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Abstract

The binomial interpolated transform of a sequence is a generalization of the well-
known binomial transform. We examine a Pascal-like triangle, on which a binomial
interpolated transform works between the left and right diagonals, focusing on binary
recurrences. We give the sums of the elements in rows and in rising diagonals, and we
define two special classes of these arithmetical triangles.

1 Introduction

Let us define the sequence b = {b,,}°, € R* as the binomial transform of the given sequence
a = {a,}2, € R® by b, = >, (?)a;. This transformation is invertible with formula
an = Yo (1) (=1)""'b;. Several researchers [1, 2, 3, 5, 7] examined the properties and the
generalizations of the binomial transformation. One of its generalizations is the so-called

binomial interpolated transform [1] given by
n n . .
bn _ i n—1 ; 1
; (z ) u'v"a (1)

for any non-zero u,v € R. Bhadouria at al. [2] and Falcon and Plaza [3] showed for some
(falling and rising) k-binomial transform cases, when v = 1, v = k; u = k, v = 1 or
u = v = k, that there are special infinite (Pascal-like) triangles, whose left diagonal (left leg)
contains the terms of a and the right one (right leg) the terms of b.
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In our paper, we examine the inner part of this type of triangle in a generalized form
focusing exclusively on the binary recurrence sequences a. We determine the sums and alter-
nating sums of rows, rising diagonals and central term sequence and give explicit forms for
entries of the triangle. Finally, we define and examine two special classes of our arithmetical
triangles.

2 Binomial interpolated triangle

Let an arithmetical triangle (called “derangement triangle” [2]) be defined by terms a,
(k-th entry in row n — see Figure 1) from the sequence {a, 0}, where

an,k = uan,k—l + Uan—l,k—l (1 S k S n)u (2)

u,v € R and uv # 0.

We shall show that the right diagonal sequence is a binomial interpolated transform of the
left diagonal sequence with parameters u and v. Moreover, we shall prove that the converse
also holds, with the parameters —v/u and 1/u.

Ap—1k—1 Q0,0 Ap—1k—1
v
\U \ —2 / .
u u
Qp k-1 — OQnk a1 o0 — Q1,1 Ap k-1 < Ank

NN

a0 — A21 —> A22

NN N

a30 — a31 —> a32 — A3 3

NN NN

A40 —> 41 —> (42 —> A43 —> A44

Figure 1: Binomial interpolated triangle

Theorem 1. For all integer v, k such that kg < k < n, where kg > 0 is a fixed integer, we
have

k—ko

k—ko\ . ‘

i, k—ko—1i

U= ( S U ko k- (3)
=0

Proof. We prove it by induction on n and k. If k = ko, then the formula (3) trivially holds
for any n. We suppose that (3) is true up to kg < k — 1. Let 1 <k =k — ko. Then



Ank = Udpk-—1 + Vp—1 k-1
k-1 ,+ k-1

_ k—1 i, k—i—1 B + k—1 i k—i—1 B

- U Z uv an—k+i+1,]€0 v Z uv an—k"i‘i,k()

i=0 i=0

o — (k—1\ . 1.

i+1, k—i—1 _ i, k—i _

uv G Fotit1 ko T ( N CACH S
=0

k—1

_ % k=1 k=1\\ i 7 3

= v an—E,k‘o + i—1 + i L an—E-ﬁ-i,k‘o +tu an7k0
=1

]

Considering the substitutions ky = 0 and k = n, or considering a fixed term a,, , leads
us to the following corollary.

Corollary 2. The right diagonal sequence is the binomial interpolated transform of the left

diagonal sequence, so
n
n . .
1, N—1
by = Ay = g (Z)u V" a . (4)
i=0

Furthermore, let us fix ko and ng, so that 0 < kg < ng. Then the terms @; ; = any form
a binomial interpolated sub-triangle (see Figure 2), where i = n —mng, j =k — kg ng < n,
ko <k <n—(nog—koy). The sub-triangle’s right diagonal sequence is the binomial interpolated
transform of its left diagonal sequence.

We now express the terms a, by the right diagonal sequence {a,},.

