b\), that is

\[
4, 9, 23, 60, 157, \ldots
\]

This sequence, which is not contained in [4], satisfies the recursive relation (9), with initial conditions \(t_0 = 4\) and \(t_1 = 9\). The corresponding generating function is

\[
\frac{4 - 3x}{1 - 3x + x^2},
\]

and

\[
t_n = \frac{3 + 2\sqrt{5}}{\sqrt{5}}\left(\frac{3 + \sqrt{5}}{2}\right)^n + \frac{-3 + 2\sqrt{5}}{\sqrt{5}}\left(\frac{3 - \sqrt{5}}{2}\right)^n.
\]

By continuing, we may obtain other integer sequences by \(q\)-extension, with \(q \geq 2\), of the singular composition \((a, b, \ldots, b)\), where \(b\) occurs more than three times.

5 Conclusion

The notion of singular composition can be generalized as follows. We call the composition \(\alpha = (a_1, a_2, \ldots, a_k) (h, i, j)\)-singular, if

\[
(a_1, a_2, \ldots, a_{i-1}, a_i + a_j, a_{i+1}, \ldots, a_{j-1}, a_{j+1}, \ldots, a_k) = (a_1 + h, a_2 + h, \ldots, a_{i-1} + h, a_i + h, a_{i+1} + h, \ldots, a_{j-1} + h, a_{j+1} + h, \ldots, a_k + h),
\]

(12)
where $1 \leq h \leq k - 1$, $1 \leq i < j \leq k$ and the indices are modulo k.

This definition leads to compositions which cannot be obtained from equation (1). In fact, $(1, 1, 2, 2, 2)$ satisfies $(a_1 + a_3, a_2, a_4, a_5) = (a_1 + h + a_3 + h, a_2 + h, a_4 + h, a_5 + h)$ for $h = 4$, but it does not satisfy any equation (1).

Thus this definition poses the problem to find necessary and sufficient conditions based on which a given aperiodic sequence with two distinct elements satisfies (12).

6 Acknowledgments

The authors thank the anonymous referee for his valuable suggestions which led to an improvement of the manuscript.

References

2010 Mathematics Subject Classification: Primary 05A17; Secondary 11B39.
Keywords: ordered partition, composition, singular composition, Fibonacci number, Lucas number.

(Concerned with sequences A000032, A000045, A001075, A001519, A002310, and A005248.)

Received April 20 2017; revised versions received May 11 2017; August 2 2017. Published in *Journal of Integer Sequences*, September 5 2017.

Return to *Journal of Integer Sequences* home page.