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Abstract

Let G be a finite group. We investigate the distribution of the probabilities of the
permutation equality

a1a2 · · · an−1an = aπ1
aπ2

· · · aπn−1
aπn

as π varies over all the permutations in Sn. The probability

Prπ(G) = Pr(a1a2 · · · an−1an = aπ1
aπ2

· · · aπn−1
aπn)

is identical to Prω1 (G), with

ω = a1a2 · · · an−1ana
−1
πn

a−1
πn−1

· · · a−1
π2

a−1
π1

,

which was defined and studied by Das and Nath. The notion of commutativity de-
gree, or the probability of a permutation equality a1a2 = a2a1, for which n = 2 and
π = 〈2 1〉, was introduced and assessed by Erdős and Turan in 1968 and by Gustafson
in 1973. Gustafson established a relation between the probability of a1, a2 ∈ G com-
muting and the number of conjugacy classes in G. In this work we define several other
parameters, which depend only on a certain interplay between the conjugacy classes of
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G, and compute probabilities of permutation equalities in terms of these parameters.
It turns out that for a permutation π, the probability of its permutation equality de-
pends only on the number c(Gr(π)) of alternating cycles in the cycle graph Gr(π) of
π. The cycle graph of a permutation was introduced by Bafna and Pevzner, and the
number of alternating cycles in it was introduced by Hultman. Hultman numbers are
the numbers of different permutations with the same number of alternating cycles in
their cycle graphs. We show that the spectrum of probabilities of permutation equali-
ties in a generic finite group, as π varies over all the permutations in Sn, corresponds
to partitioning n! as the sum of the corresponding Hultman numbers.

1 Introduction

Study of the (commuting probability), i.e., the probability that two random elements in a
finite group G commute, is very natural. In 1968 Erdős and Turan [14] proved that

Pr(a1a2 = a2a1) >
log(log |G|)

|G|
.

In the early 1970s, Dixon observed that the commuting probability is ≤ 1
12

for every fi-
nite non-Abelian simple group. (This inequality was submitted as an open problem in the
Canadian Mathematical Bulletin 13 (1970), with a solution appearing in 1973.) In 1973,

Gustafson [16] proved that the commuting probability is equal to k(G)
|G|

, where k(G) is the
number of conjugacy classes in G. Based on that result, Gustafson further obtained the up-
per bound of the commuting probability in a finite non-Abelian group to be 5

8
. Commuting

probability actually attains the upper bound of 5
8
in many finite groups, including D8 and

Q8. A significant amount of work has been done in assessing the commuting probability for
various special cases of finite groups. For example, Lescot [20] studied the case of dihedral
groups. Clifton, Guichard, and Keef [7] studied the case of direct product of dihedral groups.
Erovenko and Surg [15] studied the case of wreath products of two Abelian groups. Gural-
nick and Robinson [17] studied the case of non-solvable groups. Additional information on
development of the subject and its applications is found in Dixon [11], Jezernik and Moravec
[19], and Lescot, Nguyen, and Yang [21].

Much research concerning probabilistic aspects of finite groups has been done since the
introduction of commuting probability. Many of these studies can be regarded as variations
of the commuting probability problem. For instance, Erdős and Straus [13] computed the
number of ordered k-tuples of elements of a group G that have pairwise commuting elements.
Another example is due to Pournakia and Sobhani [24], who determined the probability of
the commutator of two random group elements of G being equal to a given element of G.
In another example Blackburn, Britnell, and Wildon [2] obtained the probability that two
random elements of G are conjugate.

A variation of the commuting probability problem, leading to its generalization, is how to
compute the number of balanced G-valued labelings on various finite graphs. Cherniavsky,
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Goldstein, and Levit [4, 6] computed the number of balanced G-valued labelings on both
directed and undirected graphs, when the group G is Abelian. Cherniavsky, Goldstein, Levit,
and Shwartz [5] considered a non non-Abelian case.

A different direction in generalization of commuting probability appears in Das and Nath
[8, 22]. They studied the probability Prωg (G) of the equality

a1a2 · · · an−1ana
−1
πn
a−1
πn−1

· · · a−1
π2
a−1
π1

= g

for a fixed element g in a finite group G. The word

a1a2 · · · an−1ana
−1
πn
a−1
πn−1

· · · a−1
π2
a−1
π1
,

where ω denotes the product a1a2 · · · an−1an vary over all the elements of G. Nath [23]
generalized the classical study of the commuting probability for which ω = a1a2a

−1
1 a−1

2 and
g = 1.

In this paper we take a slightly different approach in generalizing the commuting proba-
bility. Let

π = 〈π1 π2 . . . πn〉

be a permutation in Sn, written in a shortened form of the two-row notation. We define
Prπ(G) as the permutation probability of the equality

a1a2 · · · an = aπ1
aπ2

· · · aπn−1
aπn

in G. Notice that Pr〈2 1〉(G) is just the commuting probability in G.
Notice also, that the probability

Prπ(G) = Pr(a1a2 · · · an−1an = aπ1
aπ2

· · · aπn−1
aπn

)

is identical to Prω1 (G), with

ω = a1a2 · · · an−1ana
−1
πn
a−1
πn−1

· · · a−1
π2
a−1
π1
,

as Das and Nath [8, 22] have defined it.
In this work we

• obtain a new description of Prπ(G) in terms of non-negative integers ci1,...,in;j(G). Inte-
ger ci1,...,in;j(G) is the number of different ways in which an element from a conjugacy
class Ωj ⊂ G can be broken into a product of elements from the conjugacy classes
Ω11 , . . . ,Ωin ⊂ G.

• prove that Prπ(G), for a fixed finite group G, depends only on the number of alternating
cycles in the cycle graph Gr(π) of the permutation π.

• show that the spectrum of permutation probabilities in a finite non-Abelian group, as
π varies over all the elements of Sn, is the partition of n! into a sum of the Hultman
numbers A164652.
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The following three theorems constitute the main finding of this paper

• Theorem 67: Let G be a finite group. Let φ ∈ Sn be a permutation whose cycle graph
Gr(φ) contains k alternating cycles. Then

Prφ(G) = Prn+1−k(G) = Pr(a1a2 · · · an−kan+1−k = an+1−kan−k · · · a2a1).

• Theorem 68: Let G be a finite non-Abelian group. Let φ and θ be two permutations
in Sn. Then, Prφ(G) = Prθ(G) if and only if the number of alternating cycles in the
cycle graph Gr(θ) equals the number of alternating cycles in the cycle graph of Gr(φ).
This implies that the spectrum of permutation probabilities in a non-Abelian group G
consists of exactly

⌊

n
2

⌋

+1 different numbers, each number corresponding to its unique
Hultman class of permutations in Sn.

• Theorem 69: Let G be a finite group. Then

Pr2t(G) = Pr(a1a2 · · · a2t = a2ta2t−1 · · · a1)

= Pr(a1a2a3a4 · · · a2t−1a2t = a2a1a4a3 · · · a2ta2t−1)

=

∑

x1,x2,...,xt∈G

|Stab.Prodn(x1, x2, . . . , xt))|

|G|2t

=
1

|G|t
·

c(G)
∑

i1,i2,...,it,j=1

|Ωj| · c
2
i1,i2,...,it;j

(G)

|Ωi1 | · |Ωi2 | · · · · · |Ωit |

1.1 Basic definitions and notation

For a natural number n, Sn denotes the group of all permutations of n. We usually write a
permutation π ∈ Sn as

π = 〈π1 π2 . . . πn〉,

which is commonly known as “the shortened way of the two row notation”. Sometimes, we
also use the cyclic notation for a permutation π ∈ Sn, in which case we use parentheses and
commas. Thus, for example, (θ1, θ2, θ3) represents the cycle permutation
θ1 7→ θ2 7→ θ3 7→ θ1. We refer to such cycle permutations as “cycles”.

We use G to denote a finite group. For a finite set S, we denote the size of S by |S|.
Two elements g1, g2 ∈ G are called conjugate if there exists h ∈ G such that g2 = h−1g1h.
Conjugacy is an equivalence relation in G. As such, it breaks G into conjugacy classes. Let
c(G) denotes The number of conjugacy classes in G. Let Ω1, . . . ,Ωc(G) denotes the conjugacy
classes. LetΩ(g) denotes the conjugacy class of g for g ∈ G. The centralizer CG(g) of an
element g ∈ G is the set of all elements of G that commute with g. Recall that for every all
g ∈ G,

|G| = |Ω(g)| · |CG(g)| .
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Let C(G) denotes the set {Ω1, . . . ,Ωc(G)} of all conjugacy classes in G. Let G′ denotes
the commutator subgroup of G, which is the minimal subgroup of G containing all elements
of G of the form ghg−1h−1, where g, h ∈ G. We use the notation hg to denote g−1hg. To
indicate that that g, h ∈ G are conjugate in G we write g ∼ h. The center Z(G) ⊆ G is the
subgroup of G, consisting of all elements h ∈ G for which hg = h for all g ∈ G.

Let D2n denotes the dihedral group with 2n elements, let Q8 denotes the multiplicative
group of unit quaternions, which has 8 elements.

Definition 1. For a sequence (g1, g2, . . . , gn) of n elements of G, let
Stab.Prodn(g1, g2, . . . , gn) denotes the set of all the sequences (a1, a2, . . . , an) of n elements
of G such that

a−1
1 g1a1 · a

−1
2 g2a2 · · · · · a

−1
n gnan = g1 · g2 · · · · · gn.

Notice that Stab.Prodn(g1, g2, . . . , gn) is a generalization of the notion of the centralizer
of an element g ∈ G. Indeed, Stab.Prod1(g) is just CG(g).

Definition 2. The nonnegative integer ci1,...,in;j(G) denotes the number of different ways
of breaking a fixed element y ∈ Ωj(G) into a product y = x1x2 · · · xn of elements x1 ∈
Ωi1(G), x2 ∈ Ωi2(G), . . . , xn ∈ Ωin(G).

The number ci1,...,in;j(G) does not depend on the choice of the element y ∈ Ωj(G). Indeed,
if we take some other y′ ∈ Ωj(G), then there exists some g ∈ G such that y′ = gyg−1 and
y = g−1y′g. Then each product y = x1x2 · · · xn corresponds to the product

y′ = gyg−1 = (gx1g
−1) · (gx2g

−1) · · · · · (gxng
−1),

in which each x′
t = (gxtg

−1) belongs to the same conjugacy class Ωit(G) as xt. Vice versa,
each product y′ = x′

1x
′
2 · · · x

′
n corresponds back to the product

y = g−1y′g = (g−1x′
1g) · (g

−1x′
2g) · · · · · (g

−1x′
ng).

Thus, we see that the number of such different products is the same for any y and y′ in
Ωj(G).

Notice that ci1,...,in;j(G) can be zero, and that ci;j(G) = 1 if i = j, and ci;j(G) = 0 if i 6= j.

Definition 3. Let Lπ(G) denotes the number of different solutions of the equation

a1a2 · · · an−1an = aπ1
aπ2

· · · aπn−1
aπn

in G. Clearly, Prπ(G) = Lπ(G)
|G|n

.

Definition 4. We define Prn(G) as Pr〈n n−1 ... 2 1〉(G).

For a permutation π ∈ Sn define ω(π) as a formal expression a1 · · · an · a
−1
πn

· · · a−1
π1
. Then

Prπ(G) is identical to Prω1 (G), which was defined by Das and Nath [8, 9, 22]. Similarly,
Prn(G) is identical to Prn1 (G), as defined by Das and Nath [8, 9, 22]. For further information
on calculations, properties, and estimates of Prω1 (G) and Prn1 (G) we refer the reader to the
papers of Das and Nath [8, 9, 22].
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Definition 5. Let Specn(G) denotes the set of all Prπ(G), as π runs over all the permutations
from Sn.

Definition 6. A finite group G is called generic if for two permutations π, θ ∈ Sn, Prπ(G) =
Prθ(G) only if Prπ(H) = Prθ(H) for every finite non-Abelian group H.

Definition 7. Let Partn denotes the partition of Sn into subsets of permutations, for which
the permutation equalities have the same probability for every finite group.

For a generic group G, there is a natural isomorphism between the sets Specn(G) and
Partn. We refer to Specn(G), for a generic group G, as the spectrum of permutation prob-
abilities. Theorem 57 makes use of [10, Thm. 6.8] in order to show that every non-Abelian
finite group is generic.

Definition 8. Hall [18] defined two groups G1 and G2 to be isoclinic if the following three
conditions hold

• There exists an isomorphism α from G1/Z(G1) onto G2/Z(G2);

• There exists an isomorphism β from the commutator subgroup G′
1 to the commutator

subgroup G′
2;

• If α(a1Z(G1)) = a2Z(G2) and α(b1Z(G1)) = b2Z(G2), then

β(a−1
1 b−1

1 a1b1) = a−1
2 b−1

2 a2b2.

For example, every two Abelian groups are isoclinic. The dihedral group D8 and the
quaternion group Q8 are two non-Abelian groups, which are isoclinic.

Definition 9. Buckley [3] defined two groups G1 and G2 to be weakly isoclinic if the first
two conditions of Definition 8 hold. Namely, if

• There exists an isomorphism α from G1/Z(G1) onto G2/Z(G2);

• There exists an isomorphism β from the commutator subgroup G′
1 to the commutator

subgroup G′
2.

2 Preliminaries

In the Lemmas 10 and 11 we reproduce well-known group theory results, which are funda-
mental for our work.

Lemma 10. For any a, b ∈ G we have ab ∼ ba.

Proof. b(ab)b−1 = babb−1 = ba.
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Lemma 11. For any x and y from the same conjugacy class Ωi ⊂ G, there are exactly

|G|

|Ωi|
= |CG(x)| = |CG(y)|

different ways to break x into a product x = ab of two elements a, b ∈ G, so that ba = y.

Proof. Since x ∼ y, there exists some b ∈ G such that bxb−1 = y. We define a = xb−1. Thus,
ab = xb−1b = x and ba = bxb−1 = y. For each pair a′, b′ ∈ G, such that a′b′ = x, there exists
a unique element g = b′b−1 = (a′)−1 a in G, such that a′ = ag−1 and b′ = gb. Now,

b′a′ = gbag−1 = gyg−1.

Hence, the pairs (a′, b′) of elements in G, such that a′b′ = x and b′a′ = y, are in one-to-
one correspondence with the elements g from CG(Y ). So, the number of pairs of elements
a′, b′ ∈ G, such that a′b′ = x and b′a′ = y, is equal to |CG(y)|. But

|CG(y)| =
|G|

|Ωi|
= |CG(x)|.

The following classical result on commuting probability, which is due to Gustafson [16],
follows immediately from Lemmas 10 and 11.

Theorem 12 (Gustafson). Pr2(G) = Pr(a1a2 = a2a1) =
c(G)
|G|

.

Proof. For each x ∈ G there are exactly |G|
|Ω(x)|

different ways to write ab = x = ba with

a, b ∈ G. Thus, for each Ωi there are |G| different equations ab = x = ba with a, b ∈ G
and x ∈ Ω(i). Indeed, there are |Ω(x)| different elements x in Ωi, and for each choice of x,

there are |G|
|Ω(x)|

different ways to break that x into a product of commuting elements a, b ∈ G.

Thus, L〈2 1〉(G) = |G| · c(G) and

Pr2(G) =
|G| · c(G)

|G|2
=

c(G)

|G|
.

3 Calculation of Spec3(G) and Spec4(G)

We address the general case of permutational equations in the following sections. In this
section we study permutational equations for permutations from S3 and S4, which is self-
contained and will help to illustrate the general case.
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Lemma 13. For any permutation π ∈ Sn, with its inverse π−1 ∈ Sn, the probability
Prπ(G) = Prπ−1(G).

Proof. By definition,

Prπ(G) = Pr(a1a2 · · · an−1an = aπ1
aπ2

· · · aπn−1
aπn

)

Let b1 denotes aπ1
, b2 denotes aπ2

, . . ., bn denotes aπn
. Then a1 = b(π−1)1 , a2 = b(π−1)2 , . . .,

an = b(π−1)n . As a1, a2, . . . , an run over all the elements of G, so do b1, b2, . . . , bn. Thus,

Prπ−1(G) = Pr(b(π−1)1b(π−1)2 · · · b(π−1)n−1
b(π−1)n = b1b2 · · · bn−1bn) = Prπ(G).

