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Abstract

We introduce new natural generalizations of the classical descent and inversion

statistics for permutations, called width-k descents and width-k inversions. These

variations induce generalizations of the excedance and major statistics, providing a

framework in which well-known equidistributivity results for classical statistics are

paralleled. We explore additional relationships among the statistics providing specific

formulas in certain special cases. Moreover, we explore the behavior of these width-k

statistics in the context of pattern avoidance.

1 Introduction

LetSn denote the set of permutations σ = a1 · · · an of [n] = {1, . . . , n}, and letS = S1∪S2∪
· · · . A function st : Sn → N is called a statistic, and the systematic study of permutation
statistics is generally accepted to have begun with MacMahon [6]. In particular, four of
the most well-known statistics are the descent, inversion, major, and excedance statistics,
defined respectively by

desσ = |{i ∈ [n− 1] | ai > ai+1}|

inv σ = |{(i, j) ∈ [n]2 | i < j and ai > aj}|

maj σ =
∑

i∈Desσ

i

exc σ = |{i ∈ [n] | ai > i}|,
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where Desσ = {i ∈ [n− 1] | ai > ai+1}.
Given any statistic st, one may form the generating function

F st
n (q) =

∑

σ∈Sn

qstσ.

A famous result due to MacMahon [6] states that F des
n (q) = F exc

n (q), and that both are equal
to the Eulerian polynomial An(q). The Eulerian polynomials themselves may be defined via
the identity

∑

j≥0

(1 + j)nqj =
An(q)

(1− q)n+1
.

Another well-known result, due to MacMahon [5] and Rodrigues [7], states that F inv
n (q) =

Fmaj
n (q) = [n]q!. Foata famously provided combinatorial proofs of the equidistributivity of

each; Lothaire [4] gives a treatment of these. Thus any statistic st for which F st
n (q) = An(q)

is called Eulerian, and if F st
n (q) = [n]q! then st is called Mahonian. These four statistics

have many generalizations; in this article, we discuss new variations, induced from a simple
generalization of des.

For each of the following definitions, we assume n ∈ Z>0, k ∈ [n − 1], ∅ 6= K ⊆ [n − 1],
and σ = a1a2 · · · an ∈ Sn. We define a width-k descent of σ to be an index i ⊆ [n − k] for
which ai > ai+k. Thus the width-1 descents are the usual descents of a permutation. Let

Desk(σ) = {i ∈ [n− k] | ai > ai+k}

denote the set of all width-k descents of σ, and set

desk(σ) = |Desk(σ)|.

If one is interested in descents of σ of various widths, first let K ⊆ [n− 1] denote the set
of widths under consideration. Then, define DesK(σ) to be the multiset

⋃

k∈K Desk(σ), and
desK(σ) = |DesK(σ)|.

Now, define a width-k inversion of σ to be a pair (i, j) for which ai > aj and j − i = mk
for some positive integer m. Let

Invk(σ) = {(i, j) ∈ [n]2 | ai > aj and j − k = mk, k ∈ Z}

denote the set of width-k inversions of σ, and set

invk(σ) = | Invk(σ)|.

Again, one may be interested in width-k inversions for multiple values of k, so for K ⊆ [n−1]
define InvK(σ) =

⋃

k∈K Invk(σ). Additionally, let invK(σ) = | InvK(σ)|.

Example 1. If σ = 4136572, then

Des{2,3}(σ) = {1, 4, 5} and Inv{2,3}(σ) = {(1, 3), (1, 7), (3, 7), (4, 7), (5, 7)}.

Thus, des{2,3}(σ) = 3, inv{2,3}(σ) = 5.
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As we will see in the next section, the above definitions motivate us to generalize exc
and maj in such a way that well-known known relationships among des, inv,maj, exc are
paralleled. However, it is not very convenient to work with excK and majK directly. So, this
paper will focus much more on desK and invK .

The main focus of this paper is to explore these new statistics and their relationships
among each other. While they are well-behaved for special cases of K ⊆ [n − 1], formulas
for more general cases have been more elusive. Section 3 continues this exploration by
considering the same statistics for classes of permutations avoiding a variety of patterns.