Theorem 3. For any 0 <k <n

n—k i .
n—=k 1 v\"k—t
A= () () (e ?



o

Figure 2: Sub-triangle of the binomial interpolated triangle

Proof. We suppose that the sequence {b, = a,,} with {b,}7°, = {ann}i>, is given. Let
U =1/uand V = —v/u, then the right equality is a, x—1 = Uan i + Va,—1,-1, according to
(2). Based on this connection, we can write the entries of the binomial interpolated triangle
(from right to left) by by, where b, o = by, bpyr = Ubp 1 + Vbp_1,-1 (1 <7 < n). Using
relation (3), proved in Theorem 1, we obtain

r

bn,r = Z <:) Uivr_ibn—r-‘ri,o-

i=0
Since by, , = Gy 5—r, considering the substitution £ = n — r, the thesis follows. O

If £ = 0, as a direct consequence of Theorem 3, the inverse transformation of the binomial
interpolated transform (1) is

w3 (5 (2) (3o ©

=0

3 Binary binomial interpolated triangle
Let ano = an, where {a,}>, is a binary recursive sequence defined by
Ay = Qp_1 + Bay_o 2<n, a,f R, af #0), (7)

with initial values ag, a1 € R (Jag|+|a1| # 0). Then we call the binomial interpolated triangle
binary binomial interpolated triangle and we let BZT (ag, a1, cv, B;u,v) (in short BZT) denote
it.

Bhadouria et al. [2] gave three special examples, where the triangles are generated by the
4-Tucas sequence. They are BZT (2,4,4,1;1,1), BZT(2,4,4,1;4,1) and BZT (2,4,4,1;4,4).



From now on, we will use two important variables

A =ua+ 2v and B = 4?8 — uwva — v*

First of all, we give some recursive formulas for terms a, ;. The results of the next
technical lemma will be useful during the proofs of the further theorems.

Lemma 4. The following recurrence relations hold

Qp = Qhp—1 .k + 6an—2,k (2 S k + 2 S n)7 (8)
B
ak = %an—l,k — —Qp—1 k-1 (2<k+1<n), 9)
v v
ua + v B
QAn k. = u Ap—1,k + Eanflkfl (2 S k +1 S n)a (10)
Ak = (U + v)ap_1 -1 + uPBan_o k-1 2<k+1<n), (11)
u?f + v? ulB
(nj =~ —On—1h=1 — — ~On-1k-2 (2 <k <n), (12)
ang = Aan_15-1+Ban_2,2 (2<k<n), (13)
2uf — B
An k. = wan,k—l - Bamk—Z (2 < k < n) (14)

Proof. First we prove relation (8) by induction. For k = 0 it corresponds to definition (7).
Let us suppose that this formula is true up to K — 1. So, if x = a,_34,-1 and ¥ = ap_24-1,
then a, 141 = Bz + ay and a, ;1 = afBz + (8 + a?)y hold. Figure 3, which is a suitable
part of Figure 1, depicts it. Now a,_2% = vr + uy, an_1 = ufzr + (ua + v)y and a, ) =
(uaf +vB)x+ (ua® +va+uB)y, which gives (8). Moreover, we proved with it, that Figure 3
could be any part of Figure 1.

In order to prove the further equations we can also use the relevant part of Figure 3. For
example, in the case (11) a, = (ua +v)y +ufx = ufz + (ua + v)y. O

The relation (13) gives that the right diagonal sequence b (and the i-th diagonals parallel
to it) satisfies the binary recurrence relation

¥n>2 b, =Ab, + Bby_s (15)

with initial values by = ag, by = uay + vag (generally, by = a0, by = @411, @ > 0). Moreover,
the system of equations A = 0, B = 0 gives v = —ua/2 and u?(a® + 48) = 0. Thus, as
the condition uv # 0 holds, if v # —ua/2 or a* + 48 # 0, then |A| + |B| # 0, otherwise
A=B=0.



\
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afz + (a® + By — (ua? + va + ufB)y (u2a? + u?B + 2uva + v?)y

vx—l—uy

Figure 3: A part of the growing

3.1 Sums and alternating sums of rows

Let s = {s,}22, be the sequence whose elements are the sums of the values belonging to the
n-th row of a binomial interpolated triangle. We have

Zank _ zz( | (16)

k=0 =0

We obtain a linear recurrence for s, whose coefficients depend only on «, 3, A and B,
i.e., the coefficients of the binary recurrences related to sequences a and b.