We continue with Lemma 14, which is a particular case, in which n = 1, of a general fact
observed by Das and Nath [9] that for

ω1 = a1a2 · · · a2na
−1
1 a−1

2 · · · a−1
2n ,

ω2 = a1a2 · · · a2n+1a
−1
1 a−1

2 · · · a−1
2n+1,

and for any g ∈ G, there is an equality Prω1

g (G) = Prω2

g (G).

Lemma 14. The probability Pr3(G) = Pr〈3 2 1〉(G) = Pr(a1a2a3 = a3a2a1) is equal to the

probability Pr2(G) = Pr〈2 1〉(G) = Pr(a1a2 = a2a1) =
|c(G)|
|G|

.

Proof. For convenience, we rename a1 to a, a2 to b, and a3 to c. Now, from abc = cba we
obtain abcb = cbab. Thus, the commutator [cb, ab] = 1. Therefore, if we choose and fix an
element b ∈ G, then the other two elements a and c should be chosen in a such way that
[ab, cb] = 1.

Hence, for every of choice of an element a ∈ G, we must choose an element c ∈ G in such
a way that cb ∈ CG(ab).

Since G is a group, the product ab, as b ∈ G is fixed and a runs over all the elements
of G, produces elements x ∈ G, and each x ∈ G is produced exactly one time. Similarly,
the product cb, as b ∈ G is fixed and c runs over all the elements of CG(ab) · b

−1, produces
elements y ∈ CG(ab), and each element y ∈ CG(ab) is produced exactly one time. Since
b ∈ G runs over all the elements of G, we get

L〈3 2 1〉(G) = |G| ·
∑

y∈G

|CG(y)| = |G|2 · |C(G)|.

Dividing Equation 3 by |G|3 gives us

Pr〈3 2 1〉(G) =
|C(G)|

|G|
= Pr〈2 1〉(G).
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We will now prove that for all five nontrivial permutations in S3, their probabilities are
the same. Notice that these five permutations have two alternating cycles in their cycle
graphs, but the identity permutation in S3 has four alternating cycles in its cycle graph.
A detailed explanation of cycle graphs and alternating cycles, followed by a clarification of
their relevance to probabilities, will be made in Section 4.

Theorem 15. For every nontrivial π ∈ S3, the probability
Pr(a1a2a3 = aπ1

aπ2
aπ3

) = c(G)
|G|

. Thus, the spectrum Spec3(G) is { c(G)
|G|

, 1}.

Proof. By Lemma 14, Pr(a1a2a3 = a3a2a1) =
c(G)
|G|

. Clearly,

Pr(a1a2a3 = a2a1a3) = Pr(a1a2 = a2a1) =
c(G)

|G|

and

Pr(a1a2a3 = a1a3a2) = Pr(a2a3 = a3a2) =
c(G)

|G|
.

To compute Pr(a1a2a3 = a3a1a2), notice that if g denotes the product a1a2. Then,
as a1 and a2 run over all the elements of G, their product g will also run over all the
elements of G, becoming equal to every element of G exactly |G| times. Thus, the number
L(a1a2a3 = a3a1a2) of different solutions of the equation a1a2a3 = a3a1a2 in G is |G| times
the number of different solutions of the equation ga3 = a3g in G. Hence,

Pr(a1a2a3 = a3a1a2) =
|G| · |G| · c(G)

|G|3
=

c(G)

|G|
.

By Lemma 13, we get

Pr(a1a2a3 = a2a3a1) = Pr(a1a2a3 = a3a1a2) =
c(G)

|G|
.

Obviously, Pr(a1a2a3 = a1a2a3) = 1.

We now investigate permutation probabilities for S4.

Lemma 16. For any nontrivial permutation π ∈ S4, if π1 = 1 or π4 = 4, then
Prπ(G) = c(G)

|G|
.

Proof. If π1 = 1, then the equation a1a2a3a4 = aπ1
aπ2

aπ3
aπ4

is equivalent to the equation
a2a3a4 = aπ2

aπ3
aπ4

. By Theorem 15, there are |G|2 · c(G) different equations a2a3a4 =
aπ2

aπ3
aπ4

in G. Each of these equations corresponds exactly to |G| different equations of the
form a1a2a3a4 = aπ1

aπ2
aπ3

aπ4
(since a1 can be any element of G). Thus Lπ(G) = |G|3 · c(G)

and Prπ(G) = c(G)
|G|

. The same argument, but with a4 instead of a1, is applied for π4 = 4.
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Lemma 17. For all nontrivial permutations π ∈ S4, such that πi+1 = πi + 1 for some
1 ≤ i ≤ 3, the probability Prπ(G) = c(G)

|G|
.

Proof. The condition πi+1 = πi + 1 implies that the permutation π keeps two consecutive
numbers πi and πi + 1 in their consecutive order. Such are, for example, the permutations
〈4 3 1 2〉, 〈3 4 1 2〉, 〈2 3 4 1〉, and 〈4 2 3 1〉, 〈4 1 2 3〉. Let g denotes the
product aπi

aπi+1
. Then, as aπi

and aπi+1
run over all the elements of G, their product g also

runs over all the elements of G, becoming equal to each element of G exactly |G| times. By
Theorem 14, the equation a1a2a3a4 = aπ1

aπ2
aπ3

aπ4
, in which we change aπi

aπi+1
, on both

sides, to g, has exactly |G|2 · c(G) solutions. But these solutions naturally correspond to |G|
different solutions of the equation a1a2a3a4 = aπ1

aπ2
aπ3

aπ4
. Thus Lπ(G) = |G|3 · c(G) and

Prπ(G) = c(G)
|G|

.

Lemmas 16 and 17 establish that for fifteen different permutations π in S4, their prob-
abilities equal Prπ(G) = c(G)

|G|
. Notice that these fifteen permutations have exactly three

alternating cycles in their cycle graphs Gr(π) (see Bafna and Pevzner [1]; Doignon and
Labarre [12]). For the identity permutation, which has five alternating cycles in its cycle
graph, the probability of the corresponding trivial permutation equation is 1.

The remaining eight permutations in S4 have one alternating cycle in their cycle graphs.
We will now show that for these eight permutations, the corresponding permutations have
the same probability, which, in a generic group, is different both from 1 and from c(G)

|G|
.

Theorem 18. For any finite group G we have

Pr4(G) = Pr(a1a2a3a4 = a4a3a2a1) = Pr(a1a2a3a4 = a2a1a4a3)

=

∑

x,y∈G

|Stab.Prod2(x, y)|

|G|4
=

1

|G|2
·

c(G)
∑

i,k,j=1

|Ωj| · c
2
i,k;j(G)

|Ωi| · |Ωk|

=
1

|G|2
·

c(G)
∑

i,k,j=1

|Ωj| · ci,k;j(G) · ck,i;j(G)

|Ωi| · |Ωk|
.

Proof. Notice that for any x, y ∈ G, the set Stab.Prod2(x, y) of all ordered pairs (g, h) of
elements of G, such that xy = g−1xgh−1yh, has an alternative description as the set of all
the ordered pairs (g ∈ G, f−1 ∈ G), such that gxyf = xgfy. Indeed, by setting f = h−1,
the equation xy = g−1xgh−1yh becomes xy = g−1xgfyf−1. Multiplying the right by g and
the left by f gives us gxyf = xgfy.

Thus, for each fixed ordered pair (x, y) of elements in G, there are exactly
|Stab.Prod2(x, y)| different equations gxyf = xgfy with g, h ∈ G. As x and y run over all
the elements of G, we obtain that the total number of different equations gxyf = xgfy in
G is

∑

x,y∈G

|Stab.Prod2(x, y)|.
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Dividing the total number of different equations gxyf = xgfy in G by |G|4 gives us

Pr(a1a2a3a4 = a2a1a4a3) =

∑

x,y∈G

|Stab.Prod2(x, y)|

|G|4
.

Next, consider the equation a1a2a3a4 = a4a3a2a1. Let x denotes the product a1a2, x
′

denotes the product a2a1, y denotes the product a3a4, and y′ denotes the product a4a3. The
equation a1a2a3a4 = a4a3a2a1 becomes xy = y′x′. By Lemma 10, we have x ∼ x′ and y ∼ y′.

Now consider any x, x′, y, y′ ∈ G, such that x ∼ x′, y ∼ y′, and xy = y′x′. By Lemma
11, there are |G|

|Ω(x)|
= |CG(x)| different ways of breaking x into a product a1a2 in such a way

that x′ = a2a1. Again, by Lemma 11, there are |G|
|Ω(y)|

= |CG(y)| different ways of breaking

y into a product a3a4 in such a way that y′ = a4a3. Thus, to each fixed equation xy = y′x′

correspond |CG(x)| · |CG(y)| different equations a1a2a3a4 = a4a3a2a1.
Next, for each fixed x, y ∈ G, we count the number of different equations

xy = y′x′, where x ∼ x′ and y ∼ y′. Define x′′ = (y−1xy). Thus, we get an equation
xy = y(y−1xy) = yx′′. Now, for each equation xy = y′x′, as above, there exist some
g, h ∈ G such that y′ = g−1yg and x′ = h−1x′′h. But, for each fixed x, y ∈ G we have
|Stab.Prod2(y, x

′′)| different elements g, h ∈ G, such that xy = yx′′ = g−1ygh−1x′′h. For each
fixed pair g, h ∈ G, such that yx′′ = g−1ygh−1x′′h, a pair g′, h′ ∈ G satisfies (g′)−1yg′ = g−1yg
and (h′)−1x′′h′ = h−1x′′h, if, and only if, g′g−1 ∈ CG(y) and
h′h−1 ∈ CG(x

′′). Thus, for each fixed x, y ∈ G, there are exactly

|Stab.Prod2(y, x
′′)|

|CG(y)| · |CG(x′′)|

different equations xy = y′x′, in which x′ ∼ x and y′ ∼ y. But, |CG(x
′′)| = |CG(x)|. Thus,

for each fixed ordered pair (x, y) of elements of G, we have

|Stab.Prod2(y, (y
−1xy))|

|CG(y)| · |CG(x)|

different equations xy = y′x′. As we showed above, to each of these equations correspond
|CG(x)| · |CG(y)| different equations a1a2a3a4 = a4a3a2a1, in which a1a2 = x, a3a4 = y,
a2a1 = x′, and a4a3 = y′. Thus, to each ordered pair (x, y) of elements of G correspond
|Stab.Prod2(y, (y

−1xy))| different equations a1a2a3a4 = a4a3a2a1, in which a1a2 = x and
a3a4 = y.

Thus, to find Pr(a1a2a3a4 = a4a3a2a1) we need to sum |Stab.Prod2(y, (y
−1xy))| over

all x, y ∈ G, and then divide that sum by |G|4. For each fixed y, the product v = y−1xy
runs over all the elements of G when x runs over all the elements of G. Thus, summing
|Stab.Prod2(y, (y−1xy))| over all x, y ∈ G is the same as summing |Stab.Prod2(y, v)| over
all y, v ∈ G. Thus, we obtain

L〈4 3 2 1〉(G) =
∑

y,v∈G

|Stab.Prod2(x, y)|,
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and

Pr4(G) = Pr(a1a2a3a4 = a4a3a2a1)

=

∑

x,y∈G

|Stab.Prod2(x, y)|

|G|4
= Pr(a1a2a3a4 = a2a1a4a3).

Now, fix an element z in some equivalence class Ωj in G. For each equation xy = z = x′y′

we have exactly

|CG(x)| · |CG(y)| =
|G|2

|Ω(x)| · |Ω(y)|

different equations
(a1a2)(a3a4) = xy = z = x′y′ = (a2a1)(a4a3).

Indeed, there are |CG(x)| different ways to break x into a product a1a2 so that a2a1 = x′,
and there are |CG(y)| different ways to break y into a product a3a4 so that a4a3 = y′.

Now, there are ci,k;j(G) different ways to break z as a product xy so that x ∈ Ωi and
y ∈ Ωk. For each of these ci,k;j(G) different ways, there are ci,k;j(G) different ways to break
z as a product x′y′. Thus, for each ordered pair (Ωi,Ωk) of conjugacy classes in G, there are
c2i,k;j(G) different equations xy = z = x′y′ with x, x′ ∈ Ωi and y, y′ ∈ Ωk. The number of
different equations xy = z = x′y′ with x, x′ ∈ Ωi and y, y′ ∈ Ωk is the same for all z ∈ Ωj.

Taking the sum of the number of different equations a1a2a3a4 = z = a2a1a4a3, as z runs
over all the elements of G, and dividing it by |G|4, gives us

Pr(a1a2a3a4 = a2a1a4a3) =
1

|G|2
·

c(G)
∑

i,k,j=1

|Ωj| · c
2
i,k;j(G)

|Ωi| · |Ωk|
.

Finally, fix an element z in some equivalence class Ωj in G. For each equation xy = z =
y′x′ we have exactly

|CG(x)| · |CG(y)| =
|G|2

|Ω(x)| · |Ω(y)|

different equations
(a1a2)(a3a4) = xy = z = y′x′ = (a4a3)(a2a1).

Now, there are ci,k;j(G) different ways to break z as a product xy so that x ∈ Ωi and
y ∈ Ωk. For each of these ck,i;j(G) different ways, there are ci,k;j(G) different ways to break
z as a product x′y′. Thus, for each ordered pair (Ωi,Ωk) of conjugacy classes in G, there are
there are ci,k;j(G) · ck,i;j(G) different equations xy = z = y′x′ with x, x′ ∈ Ωi and y, y′ ∈ Ωk.

Taking the sum of the number of different equations a1a2a3a4 = z = a4a3a2a1, as z runs
over all the elements of G, and dividing it by |G|4, gives us

Pr(a1a2a3a4 = a4a3a2a1) =
1

|G|2
·

c(G)
∑

i,k,j=1

|Ωj| · ci,k;j(G) · ck,i;j(G)

|Ωi| · |Ωk|
.
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To study the other four permutations in S4, we first prove a lemma that is a particular
case of Theorem 43.

Lemma 19. Let π ∈ S4 be a permutation such that π4 + 1 = π3 = 2 or π4 + 1 = π3 = 3.
Then the equations

a1a2a3a4 = aπ1
aπ2

aπ3
aπ4

,

a1a2a3a4 = aπ1
aπ3

aπ4
aπ2

have the same number of solutions.

Proof. First, consider the case π4 + 1 = π3 = 2.
Rewrite the equation

a1a2a3a4 = aπ1
aπ2

a2a1

as
a1a

−1
π2
aπ2

a2a3a4 = aπ1
aπ2

a2a1.

Let a denotes aπ2
a2. Then the equation

a1a2a3a4 = aπ1
aπ2

a2a1

becomes
a1a

−1
π2
aa3a4 = aπ1

aa1, (1)

in which the variable a−1
π2

runs over all the elements of G, and for each fixed value of a−1
π2
,

the variable a runs over all the elements of G.
Rewrite the equation

a1a2a3a4 = aπ1
a2a1aπ2

as
a1aπ2

a−1
π2
a2a3a4 = aπ1

a2a1aπ2
.

Let a denotes a1aπ2
. Then the equation

a1a2a3a4 = aπ1
a2a1aπ2

becomes
aa−1

π2
a2a3a4 = aπ1

a2a, (2)

in which the variable a−1
π2

runs over all the elements of G, and for each fixed value of a−1
π2
,

the variable a runs over all the elements of G.
Now, Equation 1 is obtained from Equation 2 by renaming a to a1 and renaming a2 to

a. Thus, they have the same number of solutions.
Finally, consider the case π4 + 1 = π3 = 3.
Rewrite the equation

a1a2a3a4 = aπ1
aπ2

a3a2

13



as
a1a2a

−1
π2
aπ2

a3a4 = aπ1
aπ2

a3a2.