2 Main results

We begin with simple expressions for desK(σ) and invK(σ) for a fixed σ ∈ Sn. First, we
point out that if K ⊆ [n − 1], j ∈ K and ij ∈ K for some positive integer i, then for any
σ ∈ Sn, invK(σ) = invK\{ij}(σ). This occurs because for any k ∈ [n− 1], invk(σ) counts all
descents whose widths are multiples of k. Thus ij is already accounted for in invK\{ij}(σ).
This follows quickly from the definitions of invk and desk.

Proposition 2. For any nonempty K ⊆ [n− 1],

invK(σ) =
∑

∅(K′⊆K

(−1)|K
′|+1 invlcm(K′)(σ),

where we set invlcm(K′)(σ) = 0 if lcm(K ′) ≥ n.

Proof. We first consider the case where K = {k}. The elements of Invk(σ) are pairs of the
form (i, i + jk) for some positive integer j. Such an element exists if and only if there is a
width-(jk) descent of σ at i. Thus, invk(σ) simply counts the number of width-jk descents
of σ for all possible j. This leads to the equality

invk(σ) =
∑

j≥1

desjk(σ).

The formula for general K then follows from inclusion-exclusion: by adding the number of all
width-k inversions for all k ∈ K, we are twice counting any instances of a width-lcm(k1, k2)
inversion since such an inversion is also of widths k1 and k2. If K contains three distinct
elements k1, k2, k3, then lcm(k1, k2, k3) would have been added three times (once for each
invki(σ)) and subtracted three times (once for each inv{ki,kj}(σ), i < j), so it must be added
again for the sum. Extending this argument to range over larger subsets of K results in the
claimed formula.

Example 3. Let us return to σ = 4136572. We saw from Example 1 that inv{2,3}(σ) = 5,
where four inversions have width 2 and two have width 3. But since the inversion (1, 7) has
width both 2 and 3, it must also have width lcm(2, 3) = 6. So, it contributes two summands
of 1 and one summand of −1.
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We come now to a function which helps demonstrate the interactions among the width-k
statistics. Let n and k be positive integers for which n = dk + r for some d, r ∈ Z with
0 ≤ r < k. To each σ = a1 · · · an ∈ Sn we may then associate the set of disjoint substrings
βn,k(σ) = {β1

n,k(σ), . . . , β
k
n,k(σ)} where

βi
n,k(σ) =

{

aiai+kai+2k · · · ai+dk, if i ≤ r;

aiai+kai+2k · · · ai+(d−1)k, if r < i < k.

Now, define
φ : Sn → S

r
d+1 ×S

k−r
d

by setting φ(σ) = (std β1
n,k(σ), . . . , std β

k
n,k(σ)), where std is the standardization map, that is,

the permutation obtained by replacing the smallest element of σ with 1, the second-smallest
element with 2, etc. Note in particular that each std βi

n,k(σ) is a permutation of [d + 1] or
[d].

Example 4. Suppose that σ = 829317645, suppose k = 4. We then have

β9,4(σ) = (std β1
9,4(σ), std β

2
9,4(σ), std β

3
9,4(σ), std β

4
9,4(σ))

= (std 815, std 27, std 96, std 34)

= (312, 12, 21, 12).

The first of the identities in the following proposition was originally established by Sack
and Úlfarsson [8], though with slightly different notation. We provide an alternate proof and
extend their result to width-k inversions.

Theorem 5. Let n and k be positive integers such that n = dk+ r, where 0 ≤ r < k, and let

Ai(q) denote the ith Eulerian polynomial. Also let Mn,k denote the multinomial coefficient

Mn,k =

(

n

(d+ 1)∗r, d∗(k−r)

)

where i∗j indicates i repeated j times. We then have the identities

F desk
n (q) = Mn,kA

r
d+1(q)A

k−r
d (q)

F invk
n (q) = Mn,k[d+ 1]rq![d]

k−r
q !