Theorem 5. The sequence s satisfies the following fourth order linear homogeneous recur-
rence

Vn>4 s,=(a+A)s,_1+ (8 —aA+B)s,_o— (aB+ SA)S,—3 — fBsy_a. (17)
Proof. The sum of row n can be given by the previous two ones in form
Sp = (Sp—1 — An—1n-1) + BSn—2 + Gpn_1 + Q. (18)
Since uay p—1 = Gpy — Vay—1,—1 then from (18) we obtain
USy =uaSp—1 +uf Sp—o + (u+ 1)a,, — (au+ v)ap_1,-1. (19)
Applying (13) and as A — au — v = v we have
U Sy = U Sp—1 + U Sp—2 + (Au+ V)ayp—1n-1 + B(u+ 1)ay_25,-2. (20)
Now we transform (19) into
USp—1 = U Sy +uB Sp_3 + (u~+ 1)ay_1,-1 — (QU + V)ap_2py—2. (21)
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Transforming again (19) into form u s,_2 = uax $,,—3 + ... and using (13) we gain
uB sp—o = uB(a S$p—3+  Sn—4) — (@ +V)ap_1n-1+ (Bu+1) + (@u+v)A) an_o9,-2. (22)

Finally, let us express a,_1 -1 and a,_2,—2 from (20) and (21), respectively. We substi-
tute them into (22) and obtain (17). O

Remark 6. It should be noticed that the recurrence (18) is the minimal order recurrence of
s when

B(u+ 1) + (qu + v)(Au +v) # 0.
Indeed, in this case the determinant of coefficients of the system (from (20) and (21))

(AU + U)an—l,n—l + B(U + 1)an—2,n—2 =USp —UXSp1 — Uﬁ Spn—2
(u+1)an-1n1— (QU+V)an 25 2= USy 1 —UXSy, 2 — UB Sy 3

is different from 0, so the system has a unique solution, otherwise when
B(u+1)* + (cu +v)(Au+v) =0

or, equivalently, with a little bit of calculations, when B(u + 1)* + (o — u)(v + ua) = 0
the minimal order of the linear recurrence of s should be less then four. For example, the
solution u = —1 and v = « implies that A = « and B = . Then the relation (20) becomes

Vn>2 s,=as,_1+ 35,2 (23)
Obviously, summing relations s, = asp,_1 + BSn_2, —QSp_1 = —a25,_9 — af3s,_3 and
—BSn_2 = —afis,_3 — *s,_4 we find that the recurrence (17) also holds for sequence s,
but it is not the minimal order one.

Let the sequence 5 = {5, }22 be the alternating sum sequence, where the terms are the
values of rows of a binomial interpolated triangle, so that

n n k
5, = Z(—l)kamk = Z(—l)k Z (Ij) U a0
k=0

k=0 =0

Theorem 7. The sequence s satisfies the following fourth order linear homogeneous recur-
rence

VTL Z 4 gn - (a - A)gn—l + (ﬁ + 05/4 + B)gn—Q - (QB - 6-’4)511—3 - BBgn—4‘ (24)

Proof. Row by row the signs of the entries in the alternating sums do not change in directions
parallel to the left diagonal (sign((—1)*a, ;) = sign((—1)*a,_1x)), but parallel to the right

diagonal they change (sign((—1)*a, ) # sign((—1)*"'a,_14-1)). Hence we only have to
change the sign of A in the summation relation (17). O
Remark 8. If u = —1 and v = «, then the relation (24) becomes more simple,

Vn >3 5,=(a®+28)5,-2 — 5,4 (25)



3.2 Rising diagonal sum sequence

The sequence d = {d,, }5°, of sums of elements in rising diagonals has the following definition

n L5]
n Z 0 dn = Z Ak n—k = Zan,hk. (26)
k=[%] k=0

When we consider the Pascal arithmetical triangle it is well-known that these sums
provide the Fibonacci sequence. We give the recurrence relation for the sequence of sums of
elements belonging to rising diagonal (i.e.,“shallow diagonal” as they are defined in Wolfram
Math World [8]) of our binomial interpolated triangles.