Let a denotes aπ2
a3. Then the equation

a1a2a3a4 = aπ1
aπ2

a3a2

becomes
a1a2a

−1
π2
aa4 = aπ1

aa2, (3)

in which the variable a−1
π2

runs over all the elements of G, and for each fixed value of a−1
π2
,

the variable a runs over all the elements of G.
Rewrite the equation

a1a2a3a4 = aπ1
a3a2aπ2

as
a1a2aπ2

a−1
π2
a3a4 = aπ1

a3a2aπ2
.

Let a denotes a2aπ2
. Then the equation

a1a2a3a4 = aπ1
a3a2aπ2

becomes
a1aa

−1
π2
a3a4 = aπ1

a3a, (4)

in which the variable a−1
π2

runs over all the elements of G, and for each fixed value of a−1
π2
,

the variable a runs over all the elements of G.
Now, Equation 3 is obtained from Equation 4 by renaming a into a2 and renaming a3

into a. Thus, they have the same number of solutions.

The following corollary of Lemma 19 provides examples of the x−−y exchange operation,
which will be introduced in Definition 33. It also illustrates the notion of the x−−y exchange
orbit, which will be introduced in Definition 42, and demonstrates how the 3 − cycle of
Proposition 38 works.

Corollary 20. The equations
a1a2a3a4 = a4a3a2a1,

a1a2a3a4 = a4a2a1a3,

a1a2a3a4 = a4a1a3a2

have the same number of solutions.

Proof. For permutation π = 〈4 3 2 1〉 we have π4 + 1 = π3 = 2. Thus, by Lemma 19, the
permutation equation of the permutation 〈4 2 1 3〉 has the same number of solutions as
the permutation equation of π.

For permutation θ = 〈4 1 3 2〉 we have π4 + 1 = π3 = 3. Thus, by Lemma 19, the
permutation equation of the permutation 〈4 3 2 1〉 has the same number of solutions as
the permutation equation of θ.
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The following corollary is based on Lemma 13, since 〈4 2 1 3〉−1 = 〈3 2 1 4〉 and
〈4 1 3 2〉−1 = 〈2 4 3 1〉.

Corollary 21. (i) The equations

a1a2a3a4 = a4a2a1a3,

a1a2a3a4 = a3a2a1a4

have the same number of solutions.
(ii) The equations

a1a2a3a4 = a4a1a3a2,

a1a2a3a4 = a2a4a3a1

have the same number of solutions.

To study the remaining two permutation in S4, we first prove the following.

Lemma 22. Let π ∈ S4 be a permutation such that for some i ∈ {1, 2}, πi + 1 = πi+2 and
πi+1 = πi− 2. Let j ∈ {1, 2, 3, 4} be such an integer that pij = πi− 1. Let θ ∈ S4 be obtained
from π by interchanging πi and πj. Then the equations

a1a2a3a4 = aπ1
aπ2

aπ3
aπ4

,

a1a2a3a4 = aθ1aθ2aθ3aθ4

have the same number of solutions.

Proof. First, for permutations in S4, the only option for the integer j is a unique element in
{1, 2, 3, 4}, which is different from all three integers i, i+ 1, i+ 2. Similarly, the only option
for the value pi, for π ∈ S4, is 3, and for the value pj is 2.

For simplicity of dealing with the indices, we will consider the cases j = 1, i = 2, and
j = 4, i = 1 separately. Even though the permutation π ∈ S4 is uniquely determined in each
of these two cases, we will use the notation πi = x, πi+1 = y, πi+2 = x+1, and πj = y+1. This
is done to illustrate both the x−−y cyclic operation, which will be introduced in Definition
44, and the proof of the Theorem 52. Additionally, this proof, in which the x, y, x+ 1, y + 1
notation is used, can be adopted for a more general case of substrings in a longer string,
which is the case for certain permutations in Sn with n > 4. An example of a substring of
that type in a longer string, for which this proof works, will be provided at the end of the
proof.

First, let j = 4, i = 1. Then the equation

a1a2a3a4 = aπ1
aπ2

aπ3
aπ4

can be written as
ayay+1axax+1 = axayax+1ay+1 (5)
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Similarly, the equation
a1a2a3a4 = aθ1aθ2aθ3aθ4

can be written as
ayay+1axax+1 = ay+1ayax+1ax (6)

Now, define c = axax+1 and d = aya
−1
x , and insert them into Equation 5 as follows

daxay+1c = axdcay+1 (7)

Notice that as random variables ay, ax, ax+1 run over all the elements of G, so do random
variables ax, c, d. Similarly, as random variables ax, c, d run over all the elements of G, so
do random variables ay, ax, ax+1. Thus, there is a one-to-one correspondence between the
solutions of Equation 5 and the solutions of Equation 7. But Equation 7 is obtained from
Equation 6 by renaming ay to d and ax+1 to c. Thus, Equation 7 and Equation 6, after
renaming the variables, have the same solutions.

Second, let j = 1, i = 2. Then the equation

a1a2a3a4 = aπ1
aπ2

aπ3
aπ4

can be written as
ayay+1axax+1 = ay+1axayax+1 (8)

Similarly, the equation
a1a2a3a4 = aθ1aθ2aθ3aθ4

can be written as
ayay+1axax+1 = axay+1ayax+1 (9)

Now, define c = axax+1 and d = aya
−1
x , and insert them into Equation 8 as follows

daxay+1c = axay+1dc (10)

Again, there is a one-to-one correspondence between the solutions of Equation 8 and the
solutions of Equation 10, but Equation 10 is obtained from Equation 9 by renaming ay to
d and ax+1 to c. Thus, Equation 10 and Equation 9, after renaming the variables, have the
same solutions.

Obviously, for our purpose in this section, the case j = 1, i = 2 is of no interest, since
multiplication of Equation 8 by a−1

x+1 on the right reduces it to a permutational equation
for a permutation in S3. However, it illustrates how the x − −y cyclic operation works,
when ayay+1axax+1 and ay+1axayax+1 are just substrings in a longer string, which is the
case for certain permutations in Sn with n > 4. For example, the proof we provided here
adapts to show that the equations a1(a2a3a4a5)a6 = a6(a3a4a2a5)a1 and a1(a2a3a4a5)a6 =
a6(a4a3a2a5)a1 have the same number of solutions.
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Corollary 23. (i) The equations

a1a2a3a4 = a2a1a4a3,

a1a2a3a4 = a3a1a4a2

have the same number of solutions.
(ii) The equations

a1a2a3a4 = a2a1a4a3,

a1a2a3a4 = a2a4a1a3

have the same number of solutions.

Proof. The case of j = 4, i = 1 in Lemma 22 corresponds to y = 1, y + 1 = 2,
x = 3, x+1 = 4. Thus, the equations of the permutations π = 〈3 1 4 2〉 and θ = 〈2 1 4 3〉
have the same number of solutions. Specifically, Equation 5 is

a1a2a3a4 = a3a1a4a2

and Equation 6 is
a1a2a3a4 = a2a1a4a3.

By Lemma 22, they have the same number of solutions.
Since 〈2 4 1 3〉 = 〈3 1 4 2〉−1, the equations

a1a2a3a4 = a3a1a4a2,

a1a2a3a4 = a2a4a1a3

have, by Lemma 13, the same number of solutions.

Thus, we obtain the following.

Theorem 24. The permutations

〈4 3 2 1〉, 〈2 1 4 3〉, 〈4 2 1 3〉, 〈4 1 3 2〉, 〈3 2 1 4〉, 〈2 4 3 1〉,

〈3 1 4 2〉, 〈2 4 1 3〉

in S4 have the same probabilities.

Proof. This theorem follows from Theorem 18 and Corollaries 20, 21, and 23.

In Theorem 57 we will show that every finite non-Abelian group is generic. Thus,

Pr(a1a2a3a4 = a2a1a3a4) 6= Pr(a1a2a3a4 = a4a3a2a1) (11)

for every finite non-Abelian group G. Since both probabilities, appearing in Equation 11,
cannot be equal to 1 in a non-Abelian group, it will Imply that the spectrum of probabilities,
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for permutations in S4, consists of three different values. But now, in the Example 25, we
explicitly compute Pr(a1a2a3a4 = a2a1a3a4) = Pr2(G) and Pr(a1a2a3a4 = a2a1a4a3) =
Pr4(G) for the groups G = D8 and G = Q8. These probabilities, for both G = D8 and
G = Q8, are different. This permits us to avoid using Theorem 57 in establishing Lemma
26. In Example 58 we will perform the same calculations for the general case of Pr2n(G).
Results, similar to our calculations of Pr2(G) and Pr4(G) for G = D8 and G = Q8, but in a
much more general form and for a larger variety of groups, were obtained in [8, 22].

Example 25. Both G = D8 and G = Q8 have five conjugacy classes.
Thus, Pr2(G) = 5

8
for both of these groups. For both D8 and Q8, the center consists of the

identity 1 and another element c, such that c2 = 1. For both of these groups, the factor of
the group by its center is the Abelian group K4 = Z2 × Z2. This means that if for some
x, y ∈ G, xy 6= yx, then xy = cyx. Hence, the equation a1a2a3a4 = a2a1a4a3 is satisfied
either if a1a2 = a2a1 and a3a4 = a4a3, or if a1a2 = ca2a1 and a3a4 = ca4a3. The first option
has the probability 5

8
· 5
8
= 25

64
. The second option has the probability 3

8
· 3
8
= 9

64
. Thus,

Pr4(G) = 25
64

+ 9
64

= 17
32
. Notice that Pr4(G) < Pr2(G).

Now we may conclude with the following.

Theorem 26. For a generic finite non-Abelian group G, the spectrum of permutation prob-
abilities over S4 consists of only three probabilities

Spec4(G) = {1,Pr2(G) =
|c(G)|

|G|
,Pr4(G)}

Notice that the calculations for G = D8 and G = Q8 show that the three probabilities
belonging to Spec4(G) are pairwise different for these two groups.

From the results of this section it is evident that permutational equalities of any two
permutations from S2, S3, or S4 have the same probability if they have the same number
of alternating cycles in their cycle graphs. Consequently, the number of different permuta-
tions, corresponding to each probability in Spec2(G), Spec3(G), or Spec4(G), is precisely the
Hultman number SH(n, k), where n = 2, 3, 4 and k is the number of alternating cycles in
the cycle graphs of these permutations. In the following sections we extend the observations
and calculations of this section to Sn.

4 Probabilities of permutation equations, number of

alternating cycles, and Hultman decomposition

For the information on cycle graphs, decomposition to alternating cycles, and Hultman
numbers, as well as many other related definitions and notions, we refer to Doignon and
Labarre [12] and the On-Line Encyclopedia of Integer Sequences [25]. Here we briefly review
these notions.
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Definition 27. The cycle graph Gr(φ) of a permutation φ ∈ Sn is the bi-colored directed
graph with n+ 1 vertices φ0 = 0, φ1, . . . , φn, whose edge set consists of

• black edges φn → φn−1, φn−1 → φn−2, . . ., φ1 → φ0, φ0 → φn, and

• grey edges 0 99K 1, 1 99K 2, . . ., (n− 1) 99K n, n 99K 0.

The set of black and grey edges is decomposed in a unique way into edge-disjoint alter-
nating cycles in which the black and the grey edges alternate. It is called the decomposition
of Gr(φ) into alternating cycles.

Definition 28. The Hultman number SH(n, k) is a nonnegative integer that counts the
number of permutations in Sn, whose cycle graph decomposes into k alternating cycles.

Let S(1 + n) denotes the group of all permutations of the set {0, 1, 2, . . . , n}.

Definition 29. Let φ• denotes the n+ 1-cycle in a permutation φ ∈ Sn.

φn → φn−1 → φn−2 → · · · → φ1 → φ0 → φn

in S(1 + n), which is the n+ 1-cycle, composed of the black arrows of Gr(φ).

We will use the cyclic notation (φ0, φn, φn−1, . . . , φ2, φ1) for φ•. Notice that there is a
trivial one-to-one correspondence between all the permutations of Sn and all the n+1-cycles
in S(1+n). Namely, the entries of a n+1-cycle, starting from the one after 0, are interpreted
as the entries of the permutation, but read backwards, written in the shortened way of the
two-row notation. Thus, for any n+ 1-cycle C in S(1 + n), we can easily obtain the unique
permutation φ ∈ Sn, for which the n+ 1-cycle C is its black cycle φ•.

Definition 30. For a permutation φ ∈ Sn we define the corresponding permutation φ◦ ∈
S(1 + n) to be φ• · (0, 1, . . . , n).

Notice that φ◦ cannot contain m 7→ (m+ 1) for any m = 0, 1, . . . , n, since m 7→ (m+ 1)
is i 99K (i+ 1) → (i+ 1), but an (n+ 1)-cycle φ• cannot contain (i+ 1) → (i+ 1).

Theorem 31 (Doignon and Labarre’s theorem 8). There is a natural one-to-one correspon-
dence between the cycles in the cycle decomposition of the permutation φ◦ and the alternating
cycles in Gr(φ).

Therefore, there is a unique way to decompose a permutation into alternating cycles.

Definition 32. We define H(Sn) as a partition of Sn into pairwise disjoint sets containing
permutations with the same number of alternating cycles in their cycle graph.
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Now we are going to introduce two operations, x−−y exchange operation in Definition
33 and x−−y cyclic operation in Definition 44, which transform permutations in Sn. Next,
we show that these two operations do not change the number of alternative cycles in the
cycle graph of a permutation. After that, we demonstrate that these two operations do
not change the probabilities of the permutation equations. Finally, we prove that any two
permutations that have the same number of alternating cycles in their cycles graphs, can be
connected to each-other by performing a finite number of these operations. This establishes
that any two permutations with the same number of alternating cycles in their cycle graphs,
have the same probabilities of their permutation equalities.

4.1 Exchange operation

Let φ ∈ Sn be a permutation. We augment φ by defining φ0 = 0.

Definition 33. Let 0 ≤ x = φj, y = φi, w, z ≤ n, for some 0 ≤ i, j ≤ n, be four integers,
such that

z → x 99K x+ 1 → y

and
y → w

appear in some alternating cycles of Gr(φ). The black arrow x+1 → y implies that x+1 =
φi+1. The black arrow z → x implies that z = φj+1. The black arrow y → w implies that
w = φi−1. All the arithmetic is performed modulo n+ 1. The x−−y exchange operation is
defined as follows (compare it to Lemma 19)

• if x = w or if y = z, then the x−−y exchange operation does not change φ;

• if y = φ0 = 0, then the x−−y exchange operation changes

〈φ1 = (x+ 1) . . . φj−1 φj = x φj+1 = z . . . φn = w〉

to
〈φj+1 = z φj+2 . . . φn = w φ1 = (x+ 1) . . . φj−1 φj = x〉;

• if x = φ0 = 0, then the x−−y exchange operation changes

〈φ1 = z . . . φi−1 = w φi = y φi+1 = 1 . . . φn〉

to
〈φi = y φ1 = z . . . φi−1 = w φi+1 = 1 . . . φn〉;

• if 1 < i+ 1 < j, then the x−−y exchange operation changes

〈φ1 . . . φi−1 = w φi = y φi+1 = (x+ 1) . . . φj = x φj+1 = z . . . φn〉

to

〈φ1 . . . φi−1 = w φi+1 = (x+ 1) . . . φj = x φi = y φj+1 = z . . . φn〉;
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• if 0 < j < i, then the x−−y exchange operation changes

〈φ1 . . . φj = x φj+1 = z . . . φi−1 = w φi = y φi+1 = (x+ 1) . . . φn〉

to

〈φ1 . . . φj = x φi = y φj+1 = z . . . φi−1 = w φi+1 = (x+ 1) . . . φn〉.

Let us consider several examples of the x−−y exchange operation.