Proof. Let k ∈ [n − 1] and consider φ defined above. Note that φ is an Mn,k-to-one func-
tion since, given (σ1, . . . , σk) ∈ S

r
d+1 × S

k−r
d , there are Mn,k ways to partition [n] into the

subsequences βi
n,k(σ) such that std βi

n,k(σ) = σi for all i. Also note that

desk(σ) =
k
∑

i=1

des(std βi
n,k(σ)).
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Thus,

F desk
n (q) =

∑

σ∈Sn

qdesk σ

= Mn,k







∑

(σ1,...,σk)∈S
r
d+1×S

k−r
d

qdesσ1 · · · qdesσk







= Mn,kA
r
d+1(q)A

k−r
d (q).

This proves the first identity.
The second identity follows completely analogously, with the main modification being

that an element of Invk(σ) corresponds to a usual inversion in some unique std βj

n,k(σ).

We note that the sequences of coefficients of F des2
n (q) appear as OEIS sequence A180887.

No other nontrivial choice of k appears to have been studied before, for either desk for invk.
Given desK and invK , one must wonder what the corresponding generalizations of exc

and maj are whose relationships with desK and invK parallel that of the classical statistics.
To do this, we define the multiset

ExcK(σ) =
⋃

k∈K

k
⊎

i=1

{{⌈j/k⌉ ∈ [n− 1] | ⌈j/k⌉ ∈ Exc(std βi
n,k(σ))}}

and set excK(σ) = |ExcK(σ)|, and also set

majK(σ) =
∑

k∈K

∑

i∈Desk(σ)

⌈

i

k

⌉

.

We could equivalently state that

majK(σ) =
∑

k∈K

k
∑

i=1

maj(std βi
n,k(σ)) and excK(σ) =

∑

k∈K

k
∑

i=1

exc(std βi
n,k(σ)).

These are exactly the definitions needed in order to obtain identities that parallel F des
n (q) =

F exc
n (q) and F inv

n (q) = Fmaj
n (q), as we will soon see.

One important distinction to make between exc and excK is the following. If σ =
a1a2 · · · an and τ = b1b2 · · · bn, then even if ai = bi for some i, one cannot say i ∈ ExcK(σ) if
and only if i ∈ ExcK(τ). For example, if σ = 4136572, then 1 ∈ Exc2(σ), but if τ = 4153627
then 1 /∈ Exc2(τ).

Example 6. Again let σ = 4136572. We then have

exc{2,3}(σ) = |{{1, 3, 1, 2}}| = 4

and

maj{2,3}(σ) =

⌈

1

2

⌉

+

⌈

5

2

⌉

+

⌈

4

3

⌉

= 6.
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k G6,k(q) G8,k(q) G9,k(q)

1 6A5(q) 8A7(q) 9A9(q)

2 180A2(q)
2 1120A3(q)

2 9q−1A9(q)

3 6! 8q−2A7(q) 45360A2(q)
3

4 180q−2A2(q)
2 8! 9q−3A9(q)

5 6q−4A5(q) 8q−4A7(q) 9q−4A9(q)

6 1120q−4A3(q)
2 45360q−3A2(q)

3

7 8q−6A7(q) 9q−6A9(q)

8 9q−7A9(q)

Table 1: The polynomials Gn,k(q) for n = 6, 8, 9 and 1 ≤ k ≤ n.

By constructing a nearly identical argument as in the proof Theorem 5, and using the
facts that F des

n (q) = F exc
n (q) and F inv

n (q) = Fmaj
n (q), we have the following corollary.

Corollary 7. The identities F desk
n (q) = F exck

n (q) and F invk
n (q) = F

majk
n (q) hold.

Now that we have established the analogous parallels between the four classical statistics
and their width-k counterparts, we wish to explore what other structure is present. A simple
proposition relates desk and invk when k is large.

Corollary 8. For all k ≥ n/2, F desk
n (q) = F invk

n (q).

Proof. Since k ≥ n/2, the sets βi
n,k(σ) contain at most two elements. So, width-k descents

and width-k inversions of σ are identical.

We now show that interesting behavior occurs when considering the function

Gn,k(q) =
∑

σ∈Sn

qdesk(σ)−desn−k(σ).

According to computational data, the following conjecture holds for all n ≤ 9 and 1 ≤ k < n
for which gcd(k, n) = 1.

Conjecture 9. If gcd(k, n) = 1, then Gn,k(q) = nq1−kAn−1(q).

Several illustrative polynomials are given in Table 2. This does not hold more generally,
and it would be interesting to determine if a general formula exists.