Theorem 9. The rising diagonals sums sequence d of a BZT satisfies the sixth order linear
recurrence relation

Yn>6 D,=AD, 5+ BD,_,, (27)

where D, = —d,, + ad,,_1 + fd,_o. Moreover, for even n (n =2k, n > 2), D, = —by, also
holds.

We point out that with the equation (27) is a concise expression for the following sixth
order recurrence relation

dn = adnfl + (6 + A)dn,Q - OéAdn73 + (_ﬁA + B)dn,4 — OéBdn,Lr) — BBdn,G. (28)

Proof. Without loss of generality, let n = 2k. The values of d,,.5 and d,, .3 can be given by
the previous two ones in forms

dpyo = adpyr + Bdy + Qpgi ks

dnis = a(dpgo — Qpgr k1) + Bdpir + Argopg,

generally for even and odd indexes we have

dypi2i = ldpioio1 + Bdnioi—o + Qi i

Anyoitr = O (An2i — Opigti) + Blpgoio1 + Qi ori-
When we consider D,,, with n even, we obtain
Vi> 1 Qrgiti = dngoi — Qdpioi—1 — Bdpioi—o = —Dhpoi,
and according to (13)

Dyy6 — ADyyy — BDyyo = —apy3pes + Aarropro + Bagpi e = 0.



If we deal with the case D,,, with n odd, then, using relations (10) and (2), we find

v
dnyz = adygy + Bdpyr + o Qh+ L+ + Ok

vA+ B vB
dnys = adygq + Bdpys + Aft1,k41 + Gk

vA%2 +vB+ AB vAB + B?
dnyr = adygs + Bdpys + " Ok+1k+1 T T@k,k-

Thus

U(Dn+7 - ADn+5 - BDn+3) =
(—(vA* + vB + AB) + A(vA + B) + vB)aji1 k41
+ (—(U.AB + 82) + ’U.AB + Bz)am =0.

O

3.3 Central elements

The central elements of the binomial triangles are the terms agy , with & > 0. In this sub-
section we give the relation between them, moreover it turns out that the before mentioned
recurrence relation holds for all the columns (which are parallel to the vertical axis of the
triangle). These sequences are defined by {agr e }rey, With £ € Z and

0 if ¢ > 0;

ko=14 nE=n (29)
14|, if £ <0.

Moreover, if £ = 0, then it is the sequence of the central elements.

Theorem 10. All the sequences {aa 1o }iey, of the binomial interpolated triangle with £ € Z
and ko defined by (29) satisfy the same binary homogeneous recurrence relation

Cryo = (Qu+ av + 2Bu)cp1 — BBe, (30)
where ¢, = k40 k-
Proof. We have to prove that
A2 epr2 = (Q°u + av + 28u)asp1)reni1 — BUB — uva — v*)agk - (31)

First, supposing that ua + v # 0 and recalling (11) and (8) we obtain

Qoktarthr1 = (U +0)aokrorek + uBaoki1+ek
= (ua +v) (ks 140k + Bagirer) + UP2k4 140k
A2k +2-4+L,k+1 — u5a2k+£,k
) uo + v

= (ua2 + va + upf + (ua + v) Bagkto i,



furthermore

Qohtatoftre = (U +0)agkss4e k11 + UBA+ 240 k41
= (ue® +va+uf) (askrorepr1 — uBasgrer) + (ua + v)*Bask e
FuB ks 24k+1
= (ua® +va + 2uB)aggioroprr + B(—u*B + uva + v?)agy o k-

Second, when v = —ua the equality (30) becomes
Cri2 = 2ufBcpy1 — u” By,

or explicitly
A2(k+2)+L,k+2 = 2Uﬁ%(k+1)+z,k+1 - U2520a2k+£,k- (32)

Thus, since the sequence is a geometric progression we have

2 92
Aa(kt2)+ek+2 = UBA(kt1) e kt1 = U B Aokra ks

and clearly (32) holds because it corresponds to the identity

UBA 1)+ k41 = 2UBA2(kt1) 4,541 — WBA2(ht 1) 40,541

O
3.4 Explicit formula
Theorem 11. Let D = /a2 +48. If D # 0, then the explicit formula of a, is
_ (vD +av —2Bu)an + 2Ba,1 [ Bu — v, F
ke = 20D 6]
(vD — av + 2Bu)an o — 28a,,1 [ Pu— vy k (33)
20D 6] ’
where v1 = (o + D) /2, o = (e — D) /2 and
(D — Oz)ao,o + 2&170 n (D + ()é)CLQ,o — 2&170 n
Qpno = 2D £y + 2D Lo, (34)
D — 2 D -2
Un1 = ( @)aoo + al’ox"_l(uxl +0) + (D + a)ao al’ox”_l(uxg +v). (35)