Example 34. Let φ = 〈4 1 6 2 5 7 3〉. We perform the 5 − −1 exchange operation on
φ. Here x = 5 = φ5 and y = 1 = φ2. Hence, z = φ6 = 7 and w = φ1 = 4. The fact that
x + 1 = 6 = φ3 causes the condition x + 1 → y to be satisfied. The condition x + 1 → y
is what makes the x − −y exchange operation possible. Now, i = 2 and j = 5. Thus,
1 < i+1 < j and we get that the 5−−1 exchange operation changes φ to 〈4 6 2 5 1 7 3〉.

Example 35. Let φ = 〈4 1 6 2 5 7 3〉. We perform the 4 − −2 exchange operation on
φ. Here x = 4 = φ1 and y = 2 = φ4. Hence, z = φ2 = 1 and w = φ3 = 6. The fact that
x + 1 = 5 = φ5 causes the condition x + 1 → y to be satisfied. The condition x + 1 → y is
what makes the x−−y exchange operation possible. Now, i = 4 and j = 1. Thus, 0 < j < i
and we get that the 4−−2 exchange operation changes φ to 〈4 2 1 6 5 7 3〉.

Example 36. Let φ = 〈4 6 1 2 5 7 3〉. We perform the 0 − −6 exchange operation on
φ. Here x = 0 = φ0 and y = 6 = φ2. Hence, z = φ1 = 4 and w = φ5 = 5. The fact that
x+1 = 1 = φ3 causes the condition x+1 → y to be satisfied. The condition x+1 → y is what
makes the x−−y exchange operation possible. Now, i = 2 and j = 0. Since x = φ0 = 0, we
get that the 0−−6 exchange operation changes φ to 〈6 4 1 2 5 7 3〉.

Example 37. Let φ = 〈4 1 6 3 5 7 2〉. We perform the 3 − −0 exchange operation on
φ. Here x = 3 = φ4 and y = 0 = φ0. Hence, z = φ5 = 5 and w = φ7 = 2. The fact that
x+1 = 4 = φ1 causes the condition x+1 → y to be satisfied. The condition x+1 → y is what
makes the x−−y exchange operation possible. Now, i = 0 and j = 4. Since y = φ0 = 0, we
get that the 3−−0 exchange operation changes φ to 〈5 7 2 4 1 6 3〉.

Notice that after completing the x−−y exchange operation on φ, y → x 99K x+ 1 → w
and z → y will appear in the alternating cycles of the cycle graph of the new permutation.

Proposition 38. Let φ and θ be two different permutations in Sn, such that θ is obtained
from φ by an x−−y exchange operation. Then θ• is obtained from φ• by multiplying φ• on
the left by the 3−cycle (x, y, w) ∈ S(1 + n). Namely,

θ• = (x, y, w) · φ•.
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Proof. Since the x−−y exchange operation was permissible on φ, and since this operation
changed φ, the cycle φ• must be of the form (x+1, y, w, . . . , z, x, . . .). Indeed, (x+1) → y → w
and z → x cannot intersect, since θ 6= φ. Here we are using the cyclic notation, in which the
cycles can be written starting from any entry. Now,

(x, y, w) · φ• = (x+ 1, w, . . . , z, y, x, . . .).

To construct θ we need to rewrite the cycle (x+ 1, w, . . . , z, y, x, . . .), starting from 0. Then
the cycle will become (0, θn, . . . , θ1), which permits us to obtain θ = 〈θ1 . . . θn〉. When we
rewrite the cycle (x+ 1, w, . . . , z, y, x, . . .), starting from 0, we can have four different cases

• if y = 0, then the cycle, after rewriting, becomes (y = 0, x, . . . , x+ 1, w, . . . , z);

• if x = 0, then the cycle, after rewriting, becomes (x = 0, . . . , x+ 1 = 1, w, . . . , z, y);

• if 1 < i+ 1 < j, then the cycle, after rewriting, becomes
(0, . . . , z, y, x, . . . , x+ 1, w, . . .);

• if 1 < j < i, then the cycle, after rewriting, becomes (0, . . . , x+ 1, w, . . . , z, y, x, . . .).

In all these four cases we obtain the exact θ, which is described in Definition 33 as the
result of the x−−y exchange operation.

Notice that the inverse of an x − −y exchange operation is not, in general, an x − −y
exchange operation. Indeed, θ• might not contain (w + 1) → y → x, which is required to
perform a w −−x exchange operation on θ and obtain φ.

Proposition 39. Let θ 6= φ be a permutation obtained from φ by some x − −y exchange
operation. Then the cyclic presentation of θ◦ is obtained from the cyclic presentation of φ◦

by relocating x from the place after (z − 1) and before y to the place after (y− 1) and before
w; i.e., the cycle of φ◦ of the form (. . . , z − 1, x, y, . . .) becomes (. . . , z − 1, y, . . .), and the
cycle of φ◦ of the form (. . . , y − 1, w, . . .) becomes (. . . , y − 1, x, w, . . .). This, in particular,
implies that θ◦ and φ◦ have the same number of cycles in their cyclic decompositions.

Proof. By Proposition 38, θ• = (x, y, w) · φ•. This implies that

θ◦ = θ• · (0, 1, . . . , n) = (x, y, w) · φ• · (0, 1, . . . , n) = (x, y, w) · φ◦

Now, multiplication of φ◦ on the left by (x, y, w) removes x from the cycle
(. . . , z − 1, x, y, . . .) and places it in the cycle (. . . , y− 1, w, . . .) between y− 1 and w. Thus,
z−1, instead of going to x, now goes to y. And x, instead of going to y, now goes to w. And
y − 1, instead of going to w, now goes to x. No other changes are done by multiplication of
φ◦ from the left by 3−cycle (x, y, w).
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Recall that Bafna and Pevzner [1], for 1 ≤ i < j < k ≤ n + 1, defined the permutation
ρ(i, j, k) to be

ρ(i, j, k) = 〈1 . . . (i− 1) j . . . (k − 1) i . . . (j − 1); k . . . n〉. (12)

Next, for a permutation φ ∈ Sn, Bafna and Pevzner defined a block-transposition, which
exchanges places of the blocks i . . . (j − 1) and j . . . (k − 1) inside φ, to be φ · ρ(i, j, k).
For any three pairwise different integers 1 ≤ i, j, k ≤ n one can define

ρ(i, j, k) = ρ(i, k, j) = ρ(j, i, k) = ρ(j, k, i) = ρ(k, i, j) = ρ(k, j, i).

Since in one of these six expressions, i, j, k are placed in the increasing order, which makes
that expression well-defined by Equation 12, all six expressions are now well-defined and
represent the same permutation ρ(i, j, k). Finally, if two or more of the three integers 1 ≤
i, j, k ≤ n + 1 are equal, ρ(i, j, k) is defined as an identity permutation. Now ρ(i, j, k) is
defined for any three integers 1 ≤ i, j, k ≤ n + 1 and represents an appropriate block-
transposition. Clearly, if two or more of the three integers 1 ≤ i, j, k ≤ n are equal, at least
one of the blocks is empty, which corresponds to no change performed to φ. Now we can
relate our x−−y exchange operation to the block-transpositions.

Remark 40. Let φ be a permutation in Sn, extended by φ0 = 0, such that for some 0 ≤
φj = x, φi = y ≤ n, φi+1 = x + 1. Then performing the x − −y exchange operation is a
block-transposition, for which the permutation ρ is selected as follows

• if x = j = 0, then select ρ(1, i, i+ 1);

• if y = i = 0, then select ρ(1, j + 1, n+ 1);

• in all other cases select ρ(i, i+ 1, j + 1).

Lemma 2.1 in Bafna and Pevzner’s work [1] asserts that a block-transformation can either
increase by two, or decrease by two, or keep unchanged the number of alternating cycles in
the cycle graph of a permutation. We now show that an x − −y exchange operation does
not change the number of alternating cycles in the cycle graph of a permutation.

Lemma 41. Let a permutation θ ∈ Sn be obtained from a permutation φ ∈ Sn by an x−−y
exchange operation. Then θ and φ have the same number of alternating cycles in their cycle
graphs Gr(θ) and Gr(φ).

Proof. The lemma directly follows from Proposition 39 and Theorem 31. However, we pro-
duce an alternative proof, based on Bafna and Pevzner’s analysis of block-
transformations.

Notice that the edges, which appear in Gr(φ) and which do not appear in Gr(θ), are
precisely the three black edges φi = y → w = φi−1, φi+1 = x+ 1 → y = φi, and φj+1 = z →
x = φj.
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Similarly, the edges, which appear in Gr(θ) and which do not appear in Gr(φ), are
precisely the three black edges φi+1 = x + 1 → w = φi−1, φj+1 = z → y = φi, and
φi = y → x = φj.

Since the black edges φi+1 = x+ 1 → y = φi and φj+1 = z → x = φj belong to the same
alternating cycle in Gr(φ), the above-mentioned three black edges y → w, x + 1 → y, and
z → x belong to, at most, two alternating cycles in Gr(φ). Similarly, since the black edges
φi+1 = x + 1 → w = φi−1 and φi = y → x = φj belong to the same alternating cycle in
Gr(θ), the above-mentioned three black edges x + 1 → w, z → y, and y → x belong to, at
most, two alternating cycles in Gr(φ).

In the proof of Lemma 2.1 in Bafna and Pevzner’s work [1],it is shown that if Gr(φ) and
Gr(θ) differ by exactly three black edges, which in both graphs Gr(φ) and Gr(θ) belong to
one or two alternating cycles, then Gr(φ) and Gr(θ) have the same number of alternating
cycles.

Definition 42. We say that the permutations φ, θ ∈ Sn are in the same “x−−y exchange
orbit” if there exist some permutations τ1, . . . , τk ∈ Sn such that τ1 = φ, τk = θ, and, for
each i = 1, . . . , k − 1, either τi can be obtained from τi+1 by an x−−y exchange operation,
or τi+1 can be obtained from τi by an x−−y exchange operation.

Notice that according to Definition 42, φ, θ ∈ Sn can be in the same x − −y exchange
orbit, while neither of them can be obtained from the other by performing x−−y exchange
operations.

Theorem 43. Let φ, θ ∈ Sn be two permutations such that θ is obtained from φ by an x−−y
exchange operation. Then

Pr(a1a2 · · · an = aφ1
aφ2

· · · aφn
) = Pr(a1a2 · · · an = aθ1aθ2 · · · aθn).

Proof. Compare this proof with the proof of Lemma 19 above. If x = y then θ = φ and the
theorem follows. Hence, we assume that x 6= y.

First, we consider the case when x, x+1, w, y, z are all different than 0. In that case, the
requirement that z → x 99K x + 1 → y and y → w are present in Gr(φ) implies that the
product aφ1

aφ2
· · · aφn

contains sub-products awayax+1 and axaz. These two sub-products
awayax+1 and axaz can “overlap” if and only if z = w. By overlapping we mean that they
have a common piece. For example, if z = w then az = aw is the overlap of these two
products.

If the sub-product awayax+1 appears in the product aφ1
aφ2

· · · aφn
before the sub-product

axaz, then z 6= w. In that case, we rewrite the equation

a1 · · · axax+1ax+2 · · · an = aφ1
· · · aφi−2

awayax+1aφi+2
· · · aφj−1

axazaφj+2
· · · aφn

as

a1 · · · axa
−1
y (ayax+1)ax+2 · · · an = aφ1

· · · aφi−2
aw(ayax+1)aφi+2

· · · aφj−1
axazaφj+2

· · · aφn
(13)
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Similarly, the fact that y → x 99K x+1 → w and z → y are present in Gr(θ), implies that
the product aθ1aθ2 · · · aθn contains sub-products axayaz and awax+1. These two sub-products
can “overlap” if and only if either x = w or z = x + 1. But φj+1 = z = x + 1 = φi+1 would
imply i = j and φj = x = y = φi. Thus, θ = φ. If x = w, then θ = φ by Definition 33. So,
we can assume that awayax+1 and axaz do not overlap. Again, we rewrite the equation

a1 · · · ax−1axax+1ax+2 · · · an = aθ1 · · · aθi−2
awax+1aθi+1

· · · aθj−2
axayazaθj+2

· · · aθn

as

a1 · · · ax−1(axay)a
−1
y ax+1 · · · an = aθ1 · · · aθi−2

awax+1aθi+1
· · · aθj−2

(axay)azaθj+2
· · · aθn . (14)

Notice that as the random variable ay runs over all the elements of G, so does its inverse
a−1
y . Also, for each choice of ay, as the random variable ax runs over all the elements of G,

so does the random variable b = (axay). Similarly, for each choice of a = a−1
y , as the random

variable ax+1 runs over all the elements of G, so does the random variable c = (ayax+1).
We show now that Equations 13 and 14, up to renaming variables, are identical. We

regard b = (axay) as one variable. Similarly, we regard c = (ayax+1) as one variable. Notice
that the left sides of Equations 13 and 14 have n + 1 variables in each, and their right
sides have n− 1 variables in each. Both left sides have the variables a1, . . . , ax−1 in place of
1, . . . , x− 1, respectively, and the variables ax+2, . . . , an in place of
x+ 3, . . . , n+ 1, respectively.

Notice that for all 1 ≤ r ≤ i− 1, φr = θr and aφr
= aθr . Similarly, for all j + 1 ≤ r ≤ n,

φr = θr and aφr
= aθr . For i+1 ≤ r ≤ j−2, φr+1 = θr and aφr+1

= aθr . Thus, the right sides
of Equations 13 and 14 carry the same variables in place of 1, . . . , i− 1 and i+ 1, . . . , j − 2
and j, . . . , n− 1.

The random variable ax appears in the x-th place on the left side of Equation 13 and in
the (j − 1)-th place on its right side. Similarly, the random variable b = (axay) appears in
the x-th place on the left side of Equation 14 and in the (j − 1)-th place on its right side.

The inverse a−1
y of the random variable ay appears in the (x + 1)-th place on the left

side of Equation 13 and does not appear on its right side. Similarly, the inverse a−1
y of the

random variable ay appears in the (x+ 1)-th place on the left side of Equation 14 and does
not appear its right side. The random variable ay cannot appear in the x-th, (x + 1)-th,
or (x + 2)-th place on the left side of Equation 13 or of Equation 14. Since the rest of the
places of the left sides of Equations 13 and 14 carry the same variables, ay must appear in
the same place in both left sides. The right sides of Equations 13 and 14 do not contain ay.

The random variable c = (ayax+1) appears in the (x + 2)-th place on the left side of
Equation 13 and on the i-th place on its right side. Similarly, the random variable ax+1

appears in the (x + 2)-th place on the left side of Equation 14 and in the i-th place on its
right side.

Thus, Equations 13 and 14, up to renaming variables, are identical. This implies that
they have the same number of solutions. This, in its turn, implies that

Pr(a1a2 · · · an = aφ1
aφ2

· · · aφn
) = Pr(a1a2 · · · an = aθ1aθ2 · · · aθn).
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Now, assume that the sub-product axaz appears in the product aφ1
aφ2

· · · aφn
before the

sub-product awayax+1. Then, if z = w, then az is the same as aw, and we have the sub-
product axawayax+1 inside the product aφ1

aφ2
· · · aφn

. In that case, the x − −y exchange
operation only exchanges the places of aw and ay. We rewrite the equation

a1 · · · ax−1axax+1ax+2 · · · an = aφ1
· · · aφi−3

axawayax+1aφi+2
· · · aφn

as
a1 · · · ax−1axa

−1
y (ayax+1)ax+2 · · · an = aφ1

· · · aφi−3
axaw(ayax+1)aφi+2

· · · aφn
. (15)

The equation

a1 · · · ax−1axax+1ax+2 · · · an = aθ1 · · · aθi−3
axayawax+1aθi+2

· · · aθn

is identical to the equation

a1 · · · ax−1axax+1ax+2 · · · an = aφ1
· · · aφi−3

axayawax+1aφi+2
· · · aφn

,

which we rewrite as

a1 · · · ax−1(axay)a
−1
y ax+1ax+2 · · · an = aφ1

· · · aφi−3
(axay)awax+1aφi+2

· · · aφn
. (16)

Again, the random variable ay and its inverse a−1
y appear in the same places in both Equations

15 and 16. The random variable c = (axay) in Equation 16 plays the role of the random
variable ax in the Equation 15. The random variable ax+1 in Equation 16 plays the role
of the random variable b = (ayax+1) in Equation 15. Thus, Equations 15 and 16, up to
renaming variables, are identical. This implies that they have the same number of solutions.
This, in its turn, implies that

Pr(a1a2 · · · an = aφ1
aφ2

· · · aφn
) = Pr(a1a2 · · · an = aθ1aθ2 · · · aθn).