Question 10. For which values of n, k does there exist a closed formula for Gn,k(q), and
what is the formula?
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3 Pattern avoidance

We say that a permutation σ ∈ Sn contains the pattern π ∈ Sm if there exists a subsequence
σ′ of σ such that std(σ′) = π. If no such subsequence exists, then we say that σ avoids the

pattern π. If Π ⊆ S, then we say σ avoids Π if σ avoids every element of Π. Let Avn(Π)
denote the set of all permutations of Sn avoiding Π. In a mild abuse of notation, if Π = {π},
we will write Avn(π).

In this section, we consider the functions

F st
n (Π; q) =

∑

σ∈Avn(Π)

qstσ,

which specializes to F st
n (q) if Π = ∅. In most instances, F desk

n will be the main focus, but
F desK
n and F invk

n will also make appearances.
An important concept within pattern avoidance is that of Wilf equivalence. Two sets

Π,Π′ ⊂ S are said to be Wilf equivalent if |Avn(Π)| = |Avn(Π
′)| for all n. In this case,

we write Π ≡ Π′ to denote this Wilf equivalence, which is indeed an equivalence relation.
For example, independent work of MacMahon and Knuth [3, 6] show that that whenever
π, π′ ∈ S3, then |Avn(π)| = |Avn(π

′)| = Cn, where

Cn =
1

n+ 1

(

2n

n

)

is the nth Catalan number.
Proving whether Π ≡ Π′ is often quite difficult, and their Wilf equivalence does not imply

that F st
n (Π; q) = F st

n (Π′; q). However, in some instances, the problems of establishing these
identities have straightforward solutions by applying basic transformations on the elements
of the avoidance classes. Given π = a1 · · · an ∈ Sm, let π

r denote its reversal and πc denote
its complement, respectively defined by

πr = amam−1 · · · a1 and πc = (m+ 1− a1)(m+ 1− a2) · · · (m+ 1− am).

Similarly, given Π ⊆ S, we let

Πr = {πc | π ∈ Π} and Πc = {πr | π ∈ Π}

be the reversal and complement of Π, respectively.
Our results of this section begin with a multivariate generalization of F st

n (Π; q), and with
showing how its specializations describe relationships among Π,Πr, and Πc.

Definition 11. Fix Π ⊆ S. Define

Tn(Π; t1, . . . , tn−1) =
∑

σ∈Avn(Π)

n−1
∏

k=1

t
desk(σ)
k .
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The function Tn specializes to F desK
n (Π; q) by setting ti = q for i ∈ K and ti = 1 for all

i /∈ K. We can also recover F invK
n (Π; q) from Tn by setting ti = q whenever i ∈ [n− 1] ∩ kZ

for some k ∈ K, and setting ti = 1 otherwise. Additionally, when Π = {π}, a nice duality
appears, providing a mild generalization of [1, Lemma 2.1].

Proposition 12. For any Π ⊆ S, let Π′ denote either Πr or Πc. We then have

Tn(Π
′; t1, . . . , tn−1) = tn−1

1 tn−2
2 · · · tn−1Tn(Π; t

−1
1 , . . . , t−1

n−1).

Consequently,

Tn((Π
r)c; t1, . . . , tn−1) = Tn(Π; t1, . . . , tn−1).

Proof. It is enough to prove the claim when the set of patterns being avoided is {π} for
some π ∈ Sm, since the full result follows by applying the argument to all elements of Π
simultaneously.

First consider when π′ = πc and σ ∈ Avn(π). Because σ ∈ Avn(π) if and only if
σc ∈ Avn(π

c), we have that for each k, i ∈ Desk(σ) if and only if i /∈ Desk(σ
c). This implies

Desk(σ
c) = [n− k] \Desk(σ), hence desk(σ

c) = n− k − desk(σ). So,

Tn(π
c; t1, . . . , tn−1) =

∑

σ∈Avn(πc)

n−1
∏

k=1

t
desk(σ)
k

=
∑

σ∈Avn(π)

n−1
∏

k=1

t
desk(σ

c)
k

=
∑

σ∈Avn(π)

n−1
∏

k=1

t
n−k−desk(σ)
k

= tn−1
1 tn−2

2 · · · tn−1Tn(π; t
−1
1 , . . . , t−1

n−1).