2D ! 2D 2

If D =0 and A # 0, then the explicit formula is

o= (w5 —oun)) ()
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where

2010 — aa a\"™
Apo = (ao,o +n%) (§> (36)
2aq 0 — Qapo a\n—1
Ap1 = Ulpo+0(age+ (n—1)——=— (—) . (37)
Q 2
If D=0 and A= 0, then
2010 — aa a\"™
ano = (ao,o +RM) (—> (38)
Q 2
2010 — aa a\ "
a”hl = U% <§> . (39)

and a,, =0, if k> 2.

Proof. We suppose that a? + 48 # 0. Firstly, we give the explicit form of the elements in
case of the main path (K = 0). As the recursion is binary with coefficient o and 3, then
the characteristic equation of (7) is 2> — ax — 3 = 0 with roots z; # z,. Consequently,
for all n > 0 the term a, is a linear combination of the powers z7, z3. In order to
determine the coefficients of this linear combination, we need to solve the system of equations
prt + qry = a;9, i = 0,1. From this system we find p = == and g = =0 Thus
observing that
a+ D a—D
y Lo =
2 2

where D = /a? + 40, we easily find equality (34). Moreover a, 1 = ua,o + va,_1, yields
(35).

Secondly, we give similarly the explicit formula of the sequence {a,;}7_, with initial
conditions a, o and a, ;. Because of (14), its characteristic equation is

.Ilz ,l‘l_ﬂjQ:D,

JE — 25u—owy_ auv — Bu? + v? _0
B 5
and the roots are
_ 2Bu—av+uvD v(D—a)  pu—ovr, d _ Bu—vm
S A
When we consider the case D* = o + 48 = 0 and A # 0 (or, equivalently, § = —a?/4
and v = —u«a/2) we use the same method adopted before. Taking in account that the

characteristic equation 22 — az — 8 = 0 has the unique root xy = «/2, we have to solve the

system (p+ qi)xly = a; 0, i = 0,1, which provides the coefficients p, ¢ for a, o = (p+gn)zj in
equality (36). In this case the characteristic equation of sequence {aX}7_, also has just one
root yo = A/a # 0 and the equations (p + gi)y, = a’,, i = 0,1 and k yield the final formula.

Finally, we examine the case D? = o?+483 = 0 and A = 0. Now the equivalent conditions
B =—a?/4 and v = —ua/2 imply that B = 0 and the equality (37) is simplified into (39).
Moreover if £ > 2, then the relation (14) becomes a,; = 0an -1 + 0ay 2 = 0. O
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4 Special types of binary binomial interpolated trian-
gles

The classical Pascal triangle has vertical symmetry and its inner elements satisfy the well-
known rule of addition, namely every elements is the sum of the two terms directly above
it. In this section we give the classes of our triangles which have the same properties, and
we answer the question, “Is Pascal’s triangle a binomial interpolated triangle?”

A binomial interpolated triangle is (vertically) symmetrical if

Ank = Apn—k (0 <k< n)

Theorem 12. Let apy # 0 and a1 be given. A binary binomial interpolated triangle is
symmetrical if and only if

2&170
u=-1, v=a=
ap,0
or )
2a1 a alu—1)
o = y pr— ——’ v = ——,
Q.0 4 2
where u # 1 or
2&170 0[2
u=-1, v=a= , B=——.
CL0,0 4

(See [1] for the binomial transform in a special case).

Proof. Indeed clearly the condition a, ; = @, ,—; implies the following system of equations

a=A=ua+ 20
B =B =1u*B—uva — v?

by = a0 = uaip + vagy

From the first equation we find v = —a(u — 1)/2 and substituting in the second equation
we obtain, with some calculations,

(@® +48)(u+1)(u—1) = 0.