If z 6= w, then we rewrite the equation

a1 · · · ax−1axax+1ax+2 · · · an = aφ1
· · · aφj−1

axazaφj+2
· · · awayax+1aφi+2

· · · aφn

as

a1 · · · ax−1axa
−1
y (ayax+1)ax+2 · · · an = aφ1

· · · aφj−1
axazaφj+2

· · · aw(ayax+1)aφi+2
· · · aφn

. (17)

Similarly, we rewrite the equation

a1 · · · ax−1axax+1ax+2 · · · an = aθ1 · · · aθj−1
axayazaθj+3

· · · awax+1aθi+2
· · · aθn

as

a1 · · · ax−1(axay)a
−1
y ax+1ax+2 · · · an = aθ1 · · · aθj−1

(axay)azaθj+3
· · · awax+1aθi+2

· · · aθn . (18)
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Comparison of Equations 17 and 18, shows that, similarly to Equations 13 and 14, and
Equations 15 and 16, which we compared in detail above, a certain renaming of variables in
Equation 18 transforms it into Equation 17. Thus, again

Pr(a1a2 · · · an = aφ1
aφ2

· · · aφn
) = Pr(a1a2 · · · an = aθ1aθ2 · · · aθn).

Now, we consider the case when x = φ0 = θ0 = 0. In this case y = φi = θ1,
z = φ1 = θ2, φ2 = θ3, . . . , φi−1 = θi = w, x+ 1 = φi+1 = θi+1 = 1, and
φi+2 = θi+2, . . . , φn = θn. We rewrite the equation

a1a2 · · · an = azaφ2
· · · aφi−2

awaya1aφi+2
· · · aφn

as
(aya1)a2 · · · an = ayazaφ2

· · · aφi−2
aw(aya1)aφi+2

· · · aφn
, (19)

in which the random variable a1 is omitted, and for each fixed value of ay, as a1 runs over
all the elements of G, so does the random variable b = (aya1).

Now, compare Equation 19 with the equation

a1a2 · · · an = ayazaθ3 · · · aθi−1
awa1aθi+2

· · · aθn . (20)

Clearly, renaming b = (aya1) to a1 turns Equation 19 to Equation 20. Thus, again

Pr(a1a2 · · · an = aφ1
aφ2

· · · aφn
) = Pr(a1a2 · · · an = aθ1aθ2 · · · aθn).

Now we consider the case when x = n. In that case x+ 1 = 0 = φ0 = θ0,
y = φn and w = φn−1 = θn. Observe, that in that case the equation

a1a2 · · · an = aφ1
aφ2

· · · aφn

is
a1a2 · · · an = aφ1

· · · aφj−1
anazaφj+2

· · · aφn−2
away. (21)

Similarly, the equation
a1a2 · · · an = aθ1aθ2 · · · aθn

in that case becomes

a1a2 · · · an = aφ1
· · · aφj−1

anayazaφj+2
· · · aφn−2

aw,

which we rewrite as

a1a2 · · · (anay) = aφ1
· · · aφj−1

(anay)azaφj+2
· · · aφn−2

away. (22)

Again, the random variable b = (anay) in Equation 22 plays the role of the random variable
an in Equation 21. Thus, again

Pr(a1a2 · · · an = aφ1
aφ2

· · · aφn
) = Pr(a1a2 · · · an = aθ1aθ2 · · · aθn).
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Finally, we consider the case when y = 0 = φ0 = θ0. In this case x+ 1 = φ1 and w = φn.
Thus, the equation

a1a2 · · · an = aφ1
aφ2

· · · aφn

becomes
a1a2 · · · an = ax+1aφ2

· · · aφj−1
axazaφj+2

· · · aφn−1
aw.

On the other hand, the equation

a1a2 · · · an = aθ1aθ2 · · · aθn

becomes
a1a2 · · · an = azaφj+2

· · · aφn−1
awax+1aφ2

· · · aφj−1
ax.

Let
r = ax, s = ax+1, A = a1 · · · ax−1, B = ax+2ax+3 · · · an, P = aφ2

· · · aφj−1
,

and Q = azaφj+2
· · · aφn−1

aw. Then

a1a2 · · · an = ax+1aφ2
· · · aφj−1

axazaφj+2
· · · aφn−1

aw

becomes
ArsB = sPrQ,

and
a1a2 · · · an = azaφj+2

· · · aφn−1
awax+1aφ2

· · · aφj−1
ax

becomes
ArsB = QsPr.

But Pr(ArsB = sPrQ) is the same as Pr(rArsB = rsPrQ), which is the same as Pr(γAθB =
θPγQ), where γ = r, θ = rs, which, in its turn, is the same as
Pr(γAθBQ−1γ−1 = θP ). Notice that since the random element s does not appear in the
last equation, we regard θ = rs as a random element from G. And γAθBQ−1γ−1 = θP is
equivalent to saying that AθBQ−1 is conjugate to θP .

Similarly, Pr(ArsB = QsPr) is the same as Pr(ArsBs = QsPrs), which is the same as
Pr(AθBγ = QγPθ), where γ = s, θ = rs, which, in turn, is the same as Pr(γ−1Q−1AθBγ =
Pθ). Again, we regard θ = rs as a random element from G. And γ−1Q−1AθBγ = Pθ is
equivalent to saying that Q−1AθB is conjugate to Pθ.

Finally, notice that θP = θ(Pθ)θ−1 is conjugate to Pθ, and
AθBQ−1 = Q(Q−1AθB)Q−1 is conjugate to Q−1AθB. Thus, AθBQ−1 is conjugate to θP if
and only if Q−1AθB is conjugate to Pθ. Thus,

Pr(a1a2 · · · an = aφ1
aφ2

· · · aφn
) = Pr(a1a2 · · · an = aθ1aθ2 · · · aθn).
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4.2 Cyclic operation

Now we define and discuss x−−y cyclic operation. This material is illustrated by Lemma 22
above. Let φ ∈ Sn be a permutation such that φ• ∈ S(1+n) contains some (x+1) → y → x.
In other words, for some 0 ≤ i ≤ n, we have φi = x, φi+1 = y, and φi+2 = y. Notice that if
x = n, the condition (x+ 1) → y → x becomes
0 = φ0 → y = φn → n = φn−1.

Definition 44. The x−−y cyclic operation on the permutation φ is defined as follows

• If y = x+ 2, then the x−−y cyclic operation does not do anything to φ;

• If y > x + 2, then in the long cycle φ• we replace x + 1 by y − 1 and replace each
t = x+2, . . . , y− 1 by t− 1. In other words, the x−−y cyclic operation changes φ• to

(y − 1, y − 2, . . . , x+ 2, x+ 1)−1 · φ• · (y − 1, y − 2, . . . , x+ 2, x+ 1)

= φ•(y−1,y−2,...,x+2,x+1);

• If y = x− 1, then the x−−y cyclic operation does not do anything to φ;

• If y < x − 1, then in the long cycle φ• we replace x by y + 1 and replace each
t = y+1, . . . , x− 1 by t+1. In other words, the x−−y cyclic operation changes φ• to

(y + 1, y + 2, . . . , x− 1, x)−1 · φ• · (y + 1, y + 2, . . . , x− 1, x) = φ•(y+1,y+2,...,x−1,x).

Since we can easily restore any permutation θ ∈ Sn from its corresponding long cycle
θ• ∈ S(1 + n), Definition 44 unambiguously describes what an x−−y cyclic operation does
to a permutation φ ∈ Sn. The fact that an x−−y cyclic operation always produces a long
cycle in S(1 + n), is straightforward from the definition.

The requirement that φ• ∈ S(1 + n) must contain (x + 1) → y → x, implies that the
permutation φ◦ = φ• · (0, 1, . . . , n) has a cycle that contains
(x 7→ y) = (x 99K x + 1 → y), and a cycle that contains (y − 1 7→ x) = (y − 1 99K y → x).
Thus, φ◦ has a cycle, which contains y − 1 7→ x 7→ y.

Let us consider several examples of x−−y cyclic operations.

Example 45. Let φ = 〈6 5 3 1 4 2〉. Then φ• = (0, 2, 4, 1, 3, 5, 6). We can perform a
1 − −4 cyclic operation on φ to obtain a new permutation θ. Since y = 4 > x + 1 = 2, we
get θ• = (0, 3, 4, 1, 2, 5, 6). Hence, θ = 〈6 5 2 1 4 3〉.

Example 46. Let φ = 〈4 1 5 2 6 3〉. Then φ• = (0, 3, 6, 2, 5, 1, 4). We can perform a
5 − −2 cyclic operation on φ to obtain a new permutation θ. Since y = 2 < x = 5, we get
θ• = (0, 4, 6, 2, 3, 1, 5). Hence, θ = 〈5 1 3 2 6 4〉.

Example 47. Let φ = 〈4 1 5 2 6 3〉. Then φ• = (0, 3, 6, 2, 5, 1, 4). We can perform a
0 − −4 cyclic operation on φ to obtain a new permutation θ. Since y = 4 > x + 1 = 1, we
get θ• = (0, 2, 6, 1, 5, 3, 4). Hence, θ = 〈4 3 5 1 6 2〉.
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Example 48. Let φ = 〈4 1 5 2 6 3〉. Then φ• = (0, 3, 6, 2, 5, 1, 4). We can perform a
6 − −3 cyclic operation on φ to obtain a new permutation θ. Since y = 3 < x = 6, we get
θ• = (0, 3, 4, 2, 6, 1, 5). Hence, θ = 〈4 3 5 1 6 2〉.

Example 49. Let φ = 〈4 1 5 2 6 3〉. Then φ• = (0, 3, 6, 2, 5, 1, 4). We can perform a
3 − −0 cyclic operation on φ to obtain a new permutation θ. Since y = 0 < x = 3, we get
θ• = (0, 1, 6, 3, 5, 2, 4). Hence, θ = 〈4 2 5 3 6 1〉.

We now describe the transformation of φ◦ under an x − −y cyclic operation. First,
write φ◦ in the cyclic notation. Let φ◦ consist of k cycles C1, . . . , Ck of lengths h1, . . . , hk,
respectively. We think of these cycles as consisting of boxes

C1 = B1,1 7→ B1,2 7→ · · ·B1,h1
7→ B1,1, . . . , Ck = Bk,1 7→ Bk,2 7→ · · ·Bk,hk

7→ Bk,1.

Each box in each cycle contains inside it one element of φ◦. Let Bk(z),h(z) denotes the box
that contains it for every element z ∈ φ◦. The requirement that φ• contains (x+1) → y → x,
asserts that k(y − 1) = k(x) = k(y) and h(y − 1) + 2 = h(x) + 1 = h(y). Let |Bi,j| denote
its content for each box Bi,j . We now fix the labeling of the boxes and start transforming
their contents. At any stage of the transformation, we permit the boxes to contain a single
element, two elements z1 7→ z2 with an arrow between them, or no elements. The last case,
namely that of a box with no elements in it, we permit only in a cycle in which at least one
of its remaining boxes is not empty. When we read a cycle, we treat an empty box as if
it, together with the arrow following it, are deleted. Thus, we regard a cycle containing an
empty box as if the arrow 7→ goes directly from the content of the first nonempty box before
the empty one, to the content of the first nonempty box following the empty one.

Lemma 50. Let θ ∈ Sn be obtained from φ ∈ Sn by an x − −y cyclic operation. Then the
x−−y cyclic operation transforms φ◦ to θ◦ as follows

• If y = x+ 2 or y = x− 1, then θ◦ = φ◦;

• If y > x+ 2, then perform the following steps

1. Inside the box Bk(x+1),h(x+1) replace x + 1 by y − 1 7→ x. In other words, in the
cycle Ck(x+1), the piece |Bk(x+1),h(x+1)−1| 7→ x + 1 7→ |Bk(x+1),h(x+1)+1| becomes
|Bk(x+1),h(x+1)−1| 7→ y − 1 7→ x 7→ |Bk(x+1),h(x+1)+1|;

2. Inside each box Bk(t),h(t), for all t = x+ 2, . . . , y − 1, replace t by t− 1;

3. Delete the element x from the box Bk(x),h(x). The box Bk(x),h(x) is now empty.
Notice that the box before Bk(x),h(x) is Bk(y−1),h(y−1), and it now contains y−2. The
box after Bk(x),h(x) is Bk(y),h(y), and it still contains y. Thus, we obtain y− 2 7→ y
in the cycle Ck(x).

• If y < x− 1, then perform the following steps
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1. Inside the box Bk(x−1),h(x−1) replace x − 1 by x 7→ y. In other words, in the
cycle Ck(x−1), the piece |Bk(x−1),h(x−1)−1| 7→ x − 1 7→ |Bk(x−1),h(x−1)+1| becomes
|Bk(x−1),h(x−1)−1| 7→ x 7→ y 7→ |Bk(x−1),h(x−1)+1|;

2. Inside each box Bk(t),h(t), for all t = y, . . . , x− 2, replace t by t+ 1;

3. Delete the element x from the box Bk(x),h(x). The box Bk(x),h(x) is now empty.
Notice that the box before Bk(x),h(x) is Bk(y−1),h(y−1), and it still contains y − 1.
The box after Bk(x),h(x) is Bk(y),h(y), and it now contains y + 1. Thus, we obtain
y − 1 7→ y + 1 in the cycle Ck(x).

In particular, the number of cycles in the cyclic decompositions of θ◦ and of φ◦ is the
same.

Proof. We start by investigating the effect of replacements of elements in φ• on φ◦. First,
notice that when in a piece c → a → d we replace an element a by an element b, b replaces
a in two black arrows − in the beginning of the black arrow a → d, and also the end of the
black arrow c → a. We study these two replacements separately.

• The replacement of a by b in the end of the black arrow → a transforms (c − 1) 99K
c → a, which, in φ◦, is the arrow (c−1) 7→ a, to (c−1) 99K c → b, which is (c−1) 7→ b.
To indicate that b element of φ◦ is post the replacement of a by b in → a, we mark it as
b́. Thus, we say that the replacement of c → a by c → b́ transforms (c− 1) 99K c → a,
which is (c − 1) 7→ a to (c − 1) 99K c → b́, which is (c − 1) 7→ b́. From b́ we draw
a grey arrow b́ 99K (b + 1). If, at this point, the original element b of φ• is still not
replaced in → b, we regard that original b as deleted, and do not use it in any further
replacements, marking, or arrow-drawing, except the future replacement of b in → b,
which eliminates that original b;

• The replacement of a by b in the beginning of the black arrow a → transforms (a−1) 99K
a → d, which, in φ◦, is the arrow (a−1) 7→ d, to (b−1) 99K b → d, which is (b−1) 7→ d.
To indicate that b element of φ◦ is post the replacement of a by b in a →, we mark it
as b̈. Since this replacement replaces (a−1) in (a−1) 7→ of φ◦ by (b−1), we also mark

(b − 1) as `(b− 1). Thus, we say that the replacement of a → d by b̈ → d transforms

(a − 1) 99K a → d, which is (a − 1) 7→ d, to `(b− 1) 99K b̈ → d, which is `(b− 1) 7→ d.
If, at this point, the original element b of φ• is still not replaced in b →, we regard
that original b as deleted, and do not use it in any further replacements, marking,
or arrow-drawing, except the future replacement of b in b →, which eliminates that
original b;

• If we need to mark b as both b́ and b̀, we write b̂;

• If we need to mark b as both b́ and b̈, we write ~b;

• If we need to mark b as both b̀ and b̈, we write b̃;
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• If we need to mark b as b́ and b̀ and b̈, we write b̌.