Proving that the result holds for π′ = πr follows similarly.
The second identity in the proposition statement holds by applying the first identity

twice: first for Πr and then for Πc.

The above identities significantly reduce the amount of work needed to study F desK
n (Π; q)

for all Π ⊆ Sn. For the remainder of this paper, we systematically approach Π for |Π| ≤ 2.

3.1 Avoiding singletons

By Proposition 12, we immediately get

F desk
n (123; q) = qn−kF desk

n (321; q−1)

and
F desk
n (132; q) = F desk

n (213; q) = qn−kF desk
n (231; q−1) = qn−kF desk

n (312; q−1).
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So, studying F desk
n (π; q) for π ∈ S3 reduces to studying the function for a choice of one

pattern from {123, 321} and one from the remaining patterns. For some choices of Π, the
permutations in Avn(Π) are especially highly structured, which leads to similar arguments
throughout the rest of this paper.

We begin with π = 312. Notice that if a1 · · · an ∈ Avn(312) and ai = 1, then we know
std(a1 · · · ai−1) ∈ Avi−1(312), std(ai+1 · · · an) ∈ Avn−i(312), and

max{a1, . . . , ai−1} < min{ai+1, . . . , an}.

Proposition 13. For all n,

F desk
n (312; q) =

k
∑

i=1

Ci−1F
desk
n−i (312; q) +

n
∑

i=k+1

qF desk
i−1 (312; q)F desk

n−i (312; q)

where Ci is the ith Catalan number.

Proof. First consider when σ = a1 · · · an ∈ Avn(312) and ai = 1 for some i ≤ k. By the
discussion preceding this proposition, j /∈ Desk(σ) for any j ≤ i. So, none of the Ci−1 possible
permutations that make up std(a1 · · · ai−1) contribute to desk(σ). The only contributions to
desk(σ) come from std(ai+1 · · · an) ∈ Avn−i(312; q). The overall contribution to F desk

n (312; q)
is the second summand of the identity.

Now suppose ai = 1 for some i > k. Each choice of a1 · · · ai, contributes to desk(σ) as
usual, but there will be an additional width-k descent produced at i − k. The elements
ai+1 · · · an contribute to desk(σ) as before. The overall contribution to F desk

n (312; q) is the
first summand of the identity. Since we have considered all possible indices i for which we
could have ai = 1, we add the two cases together and are done.

Note that when we set q = 1, the above recursion specializes to the well-known recur-
sion for Catalan numbers Cn+1 =

∑n

i=0 CiCn−i. For more about the Catalan numbers see
A000108. Also, when k = 1, the coefficients of F desk

n (312; q) are the Narayana numbers,
appearing in the OEIS as sequence A001263. The sequence of coefficients of the polyno-
mials F desn−1

n (312; q) appear as A026008, where the coefficients are listed with the degree-1
summand first and then the constant term second.

We can use the previous proposition in conjunction with Proposition 12 to produce
formulae for F desk

n (Π; q) and F invk
n (Π; q) whenever Π is a single element of S3 other than

123 or 321. The only nontrivial work required, then, is to compute the degrees of the two
polynomials.

Corollary 14. For all n,

degF desk
n (312; q) = n− k and degF invk

n (312; q) =
n−k
∑

i=1

⌊

n− i

k

⌋

.
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Proof. The degrees of the above polynomials are given by identifying a permutation in
Avn(312) with the most possible descents. This is satisfied by n(n − 1) · · · 21 ∈ Avn(312)
which has n− k descents of width k. Determining the number of width-k inversions in this
permutation is done similarly.

Although 321 is Wilf equivalent to 312, it is not so obvious how to construct a recurrence
relation for F desk

n (321; q) in general. In the special case of k = 1, the coefficients are given
by sequence A166073, but the coefficients for other k are not easily identifiable. To help
describe the elements of Avn(321), first let σ = a1 · · · an ∈ S and call ai a left-right maximum

if ai > aj for all j < i. Thus σ ∈ Avn(321) if and only if its set of non-left-right maxima form
an increasing subsequence of σ. Indeed, if the non-left-right maxima did contain a descent,
then there would be some left-right maximum preceding both elements, which violates the
condition that σ avoid 321. Despite such a description, using it to reveal F desk

n (321; q) has
thus far been unsuccessful. So, we leave the following as an open question.