Now, we have the three possibilities a? + 48 = 0, u = —1, u = 1. Obviously the case

u = 1 implies v = 0, a contradiction. The case u = —1 gives v = a and a = 2a;9/ag-
Considering the case o? +4/3 = 0 we obtain the second part of the statement of the theorem.
Finally, the equalities o + 483 = 0 and u = —1 yield the third last case. O

Corollary 13. Let A = ajg/app and apy # 0, u # 1. Then the form of a symmetrical
binomaial interpolated triangle can be written by

BIT((I(), )\CLQ, 2)\, /6; —1, 2)\), (40)
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BIT(CLO,ACI,O?Q)\,—)\g;U,)\(l —U)), (41)

or

BIT (ag, Aag, 2\, —\%; —1,2)). (42)

Figure 4 shows a symmetrical binomial interpolated triangle, namely BZ7(2,1,1,1; —1,1)
generated by Lucas numbers (A000032 in [6]).

4 -1 -1 4
T -3 2 =37
1 -4 1 1 -4 11
8 -7 3 -2 3 -7 18

Figure 4: Symmetrical binomial interpolated triangle BZ7(2,1,1,1;—1,1)

Remark 14. According to (23) the recursion of s in the symmetrical binomial interpolated
triangles case is s, = 2A8,_1 + BSp_2 OF 8, = 2As,_1 — A2s,_o. Moreover, when we consider
the triangle (42) for the sequence d we obtain d,, = Ad,,_1 + Ad,,_2 — Nd,,_s.

Theorem 15. Pascal’s triangle is not a binomial interpolated triangle.

Proof. The “sum of above terms” condition and relation (9) should imply af/v = —B/v =1
and the vertical symmetry implies § = B. Thus we find u = —1 and v = —3. Now the first
set of solutions coming from Theorem 12 gives v = f = a = 2, since in Pascal’s triangle we
have ago = a1 0 = 1. The recurrence (7) becomes a,, o = 2a,,—1,0 — 20,2 Which is clearly not
satisfied in Pascal’s triangle by the first elements (all equal to 1) of any row. From the second
set of solutions we find o =2, § = —1, v = 1 — u, but, since u = —1, from these solutions
we must have v = 2 and on the other hand since v = —f = —1 we find a contradiction. [

Now we give the conditions of u and v, so that an inner entry of BZT could be the sum
of values not only left but also directly above it by coefficients u and v. Using (9), we can
gain it in two different ways (see Figure 5). Our cases are

uf B
case 1: U=—, v=——
v v
uf B
case 2: v=—, U=——
v v

13
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p—1k—1 QAn—1k Ap—1k—1 Qn—1k

o e/

G,k G,k

Figure 5: Coefficients of summing downwards

)
a1 Bag + aay
afag+ (0?8 + B%)ao+
5&0 Tam (042 + ﬁ)(ll ((){3 + 20(5)&1

aBap+ (@B + Hap+  (a3B+2ab%)ag + (B + 3a?5% + 3)ag +
(@®+B)ar  (&®+2aB)a; (o 4326+ %)a; (° + 40?8+ 3aB%)a;

Figure 6: BZT (ag, a1, o, B; o, 3)

=4
v
)
v=-8
v

we can easily obtain that © = a and v = 3, thus the triangle is

BIT(amaluauﬁ; 0575)'

4.1 Case 1l

Solving the system

(43)

We derive some interesting properties of this triangle. From Figure 6, which shows the
first four rows of triangle BZT (ay, a1, o, B; o, B) (see also Figure 7), we notice that the rows
and the left diagonal satisfy the same recurrence. Indeed, using the equalities u = o, v = 3,
the recurrence relation (14) becomes a,x = aay -1 + Banx—2. Moreover, the terms along
the rising diagonals are the same. The next theorem and corollary will provide it precisely.