Notice that our notation permits us to study the effect of replacements of elements in
φ• on φ◦ in several steps. Namely, if we have to replace elements a1, . . . , am by elements
b1, . . . , bm, we do not have to perform all the 2m replacements in the black arrows at once.
Instead, we can perform these 2m replacements in several steps, each time marking the
elements as described above. The final φ◦, after we perform all the 2m replacements, will be
the same, regardless of the selection of intermediate steps. Now we are ready to start our
investigation

If y > x+2, then the x−−y cyclic operation, applied to φ•, replaces x+1 by y− 1, and
replaces each t, for t = x + 2, . . . , y − 1, by t − 1. Thus, y → x remains untouched by the
x−−y cyclic operation. This implies that θ◦ contains y − 1 7→ x. Notice that our marking
notation implies that after all the replacements in φ•, φ• will contain x̀ instead of x and ť

instead of t, for all t = x+ 1, . . . , y − 2, and ~(y − 1) instead of (y − 1). Altogether, we need
to perform 2(y − x− 1) replacements in the black arrows of φ•.

At the first step, we perform the following four replacements

1. Replacement of (x+ 2) by ¨(x+ 1) in the black arrow (x+ 2) →. This changes x to x̀;

2. Replacement of (x+ 1) by ~(y − 1) in the black arrows → (x+ 1) and (x+ 1) →. This

changes (y − 2) to `(y − 2);

3. Replacement of (y − 1) by ˆ(y − 2) in the arrow → (y − 1).

If φ◦ contains (x + 1) 7→ (y − 1), then, according to our notation, the original φ• takes
u = |Bk(x+1),h(x+1)−1| + 1 to x + 1. Indeed, in the original φ◦ we must have an alternating
path

(u− 1) 99K u → (x+ 1) 99K (x+ 2) → (y − 1) 99K y → x 99K (x+ 1) → y, (23)

which is
(u− 1) 7→ (x+ 1) 7→ (y − 1) 7→ x 7→ y.

The four replacements of our first step transform Equation 23 to

(u− 1) 99K u → ~(y − 1) 99K y → x̀ 99K
¨(x+ 1) → ˆ(y − 2) 99K ~(y − 1) → y, (24)

which is
(u− 1) 7→ ~(y − 1) 7→ x̀ 7→ ˆ(y − 2) 7→ y.

Notice that all four replacements in the black arrows appear in path 24. Thus, these

four replacements correspond to the replacement of x + 1 by ~(y − 1) 7→ x̀ inside the box

Bk(x+1),h(x+1), deletion of x from the box Bk(x),h(x), and replacement of y − 1 by ˆ(y − 2) in
the box Bk(y−1),h(y−1).
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If φ◦ does not contain (x + 1) 7→ (y − 1) then, according to our notation, the original
φ• takes u =

∣

∣Bk(x+1),h(x+1)−1

∣

∣ + 1 to x + 1, takes x + 2 to v = |Bk(x+1),h(x+1)+1|, and takes
p =

∣

∣Bk(y−1),h(y−1)−1 + 1
∣

∣ to (y − 1). Indeed, in the original φ◦ we must have an alternating
path

(u− 1) 99K u → (x+ 1) 99K (x+ 2) → v, (25)

which is
(u− 1) 7→ (x+ 1) 7→ v,

and an alternative path

(p− 1) 99K p →→ (y − 1) 99K y → x 99K (x+ 1) → y, (26)

which is
(p− 1) 7→ (y − 1) 7→ x 7→ y.

The four replacements of the first step transform path 25 to

(u− 1) 99K u → ~(y − 1) 99K y → x̀ 99K
¨(x+ 1) → v, (27)

which is
(u− 1) 7→ ~(y − 1) 7→ x̀ 7→ v,

and transforms path 26 to

(p− 1) 99K p → ˆ(y − 2) 99K ~(y − 1) → y, (28)

which is
(p− 1) 7→ ˆ(y − 2) 7→ y.

Notice that all four replacements in the black arrows appear in paths 27 and 28. Thus,
these four replacements correspond to the replacement of x+1 by ~y − 1 7→ x̀ inside the box
Bk(x+1),h(x+1), deletion of x from the box Bk(x),h(x), and replacement of y − 1 by ˆ(y − 2) in
the box Bk(y−1),h(y−1).

At the second step, we perform the following two replacements

1. Replacement of (x+ 2) by ~(x+ 1) in the black arrow → (x+ 2);

2. Replacement of (x+ 3) by ¨(x+ 2) in the black arrow (x+ 3) →. This changes ~(x+ 1)
to ˇ(x+ 1);

According to our notation, φ•, modified by the first step, takes
u = |Bk(x+2),h(x+2)−1|+ 1 to x+ 2 and takes x+ 2 to v = |Bk(x+2),h(x+2)+1|.
Indeed, after the first step, in φ◦ we must have an alternating path

(u− 1) 99K u → (x+ 2) 99K (x+ 3) → v, (29)

33



which is
(u− 1) 7→ (x+ 2) 7→ v.

The two replacements of the second step transform path 29 to

(u− 1) 99K u → ˇ(x+ 1) 99K ¨(x+ 2) → v, (30)

which is
(u− 1) 7→ ˇ(x+ 1) 7→ v.

Notice that both replacements in the black arrows appear in path 30. Thus, these two
replacements correspond to the replacement of x+2 by ˇ(x+ 1) inside the box Bk(x+2),h(x+2).

At the third step, we perform the following two replacements

1. Replacement of (x+ 3) by ~(x+ 2) in the black arrow → (x+ 3);

2. Replacement of (x+ 4) by ¨(x+ 3) in the black arrow (x+ 4) →. This changes ~(x+ 2)
to ˇ(x+ 2);

According to our notation, φ•, modified by the first and second steps, takes
u = |Bk(x+3),h(x+3)−1|+ 1 to x+ 3 and takes x+ 3 to v = |Bk(x+3),h(x+3)+1|. Indeed, after the
second step, in φ◦ we must have an alternating path

(u− 1) 99K u → (x+ 3) 99K (x+ 4) → v, (31)

which is
(u− 1) 7→ (x+ 3) 7→ v.

The two replacements of the third step transform path 31 to

(u− 1) 99K u → ˇ(x+ 2) 99K ¨(x+ 3) → v, (32)

which is
(u− 1) 7→ ˇ(x+ 2) 7→ v.

Notice that both replacements in the black arrows appear in path 32. Thus, these two
replacements correspond to the replacement of x+3 by ˇ(x+ 2) inside the box Bk(x+3),h(x+3).

We continue that way until at the last step we perform the following two replacements

1. Replacement of `(y − 2) by ~(y − 3) in the black arrow → (y − 2);

2. Replacement of (y − 1) by ˇ(y − 2) in the black arrow (y − 1) →. This changes ~(y − 3)
to ˇy − 3);
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According to our notation, φ•, modified by all the previous steps, takes
u = |Bk(y−2),h(y−2)−1| + 1 to `(y − 2) and takes y − 1 to v = |Bk(y−2),h(y−2)+1|. Indeed, after
the previous step, in φ◦ we must have an alternating path

(u− 1) 99K u → `(y − 2) 99K (y − 1) → v, (33)

which is
(u− 1) 7→ `(y − 2) 7→ v.

The two replacements of the last step transform path 33 to

(u− 1) 99K u → ˇ(y − 3) 99K ˇ(y − 2) → v, (34)

which is
(u− 1) 7→ ˇ(y − 3) 7→ v.

Notice that both replacements in the black arrows appear in path 34. Thus, these two
replacements correspond to the replacement of `y − 2 by ˇy − 3 inside the box
Bk(y−2),h(y−2), and to change of ˆ(y − 2) in the box Bk(y−1),h(y−1) to ˇ(y − 2).

At this point, we performed all the 2(y − x− 1) replacements in the black arrows of φ•.
Our marking notation makes it easy to verify that all the required replacements in φ• were
performed correctly. Thus the lemma is proved for y > x + 2. The proof for y < x − 1 is
done in a similar way, by using the same marking notation and performing the replacements
in steps.

Definition 51. We say that the permutations φ, θ ∈ Sn are in the same “x − −y cyclic
orbit” if there exist some permutations τ1, . . . , τk ∈ Sn such that τ1 = φ, τk = θ, and, for
each i = 1, . . . , k − 1, either τi can be obtained from τi+1 by an x − −y cyclic operation or
τi+1 can be obtained from τi by an x−−y cyclic operation.

Notice that according to Definition 51, φ, θ ∈ Sn can be in the same x − −y exchange
orbit, while neither of them can be obtained from the other one by performing x−−y cyclic
operations.

Theorem 52. Let φ, θ ∈ Sn be two permutations such that θ is obtained from φ by an x−−y
cyclic operation. Then

Pr(a1a2 · · · an = aφ1
aφ2

· · · aφn
) = Pr(a1a2 · · · an = aθ1aθ2 · · · aθn).

Proof. We consider four different possible cases, and prove the theorem for each of them
Case 1 is when x 6= 0, n and y 6= 0. In this case, there exists some k, 1 ≤ k ≤ n − 2,

such that φk = x, φk+1 = y, and φk+2 = x+ 1. Hence, the equation

a1a2 · · · an = aφ1
aφ2

· · · aφn

is of the form
a1a2 · · · an = aφ1

aφ2
· · · aφk−1

axayax+1aφk+3
· · · aφn

(35)
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If y > x, then Equation 35 is equivalent to

a1 · · · (axax+1) · · · ay · · · an = aφ1
· · · aφk−1

(axax+1)(a
−1
x+1ayax+1)aφk+3

· · · aφn
. (36)

We define

• bt = at for all t < x and t > y;

• bx = axax+1;

• bt = at+1 for all x+ 1 < t < y − 1;

• by−1 = ax+1;

• by = a−1
x+1ay.

Next, by−1 = ax+1 and by = a−1
x+1ay imply

• by−1by = ay;

• byby−1 = a−1
x+1ayax+1.

As random variables a1, . . . , an run over all elements of G, so do random elements
b1, . . . , bn. Now, the Equation 36 is equivalent to the equation

b1b2 · · · bn = bθ1bθ2 · · · bθk−1
bxbyby−1bθk+3

· · · bθn , (37)

where

• θt = φt for all such t, for which 1 ≤ φt ≤ x or y ≤ φt ≤ n;

• θt = y − 1 for the t, for which φt = x+ 1;

• θt = φt − 1 for all such t, for which x+ 1 < φt < y.

This proves the theorem for the subcase y > x of the first case.
If y < x, then Equation 35 is equivalent to

a1 · · · ay · · · (axax+1) · · · an = aφ1
· · · aφk−1

(axaya
−1
x )(axax+1)aφk+3

· · · aφn
. (38)

We define

• bt = at for all t < y and t > x+ 1;

• bx+1 = axax+1;

• bt = at−1 for all y + 1 < t < x;
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• by+1 = ax;

• by = aya
−1
x+1.

Next, by+1 = ax and by = aya
−1
x+1 imply

• byby+1 = ay;

• by+1by = axaya
−1
x .

As random variables a1, . . . , an run over all elements of G, so do random elements
b1, . . . , bn. Now, Equation 38 is equivalent to the equation

b1b2 · · · bn = bθ1bθ2 · · · bθk−1
by+1bybx+1bθk+3

· · · bθn , (39)

where

• θt = φt for all such t, for which 1 ≤ φt ≤ x or x+ 1 ≤ φt ≤ n;

• θt = y + 1 for the t, for which φt = x;

• θt = φt + 1 for all such t, for which y < φt < x.

This proves the theorem for the subcase y < x of the first case.
Case 2 is when x = 0 = φ0. In this case, φ1 = y and φ2 = 1. Hence, the equation

a1a2 · · · an = aφ1
aφ2

· · · aφn

is of the form
a1a2 · · · an = aya1aφ3

· · · aφn
(40)

Multiplying Equation 40 from the left by a−1
1 gives us

a2 · · · an = (a−1
1 aya1)aφ3

· · · aφn
(41)

We define

• bt = at for all t > y;

• bt = at+1 for all 1 ≤ t < y − 1;

• by−1 = a1;

• by = a−1
1 ay.

Next, by−1 = a1 and by = a−1
1 ay imply

• by−1by = ay;
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• byby−1 = a−1
1 aya1.

As random variables a1, . . . , an run over all elements of G, so do random elements
b1, . . . , bn.

Now, Equation 41 is equivalent to the equation

b1 · · · bn = byby−1bθ3 · · · bθn , (42)

where

• θt = φt for all such t, for which φt ≥ y;

• θt = y − 1 for the t, for which φt = 1;

• θt = φt − 1 for all such t, for which 2 ≤ φt ≤ y − 1.

This proves the theorem for the second case.
Case 3 is when x = n. In this case, x + 1 = 0 = φ0, φn = y and φn−1 = x = n. Hence,

the equation
a1a2 · · · an = aφ1

aφ2
· · · aφn

is of the form
a1a2 · · · an = aφ1

· · · aφn−2
anay (43)

We apply the inverse map inv(g) = g−1 to both sides of Equation 43 and obtain

a−1
n a−1

n−1 · · · a
−1
1 = a−1

y a−1
n a−1

φn−2
· · · a−1

φ1
(44)

Define cn+1−i = a−1
i and φ′

i = n + 1 − φn+1−i, for all i = 1, . . . , n. Define x′ = 0 and
y′ = n+ 1− y. Then Equation 44 becomes

c1c2 · · · cn = cφ′

1
cφ′

2
· · · cφ′

n
, (45)

in which φ′
1 = y′ and φ′

2 = 1. We apply x′ −−y′ cyclic operation to φ′. In the study of Case
2, above, we showed that Equation 45 is equivalent to the equation

b1 · · · bn = by′by′−1bθ′
3
· · · bθ′n , (46)

where

• θ′t = φ′
t = n+1− φn+1−t for all such t, for which n+1− φn+1−t = φ′

t ≥ y′ = n+1− y;

• θ′t = y′ − 1 = n− y for the t, for which n+ 1− φn+1−t = φ′
t = 1;

• θ′t = φ′
t−1 = n−φn+1−t for all such t, for which 2 ≤ n+1−φn+1−t = φ′

t ≤ y′−1 = n−y.
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Next, we apply the inverse map inv(g) = g−1 to both sides of the Equation 46 and obtain

b−1
n · · · b−1

1 = b−1
θ′n

· · · θ′3−1b−1
y′−1b

−1
y′ . (47)

Define dn+1−i = b−1
i and θi = n + 1 − θ′n+1−i, for all i = 1, . . . , n. Then the Equation 47

becomes
d1 · · · dn = dθ1bθ2 · · · dθn−2

, dy−1dy. (48)

Here

• θt = n+1−θ′n+1−t = n+1−φ′
n+1−t = φt for all such t, for which φt = n+1−φ′

n+1−t ≤
n+ 1− y′ = y;

• θt = n + 1− θ′n+1−t = n + 1− (n− y) = y + 1 the t, for which φt = n + 1− φ′
n+1−t =

n+ 1− 1 = n;

• θt = n+ 1− θ′n+1−t = n+ 1− (φ′
n+1−t − 1) = φt + 1 for y+ 1 = n+ 1− (n− y) ≤ φt =

n+ 1− φ′
n+1−t ≤ n+ 1− 2 = n− 1.

This proves the theorem for Case 3.
Case 4 is when y = 0 = φ0. In this case, φ1 = x+ 1 and φn = x. Hence, the equation

a1a2 · · · an = aφ1
aφ2

· · · aφn

is of the form
a1a2 · · · an = ax+1aφ2

· · · aφn−1
ax (49)

Multiplying Equation 49 on the left by ax gives us

axa1a2 · · · ax−1(axax+1) · · · an = (axax+1)aφ2
· · · aφn−1

ax (50)

We define

• bt = at for all t > x+ 1;

• bx+1 = axax+1

• bt = at−1 for all 1 < t ≤ x;

• b1 = ax.

As random variables a1, . . . , an run over all elements of G, so do random elements
b1, . . . , bn. Finally, the Equation 50 is equivalent to the equation

b1 · · · bn = bx+1bθ2 · · · bθn−1
b1, (51)

where

• θt = φt for all such t, for which φt > x;

• θt = 1 for the t, for which φt = x;

• θt = φt + 1 for all such t, for which 1 ≤ φt < x.

This proves our theorem for Case 4.
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4.3 Main results

Definition 53. Two permutations φ, θ ∈ Sn are called “x − −y equivalent” if there exist
some permutations φ = τ1, . . . , θ = τk ∈ Sn such that τi and τi+1, for each
i = 1, . . . , k − 1, are in the same x−−y exchange orbit or in the same x−−y cyclic orbit.

Theorem 54. If θ and φ are x−−y equivalent, then Gr(φ) and Gr(θ) have the same number
of alternating cycles.

Proof. Since θ and φ are x− −y equivalent, there exist some permutations φ = τ1, . . . , θ =
τk ∈ Sn such that τi and τi+1, for each i = 1, . . . , k − 1, are in the same x − −y exchange
orbit or in the same x − −y cyclic orbit. For each t = 1, . . . , k − 1, if τi and τi+1 are in
the same x − −y exchange orbit, then, by Lemma 41, Gr(τi) and Gr(τi+1) have the same
number of alternating cycles. Else, if τi and τi+1 are in the same x−−y cyclic orbit, then, by
Lemma 41, τ ◦i and τ ◦i+1 have the same number of cycles in their cyclic decompositions. Now,
Theorem 31 asserts, that Gr(τi) and Gr(τi+1) have the same number of alternating cycles.
Hence, Gr(φ) and Gr(θ) have the same number of alternating cycles.

Theorem 55. If θ and φ are x−−y equivalent, then

Pr(a1a2 · · · an = aφ1
aφ2

· · · aφn
) = Pr(a1a2 · · · an = aθ1aθ2 · · · aθn).

Proof. Since θ and φ are x− −y equivalent, there exist some permutations φ = τ1, . . . , θ =
τk ∈ Sn such that τi and τi+1, for each i = 1, . . . , k − 1, are in the same x − −y exchange
orbit or in the same x−−y cyclic orbit. For each t = 1, . . . , k − 1, if τi and τi+1 are in the
same x−−y exchange orbit, then, by Theorem 43,
Prτi(G) = Prτi+1

(G). Else, if τi and τi+1 are in the same x − −y cyclic orbit, then, by
Theorem 52, Prτi(G) = Prτi+1

(G).

At this point, we proceed to show that in a finite non-Abelian group G two permutation
equalities have the same probability if, and only if, their permutations have the same number
of alternating cycles. The “only if” part implies that every finite non-Abelian group G is
generic. This part immediately follows from a stronger result, stated in Theorem 6.8 due to
Das and Nath [10].

Theorem 56 (Theorem 6.8 of Das and Nath). For any finite non-Abelian group G,
Pr2n+2(G) < Pr2n(G).

Theorem 57. Every finite non-Abelian group is generic.

Proof. Let φ ∈ Sn have k alternating cycles in its cycle graph Gr(φ), and θ ∈ Sn have t
alternating cycles in its cycle graph Gr(θ). Then, by Theorem 67, Prφ(G) = Pr2k(G) and
Prθ(G) = Pr2t(G). Thus, by Theorem 56, Prφ(G) = Prθ(G) only if k = t.

We illustrate Theorem 57 by the following example, which is a generalization of Example
25.
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Example 58. Let the group G be D8 or Q8. Then

Pr(a1a2a3a4 · · · a2k−1a2ka2k+1a2k+2 · · · a2n = a2a1a4a3 · · · a2ka2k−1a2k+1a2k+2 · · · an)

is equal to

(

5

8

)k

+
k!

2!(k − 2)!

(

5

8

)k−2(
3

8

)2

+
k!

4!(k − 4)!

(

5

8

)k−4(
3

8

)4

+ . . . . (52)

The last summand in the sum 52 is
(

3
8

)k
, for even k, or

(

5
8

)

k
(

3
8

)k−1
, for odd k. Indeed, in

order for the equation

a1a2a3a4 · · · a2k−1a2ka2k+1a2k+2 · · · an = a2a1a4a3 · · · a2ka2k−1a2k+1a2k+2 · · · an

to hold, an even number of the inverted pairs aj+1aj must be equal to cajaj+1, where c is
the nontrivial element from the center of G. All the other inverted pairs aj+1aj must be
equal to ajaj+1. But, for each 2t where 0 ≤ 2t ≤ k, there are k!

(2t)!(k−2t)!
different choices of 2t

inverted pairs, for which aj+1aj = cajaj+1. Now, Pr(aj+1aj = ajaj+1) =
5
8
and Pr(aj+1aj =

cajaj+1) = 1 − 5
8
= 3

8
. This justifies the sum 52. A direct computation now shows that

for different values of k we get different probabilities for the corresponding permutation
equalities.

Next, we prove Theorem 66, which, for even n, asserts the opposite direction of the
statement of Theorem 54. This, in turn, permits us to prove Theorem 67, in which the “if”
part of the above statement is asserted. In order to prove Theorem 66, we need the following
several technical lemmas.

Definition 59. Let φ be a permutation in Sn. Let i be any nonnegative integer smaller
than n+ 1. We define the permutation φ+i 2 ∈ Sn+2 as follows

• µt = φt for t = 1, . . . , i;

• µi+1 = n+ 2;

• µi+2 = n+ 1;

• µt = φt−2 for t = i+ 3, . . . , n+ 2.

Notice that for i = n, our definition implies φ +i 2 = 〈φ1 . . . φn n + 2 n + 1〉, and, for
i = 0, it implies φ+i 2 = 〈n+ 2 n+ 1 φ1 . . . φn〉. Observe that for all 0 ≤ i ≤ n,

(φ+i 2)
• = (φi, n+ 1, n+ 2) · φ• = (φi, φi−1, . . . , φ0, φn, . . . , φi+1, n+ 1, n+ 2).

Lemma 60. Let φ be a permutation in Sn, i ≤ n be a nonnegative integer, and
µ = φ+i 2 ∈ Sn+2. Then Gr(φ) and Gr(µ) have the same number of alternating cycles.
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Proof. From µ• = (φi, n+ 1, n+ 2) · φ• we obtain

µ◦ = µ• · (0, 1, . . . , n, n+ 1, n+ 2) = (φi, n+ 1, n+ 2) · φ• · (0, n+ 1, n+ 2) · (0, 1, . . . , n)

Now, φ◦ always contains (φi+1 − 1) 7→ φi and n 7→ φn. When φi+1 = 0 = φ0, i = n and
φi+1− 1 = n. Thus, (φi+1− 1) 7→ φi is identical to n 7→ φn. With regard to µ◦, the following
holds

• If φi+1 6= 0 then µ◦ contains (φi+1 − 1) 7→ (n + 1) 7→ φi and n 7→ (n + 2) 7→ φn. For
all j 6= φi+1 − 1, n, n + 1, andn + 2, the piece µj 7→ µk of µ◦ is identical to the piece
φj 7→ φk of φ◦;

• If φi+1 = 0 then µ◦ contains (φi+1 − 1) = n 7→ (n + 2) 7→ (n + 1) 7→ φi = φn. For all
j 6= n, n+ 1, andn+ 2, the piece µj 7→ µk of µ◦ is identical to the piece φj 7→ φk of φ◦.

This shows that µ◦ and φ◦ have the same number of cycles in their cyclic decomposition.
Hence, by Theorem 31, Gr(µ) and Gr(φ) have the same number of alternating cycles.

Lemma 61. Let φ be a permutation in Sn. Let i ≤ n and j ≤ n be two nonnegative integers.
Let µ = φ +i 2 ∈ Sn+2 and τ = φ +j 2 ∈ Sn+2. Then the permutations τ and µ in Sn+2 are
x−−y equivalent.

Proof. If i = j then τ = µ and our lemma trivially follows. If i 6= j, we can assume that
i > j. Since µ• = (φi, n+1, n+2) ·φ•, the x−−y exchange operation, where x = n+1 and
y = φi, by Proposition 38, produces a permutation θ ∈ Sn+2, for which

θ• = (n+ 1, φi, φi−1) · (φi, n+ 1, n+ 2) · φ•

= (φi−1, n+ 1, n+ 2) · φ• = (φi−1, φi−2, . . . , φ0, φn, . . . , φi, n+ 1, n+ 2).

Thus, consecutively performing on µ i− j x−−y exchange operations, in which x = n+ 1
and y = φi, φi+1, . . . , φj−1, produces the permutation τ .

Lemma 62. Let φ, θ be x−−y equivalent permutations in S2t. Then any two permutations
µ = φ+i 2 ∈ S2t+2 and τ = θ +j 2 ∈ S2t+2 are x−−y equivalent in S(2t+ 2).

Proof. It is sufficient to prove that for any permutation θ ∈ S2t, which is obtained from
φ ∈ S2t by one x−−y exchange operation or one x−−y cyclic operation, there exist some
nonnegative integers q and k, such that the permutation µ = φ +q 2 ∈ S2t+2 is x − −y
equivalent to the permutation τ = θ+k 2 ∈ S2t+2. Indeed, our lemma then follows, based on
Definition 53 and Lemma 61.

We start by considering the situation when θ was obtained from φ by one x−−y exchange
operation. In this case, we set q to be equal to k. An x − −y exchange operation on φ, by
Proposition 38, produces θ, such that θ• = (x, y, z) · φ•.
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If t = 1 then φ = θ and our lemma follows from Lemma 61 . If t ≥ 2 we select any k such
that φk /∈ {x, y, z}. Then the sets {x, y, z} and {φk, 2t + 1, 2t + 2} do not intersect. Then
applying the same x−−y exchange operation on µ produces a permutation τ , such that

τ • = (x, y, z) · µ• = (x, y, z) · (φk, 2t+ 1, 2t+ 2) · φ•

= (φk, 2t+ 1, 2t+ 2) · (x, y, z) · ·φ• = (φk, 2t+ 1, 2t+ 2) · θ•.

The cycles (x, y, z) and (φ2t, 2t+1, 2t+2) in the equation commute, because the sets {x, y, z}
and {φ2t, 2t+ 1, 2t+ 2} do not intersect. Thus, τ is exactly θ +k 2 ∈ S2t+2.

We conclude by considering the situation when θ was obtained from φ by one x − −y
cyclic operation. It is evident from Definition 44, that the x−−y cyclic operation, applied
on θ, does not affect the (2t+ 1) → (2t+ 2) piece in the (2t+ 3)-cycle µ•, since both 2t+ 1
and 2t + 2 are strictly greater than x and greater than y. Thus, performing an x − −y
cyclic operation on µ = φ +q 2 ∈ S2t+2 produces a (2t + 3)-cycle τ •, which contains some
θk+1 → (2t+ 1) → (2t+ 2) → θk. This Shows that τ = θ +k 2 ∈ S2t+2.

Let φ be a permutation in S2t, with φ2t = 2t− 1 and φ2t−1 = 2t. Let a be a nonnegative
integer, smaller than 2t+1. Let θ ∈ S2t be defined by θχ+i = (φi+ a) mod (2t+1), where
χ is such that φχ = −a. For a = 0 we have θ = φ. Notice that

φ• = (φ2t−2, φ2t−3, . . . , φ1, φ0 = 0, 2t− 1, 2t)

and

θ• = (φ2t−2 + a, φ2t−3 + a, . . . , φ1 + a, φ0 + a = a, 2t− 1 + a = a− 2, 2t+ a = a− 1).

Here all indices and all elements are modulo 2t+ 1.

Lemma 63. The permutations φ and θ are x−−y equivalent.

Proof. The lemma is trivial for a = 0. Assume, by induction hypothesis, that the lemma
holds for a. We prove our lemma for a + 2. This, by induction, implies our lemma for all
a + 2, a + 4, a + 6, . . .. Since a + 1 = a + 2t + 2 modulo 2t + 1, this implies our lemma for
a+ 1.

For all q = 1, . . . , 2t − 2, let jq be such that φjq = 2t − 1 − q. Since θ• contains
(a− 2) → (a− 1), we can perform the (a− 3) − −(a− 1) exchange operation on θ. Recall
that all the calculations are carried modulo 2t+1. Thus, for example, −1 = 2t, −2 = 2t−1,
and −3 = 2t− 2. This (a− 3)−−(a− 1) exchange operation produces the permutation ρ[1]
such that

ρ[1]• = (φ2t−2 + a, φ2t−3 + a, . . . , φj1−1 + a, 2t+ a = a− 1, φj1 + a = a− 3, . . . ,

. . . , φ1 + a, φ0 + a = a, 2t− 1 + a = a− 2).
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Since ρ[1]• contains (a − 1) → (a − 3), we can perform the (a − 2) − −(a − 3) exchange
operation on ρ[1]. This (a−2)−−(a−3) exchange operation produces the permutation ̺[1]
such that

̺[1]• = (φ2t−2 + a, φ2t−3 + a, . . . , φj1−1 + a, 2t+ a = a− 1, φj1+1 + a, . . . ,

. . . , φ1 + a, φ0 + a = a, φj1 + a = a− 3, 2t− 1 + a = a− 2).

Since ̺[1]• contains (a − 3) → (a − 2), we can perform the (a − 4) − −(a − 2) exchange
operation on ̺[1]. This (a−4)−−(a−2) exchange operation produces the permutation ρ[2]
such that ρ[2]• contains (a− 2) → (a− 4). Thus, we perform an (a− 3)−−(a− 4) exchange
operation on ρ[2] and obtain ̺[2]. Notice that ̺[1]• is obtained from

θ• = (φ2t−2 + a, φ2t−3 + a, . . . , φ1 + a, φ0 + a = a, 2t− 1 + a = a− 2, 2t+ a = a− 1)

by adding 2 to θχ+j1 = φj1 + a = a − 3 and to θχ+j2 = φj2 + a = a − 4, and subtracting 2
from 2t− 1 + a = a− 2 and 2t+ a = a− 1. Continuing this way, we produce permutations
̺[3], . . . , ̺[2t− 2]. Now,

̺[2t− 2]• = (φ2t−2 + a+ 2, φ2t−3 + a+ 2, . . . , φ1 + a+ 2, φ0 + a

= a, 2t− 1 + a− [2t− 2]

= a+ 1, 2t+ a− [2t− 2]

= a+ 2).

Finally, we perform an a−−(a+2) exchange operation on ̺[2t−2] and obtain the permutation
ζ, for which

ζ• = (φ2t−2 + a+ 2, φ2t−3 + a+ 2, . . . , φ1 + a+ 2, φ0 + a+ 2

= a+ 2, 2t− 1 + a+ 2

= a, 2t+ a+ 2

= a+ 1).

Thus, we proved the lemma for a+ 2.

Lemma 64. Any permutation φ ∈ S2t, such that φ• = (. . . , a, b, a − 1, . . .), where a and b
are between 0 and 2t, is x−−y equivalent to some permutation θ ∈ S2t, such that

θ• = (θ2t−2, θ2t−3, . . . , θ1, θ0 = 0, 2t− 1, 2t).

Proof. First, we show, that φ is x−−y equivalent to some ρ ∈ S2t, such that ρ• contains some
k → k+1. Indeed, if b = a+1, then we let k = b. Otherwise, if b > a+1, then an (a−1)−−b
cyclic operation on φ produces permutation ρ, such that ρ• = (. . . , b− 1, b, a− 1, . . .). Thus,
we set k = b − 1. And if b < a − 1, then an (a − 1) − −b cyclic operation on φ produces
permutation ρ, such that ρ• = (. . . , a, b, b+ 1, . . .). Thus, we set k = b.
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Next, let i, j be such that, in ρ•, ρi → k and ρj = k + 2. If i = j, then we set ̺ = ρ.
Otherwise, a consecutive performance of k−−ρi, k−−ρi+1, . . ., k−−ρj exchange operations,
just like in the proof of Lemma 61, produces a permutation ̺ = (. . . , k + 2, k, k + 1, . . .).

Lemma 63 now establishes that ̺, and, hence, φ, is x−−y equivalent to θ.

Lemma 65. Let φ ∈ S2t be a permutation, different than the identity. Then φ is x − −y
equivalent to some permutation θ ∈ S2t, such that

θ• = (θ2t−2, θ2t−3, . . . , θ0, 2t− 1, 2t).