Ap—1k—1 Ap—1,k
\é %
Q o
B Ap k-1 Qnp, k Qp k41
% v

Ap+1,k—1

Figure 7: Coefficients of summing in case 1
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Theorem 16. The entries in triangle BLT (ag, a1, o, 8;«, 3) can be written (n > 1) by

Ln+12€72 Ln+§71J
n+k—1i—2 IR n+k—1—=1\ ik 2i 1,
— Z ( Z >an+k 2i 25+1_’_a1 Z < Z )Oé +k—2 IBZ.
=0 =0
Proof. We consider the results of Theorem 11. Indeed, using the equalities u = o, v = (8
and z1 + 29 = a, axy + =22, are + 8 =123, D+ a =211, D — a = —2x, the equations
(33)—(35) become

—Qp,0T2 + Gp1 ok Ap,0T1 — an,lxk
D 1 D 29
where D = y/a? + 48 = x1 — x5 # 0 and

—apxry +ay , QT —ap ,

Qp | =

Apno = Tﬂll D Lo,
—QpT2 + a1 g QT1 — A1 50
p1 = ————X + —2x .
n, D 1 D 2
A little calculation shows that
n+k—1 n+k—1 n+k n+k
_ Ty — Ly Ty — Ty 44
An k. = (loﬁ +a | ——m— |- ( )
1 — T2 Ty — X2

Using the Girard-Waring formula [4]

XN+1 _YN+1 L%J (N — 1
-

—— = ) (X + V)V 2 (XYY,

- 7
1=0

where, in our case, X = 21, Y = 29, X +Y =a, XY = —-fand N =n+k—2 or
N =n+k—1, the thesis follows. The Girard-Waring formula also holds in the case x1 = 9,
i.e., D = 0, taking the limit £y — x5 on both members. We mention that D = 0 implies

A 0. O

Corollary 17. In case of the triangle BZT (ag, a1, o, B;a, B) the rising diagonal sequence
{an_k,k},iJo is a constant sequence for any k.

Proof. We apply the formula proved in Theorem 16 to a,_ and obtain an expression that
does not depend on the index k. [l

Figure 8 shows BZT (ag, a1,1,1;1,1) as an example for case 1. Using the result of The-
orem 16, in the case @ = 1 and § = 1, the binomial coefficients are the coefficients of the
elements in the rising diagonals. Thus a,, ; = ao fn+x—1+01 fntk, Wwhere f,, is the nt" Fibonacci
number (A000045), so that, fo = 0,f; = f-1 = 1. (We also find from the above relation
(44) the connection with Fibonacci numbers.) The special Fibonacci binomial interpolated
triangle is BZT (1,1,1,1;1,1) (A199512). Falcon and Plaza [3] provided an other example
in Table 4 for this case, namely BZ7T(0,1,3,1;3,1), which is generated by the 3-Fibonacci
sequence (A006190).
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Qo
a1 p+ar
ap + a; ap + 2aq 2a0 + 3aq
ao + 2a4 2ay + 3aq 3ag + day dag + 8ay
2a0 + 3aq 3ag + daq oag + 8aq 8ag + 13a;  13ag + 21a,

Figure 8: BZT (ag,a1,1,1;1,1)

4.2 Case 2

From the equations system we obtain

a—1++/(a—1)2+4p v
2 ’ B

U1 = U= 5;
a—1—+/(a—1)2+4p3 v3
Vg = B s U= E

If (¢ —1)24+48 =0, i.e., B =—(1/4)(a — 1)?, then, replacing the corresponding values
for u and v, after simplification we have

—1)? 1
BLT (ao,al,a,—(a ) ;—1,a > ) (45)
4 2
If (¢ —1)® + 48 # 0, then the triangles are
BIT(CLOvalvaa@;ul)Ul)? (46)
BIT (ao, ax, a, B; ug, va). (47)

Finally, we compare the triangles (43)—(47) with the symmetrical ones (40)—(42). In all
the cases for the symmetrical binary interpolated binomial triangle with some calculations
we gain the following corollary.

Corollary 18. The symmetrical binary interpolated binomial triangles whose an inner entry
could be the sum of values not only left but also directly above it by coefficients u and v are

BI7xmh—%§,—L—44—q,—1L
which has only terms ag and +ay/2 and
BIT(CL(), ag, 2, —1, 2, —1),

which has only terms ag.
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Remark 19. When both parameters agp, a1 are zero we find the trivial triangle exclusively
composed of null entries.

The triangle with all entries equal to 1 correspond to more binomial interpolated triangles,
for example, BZT (1,1,2,—1;—1,2) or BZT(1,1,2,—1;—1,2).

The triangle whose left diagonal and rows are the sequences of natural numbers (A000027)
is BZT (1,2,2,—1;2,—1) (A094727).
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