Proof. There exists some number a between 0 and 2t, such that φ• does not contain a →
(a− 1). Otherwise, φ is the identity permutation. Now, let φ• contain some path

a → b1 → b2 → · · · → bk → (a− 1), (53)

where k ≥ 1. First, assume that k ≥ 2. Then we look for b(i),
where 1 ≤ i ≤ k−1, such that (b(i)−1) /∈ {b(1), . . . , b(k)}. If we find such a b(i), we perform
the (b(i)− 1)−−bi+1 exchange operation on φ, which shortens the path 53 to

a → b1 → · · · → bi → bi+2 → · · · → bk → (a− 1).

If we do not find such a b(i), then (b(k)− 1) /∈ {b(1), . . . , b(k)}. In this case, we perform the
(a− 1)−−b(1) exchange operation on φ, which changes the path 53 to

a → b2 → · · · → bk → b1 → (a− 1).

Now we perform the (b(k)− 1)−−b1 exchange operation, which shortens the path 53 to

a → b2 → · · · → bk−1 → b1 → (a− 1).

By repeating the argument of shortening the path 53, we can assume that k = 1. The
lemma now follows from Lemma 64.

Theorem 66. If two permutations φ and θ in S2t have the same number of alternating cycles
in their cycle graphs Gr(φ) and Gr(θ), then they are x−−y equivalent.

Proof. We prove the theorem by induction on t.
Basic step. For t = 1 we only have one permutation 〈2 1〉 ∈ S2 with one alternating

cycle in its cycle graph, and one permutation 〈1 2〉 ∈ S2 with two alternating cycles in its
cycle graph. Hence, the proof is completed for t = 1.

Induction. Assume that the induction hypothesis is true for t. We will now prove it for
t+ 1.

If Gr(φ) and Gr(θ) have only one alternating cycle, then φ = θ is the identity permutation,
and the proof is finished.
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Otherwise, by Lemma 65, there exist permutations µ and τ in S2t+2 such that

µ• = (µ2t, µ2t−1, . . . , µ0, 2t+ 1, 2t+ 2),

τ • = (τ2t, τ2t−1, . . . , τ0, 2t+ 1, 2t+ 2),

and µ is x−−y equivalent to φ, τ is x−−y equivalent to θ.
By Lemma 60, the permutations ρ = 〈µ1 µ2 . . . µ2t−1 µ2t〉 and

̺ = 〈τ1 τ2 . . . τ2t−1 τ2t〉 in S2t have the same number of alternating cycles in their cycle
graphs as the permutations µ and τ , which, in turn, by Theorem 54, have the same number
of alternating cycles in their cycle graphs as the permutations φ and θ. Now we apply the
induction hypothesis to obtain that ρ and ̺ are x−−y equivalent in S2t. This, by Lemma
62, establishes that µ and τ are x − −y equivalent in S2t+2. Thus, φ and θ are x − −y
equivalent in S2t+2, which completes the proof.

At this point we are ready to state and prove the two main findings. They generalize the
observation, made at the end of the previous section, that the probability of a permutation
equality in a fixed finite group G depends only on the number of the alternating cycles in
the cycle graph of the permutation.

Theorem 67. Let φ ∈ Sn be a permutation such that Gr(φ) contains k alternating cycles.
Then, for all positive k ≤ n,

Prφ(G) = Prn+1−k(G) = Pr(a1a2 · · · an−kan+1−k = an+1−kan−k · · · a2a1)

Since, as shown in [12], n − k must be an odd number, k ≤ n implies k ≤ n − 1. If k > n
then k = n+ 1 and φ is the identity permutation, which implies Prφ(G) = 1.

Proof. If n is an even number then, by Theorem 66, the permutations φ and
〈an+1−k . . . a1 an+2−k . . . an〉, both having k alternating cycles in their cycle graphs, are
x−−y equivalent in Sn. Next, Theorem 55 asserts that Prφ(G) = Prn+1−k(G).

If n is odd then define ρ ∈ Sn+1 by ρ = 〈φ1 . . . φn (n+1)〉. Notice that Gr(ρ) contains
the same k alternating cycles as Gr(φ) plus one additional alternating cycle (n+1) 99K 0 →
(n+1), which is (n+1) 7→ (n+1). Since n+1 is even, Prφ(G) = Prρ(G) = Prn+2−(k+1)(G) =
Prn+1−k(G).

Theorem 68. Let G be a finite non-Abelian group. Let φ and θ be two permutations in Sn.
Then, Prφ(G) = Prθ(G) if, and only if, the number of the alternating cycles in the cycle graph
Gr(φ) equals the number of alternating cycles in the cycle graph Gr(θ). Thus, the spectrum
of probabilities of permutation equalities for permutations from Sn in a finite non-Abelian
group G consisting of exactly

⌊

n
2

⌋

+ 1 different numbers, each number corresponding to its
unique Hultman class of permutations in Sn.

Proof. This theorem follows trivially from Theorem 67 and Theorem 57.
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5 Two explicit formulae for Pr2t(G)

We provide two explicit formulae for Pr2t(G). Our first formula expresses Pr2t(G) in terms
of Stab.Prodt(x1, x2, . . . , xt). Our second formula expresses Pr2t(G) in terms of ci1,...,it;j(G).
These results constitute a generalization of what was shown in Theorem 18 for permutations
in S4.

Theorem 69. Let G be a finite group. Then

Pr(a1a2 · · · a2t = a2ta2t−1 · · · a1) =

∑

x1,x2,...,xt∈G

|Stab.Prodt(x1, x2, . . . , xt)|

|G|2t
(54)

Pr(a1a2 · · · a2t = a2ta2t−1 · · · a1) =
1

|G|t
·

c(G)
∑

i1,i2,...,it,j=1

|Ωj| · c
2
i1,i2,...,it;j

(G)

|Ωi1 | · |Ωi2 | · · · · · |Ωit |
(55)

Proof. Let us consider a generic equation

a1a2 · · · a2t = a2ta2t−1 · · · a1.

Let xi denotes the product a2i−1a2i for all i = 1, . . . , t. Let x′
i denotes the product a2ia2i−1.

Notice that by Lemma 10, we have xi ∼ x′
i.

The equation
a1a2 · · · a2t = a2ta2t−1 · · · a1

then becomes
x1x2 · · · xt = x′

tx
′
t−1 · · · x

′
1.

Now, consider any equation

x1, . . . , xn, x
′
1, . . . , x

′
n ∈ G,

such that xi ∼ x′
i for all i = 1, . . . , t. Then, by Lemma 11, there are exactly

|G|
|Ωxi

|
= |CG(xi)| different ways to break each xi into a product a2i−1a2i in such a way that

x′
i = a2ia2i−1. Thus, to each fixed equation

x1x2 · · · xt = x′
tx

′
t−1 · · · x

′
1

corresponds to
|CG(x1)| · |CG(x2)| · · · · · |CG(xt)|

different equations
a1a2 · · · a2t = a2ta2t−1 · · · a1.

Notice that for any fixed elements x1, x2, . . . , xt ∈ G, we can define an element

x′′
1 = (x2x3 · · · xt)

−1x1(x2x3 · · · xt) = x−1
t · · · x−1

3 x−1
2 x1x2x3 · · · xt
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and obtain an equation
x1x2 · · · xt = xtxt−1 · · · x2x

′′
1.

Now, for any general equation

x1x2 · · · xt = x′
tx

′
t−1 · · · x

′
1,

in which xi ∼ x′
i for all i, there exist some elements g1, g2, . . . , gt ∈ G, such that

x′
1 = g1x

′′
1g

−1
1 and, for all i = 2, 3, . . . , t, x′

i = gixig
−1
i .

Thus, if we select and fix elements x1, x2, . . . , xt ∈ G, we will have

|Stab.Prodt(xt, . . . , x2, x
′′
1)|

|CG(xt)| · · · · · |CG(x2)| · |CG(x′′
1)|

different equations
x1x2 · · · xt = x′

tx
′
t−1 · · · x

′
1,

in which x′
i ∼ xi and for all i. Indeed, every ordered t-tuple

(gt, gt−1, . . . , g2, g
′′
1) ∈ Stab.Prodt(xt, . . . , x2, x

′′
1),

by setting x′
i = gixig

−1
i , for all i = t, . . . , 2, and x′1 = g1x

′′
1g

−1
1 , produces an equation

x1x2 · · · xt = x′
tx

′
t−1 · · · x

′
1.

And any two of these equations produced from the equation x1x2 · · · xt = xtxt−1 · · · x2x
′′
1

are identical if, and only if, gi ∈ CG(xi), for all i = t, . . . , 2 and g1 ∈ CG(x
′′). Now,

|CG(x
′′
1)| = |CG(x1)|. Thus, for each fixed ordered t-tuple (x1, x2, . . . , xt) of elements of G

we have
|Stab.Prodt(xt, . . . , x2, x

′′
1)|

|CG(xt)| · · · · · |CG(x2)| · |CG(x1)|

different equations
x1x2 · · · xt = x′

tx
′
t−1 · · · x

′
1.

As we showed above, to each of these equations correspond

|CG(x1)| · |CG(x2)| · · · · · |CG(xt)|

different equations
a1a2 · · · a2t = a2ta2t−1 · · · a1.

Thus to each ordered t-tuple (x1, x2, . . . , xt) of elements of G correspond
|Stab.Prodt(xt, . . . , x2, x

′′
1)| different equations

a1a2 · · · a2t = a2ta2t−1 · · · a1.

Hence, to find
Pr(a1a2 · · · a2t = a2ta2t−1 · · · a1)
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we need to sum |Stab.Prodt(xt, xt−1, . . . x2, x
′′
1)|, as x1, x2, . . . , xt run over all elements of G.

Since x1, x2, . . . , xn run over all the elements of G, and for each fixed x1, . . . , xn−1 there
is a one-to-one correspondence between x′′

1 and x1, the sum remains the same if we sum
|Stab.Prodt(xt, xt−1, . . . , x2, x1)|, as x1, x2, . . . , xt run over all elements of G. That proves
Equation 54.

Now, select and fix an element z in an equivalence class Ωj of G.
Let x1, . . . , xt, x

′
1, . . . , x

′
t ∈ G be such, that xi ∼ x′

i for all i, and

x1x2 · · · xt = z = x′
1x

′
2 · · · x

′
t. (56)

For each i = 1, . . . , t, there are |CG(xi)| different ways to break xi into a product a2i−1a2i so
that a2ia2i−1 = x′

i. Hence, for each (fixed) Equation 56 we have exactly |CG(x1)| · |CG(x2)| ·
· · · · |CG(xt)| different equations

(a1a2)(a3a4) · · · (a2t−1a2t) = x1x2 · · · xt

= z = x′
1x

′
2 · · · x

′
t = (a2a1)(a4a3) · · · (a2ta2t−1).

But,

|CG(x1)| · |CG(x2)| · · · · · |CG(xt)| =
|G|t

|Ω(x1)| · |Ω(x2)| · · · · · |Ω(xt)|
.

Now, for z ∈ Ωj there are ci1,i2,...,it;j(G) different ways to write z as a product x1x2 · · · xt,
where xi ∈ Ωi for all i = 1, . . . , t, and ci1,i2,...,it;j(G) different ways to write z as a product
x′
1x

′
2 · · · x

′
t, where x′

i ∈ Ωi for all i = 1, . . . , t. Thus, for each z ∈ Ωj there are c2i1,i2,...,it;j(G)
different equations of the form

x1x2 · · · xt = z = x′
1x

′
2 · · · x

′
t,

in which xi, x
′
i ∈ Ωi for all i = 1, . . . , t. Thus, for each z ∈ Ωj there are

|G|t ·

c(G)
∑

i1,i2,...,it=1

c2i1,i2,...,it;j(G)

|Ωi1 | · |Ωi2 | · · · · · |Ωit |

different equations of the form

(a1a2)(a3a4) · · · (a2t−1a2t) = z = (a2a1)(a4a3) · · · (a2ta2t−1).

We make z run over all the elements of G and obtain

Pr(a1a2 · · · a2t−1a2t = a2a1 · · · a2ta2t−1) =
1

|G|t
·

c(G)
∑

i1,i2,...,it,j=1

|Ωj| · c
2
i1,i2,...,it;j

(G)

|Ωi1 | · |Ωi2 | · · · · · |Ωit |
.

Since both permutations φ = 〈2t 2t − 1 . . . 1〉 and θ = 〈2 1 4 3 . . . 2t 2t − 1〉 have
exactly one alternating cycle in their cycle graphs Gr(φ) and Gr(θ), Equation 55 follows
from Theorem 68.
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6 Conclusion

In conclusion, we recall two known results. The first result relates Pr2t(G) to the commutator
subgroup G′ and the quotient group G/Z(G), and the second result relates Pr2t(G) to the
notion of isoclinism of groups. We give a counter-example to the opposite direction of the
second result. We conjecture a weaker form of the opposite direction of the second result.
Finally, we give an example, demonstrating that the isoclinism in the second result cannot
be replaced by weak isoclinism. From that it follows that the opposite direction of our
conjecture is false.

Theorem 70. The first result, established by Das and Nath [9], is

lim
t→∞

Pr2t(G) =
1

|G′|
.

Theorem 71. The second result, established by Das and Nath [9] If two finite groups G1

and G2 are isoclinic, then Pr2t(G1) = Pr2t(G2) for all t = 1, 2, . . ..

For example, every two Abelian groups are isoclinic. Clearly, Pr2t(G) = 1 for all t, for
every Abelian group. The dihedral group D8 and the quaternion group Q8, both of order 8,
are isoclinic. As we showed in Example 58, Pr2t(D8) = Pr2t(Q8) for every t ≥ 1.

Now, notice that the opposite direction of the second result is not true. Two finite groups
G1 and G2, for which Pr2t(G1) = Pr2t(G2) for all t = 1, 2, . . ., do not have to be isoclinic.
For example, the groups

G1 =〈a1, a2, a3, a4, a5, a6 : a21 = a4, a
2
4 = a6, a

2
2 = a23 = a25 = a26 = 1,

[a1, a2] = a3, [a1, a3] = [a2, a4] = a5,

[a1, a5] = [a2, a5] = [a3, a5] = [a2, a3] = [a3, a4] = [a2, a6] = [a3, a6] = 1〉

and

G2 =〈a1, a2, a3, a4, a5, a6 : a21 = a22 = a23 = a24 = a25 = a26 = 1,

[a1, a2] = a6, [a1, a3] = [a2, a4] = a5,

[a1, a4] = [a1, a5] = [a1, a6] = [a2, a3] = [a2, a5] = [a2, a6]

= [a3, a4] = [a3, a5] = [a3, a6] = [a4, a5] = [a4, a6] = [a5, a6] = 1〉,

both of the order 64, are not isoclinic, not even weakly isoclinic. Indeed, G1/Z(G1) is a
non-Abelian group of order 16, while G2/Z(G2) is an Abelian group of order 16. The fact
that Pr2t(G1) = Pr2t(G2), for every t ≥ 1, is verifiable by a direct calculation.

From Theorem 70 it follows that, if for two finite groups G1 and G2 we have
Pr2t(G1) = Pr2t(G2) for every t ≥ 1, then |G′

1| = |G′
2|. That motivates the following

conjecture, which, together with |G′
1| = |G′

2|, is a weaker form of the opposite direction of
the second result.
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Conjecture 72. Let G1 and G2 are two finite groups, such that Pr2t(G1) = Pr2t(G2) for
every t ≥ 1. Then |G1/Z(G1)| = |G2/Z(G2)|.

The groups G2 and G3 = D8 × D8 give a counterexample to the opposite direction of
Conjecture 72. Moreover, G′

2 is isomorphic toG′
3|, andG2/Z(G2) is isomorphic toG3/Z(G3)|.

Thus, G2 and G3 are weakly isoclinic. However,
Pr2(G2) =

22
64

6= 25
64

= Pr2(G3). Hence, by Theorem 71, G2 and G3 are not isoclinic.
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