Question 15. Is there a closed formula or simple recursion for F desk
n (321; q) (equivalently,

for F desk
n (123; q))?

3.2 Avoiding doubletons

At this point, we begin studying the functions F desk
n (Π; q) when avoiding doubletons from

S3. Recall that, by the Erdős-Szekeres theorem [2], there are no permutations in Sn for
n ≥ 5 that avoid both 123 and 321. Thus, we will not consider this pair. Additionally, the
functions F invk

n (Π; q) are quite unwieldy, so we will not consider these either.
For our first nontrivial example, we begin with {123, 132}. Permutations a1 · · · an ∈

Avn(123, 132) have the following structure: for any i = 1, . . . , n, if ai = n, then the substring
a1a2 · · · ai−1 is decreasing and consists of the elements from the interval [n − i + 1, n − 1].
Additionally, the substring ai+1 · · · an is an element of Avn−i(123, 132). This structure makes
it easy to show that there are 2n−1 elements of Avn(123, 132) [9].

Proposition 16. For all n and 1 ≤ k ≤ n− 1,

F desk
n (123, 132; q) =

k
∑

i=1

qmin(i,n−k)F desk
n−i (123, 132; q)

+
n−k
∑

i=k+1

qmin(i−1,n−k−1)F desk
n−i (123, 132; q)

+2n−max(k+1,n−k+1)qn−k−1.

Proof. Let σ = a1 · · · an ∈ Avn(123, 132; q). If ai = n for i ≤ k, then it is clear from the
preceding description of the elements in Avn(123, 132) that all of 1, . . . ,min(i, n − k) are
elements of Desk(σ). If j > n − k for some j, then j /∈ Desk(σ) since aj+k does not exist.
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The remaining elements of Desk(σ) arise as a width-k descent of ai+1 · · · an, which accounts
for the factor of F desk

n−i (123, 132; q) in the first summand.
Now, if k + 1 ≤ n− k and ai = n for i = k + 1, . . . , n− k, then every element of 1, . . . , i

except i−k is an element of Desk(σ). If k+1 > n−k, then the second summand is empty and
nothing is lost by continuing to the case of ai = n for i ≥ max(k + 1, n− k + 1). Again, the
remaining elements of Desk(σ) are the width-k descents of ai+1 · · · an, hence the additional
factor of F desk

n−i (123, 132; q). This accounts for the second summand.
Finally, let m = max(k + 1, n − k + 1). If ai = n for i ≥ m, then all of 1, . . . , n − k are

descents except i− k, and these are the only possible width-k descents. In particular, none
of i+ 1, i+ 2, . . . , n can be the index for a width-k descent. This leads to the sum

n
∑

i=m

qn−k−1|Avn−i(123, 132)| =

(

1 +
n−1
∑

i=m

2n−i−1

)

qn−k−1 = 2n−mqn−k−1,

which accounts for the third summand.

Again, the sequence of coefficients for k = 1 has appeared already, this time as sequence
A109446, but the sequences for nontrivial k > 1 appear to be entirely unstudied.

Next, we consider {123, 312}. We proceed similarly as before but with some minor
differences, reflecting the new structure we encounter. If σ = a1 · · · an ∈ Avn(123, 312) and
ai = 1 for some i < n, then σ is of the form

σ = i(i− 1) · · · 21n(n− 1) · · · (i+ 2)(i+ 1),

since neither subsequence a1 · · · ai−1 and ai+1 · · · an may contain an ascent. If an = 1, though,
then std(a1 · · · an−1) ∈ Avn−1(123, 312).

Proposition 17. For all n and 1 ≤ k < n,

F desk
n (123, 312; q) =

k
∑

i=1

qmax(0,n−k−i) +
n−1
∑

i=k+1

qmax(n−2k,i−k)

+qF desk
n−1 (123, 312; q)

Proof. Suppose ai = 1 for some i ≤ k. Using the description of elements in Avn(123, 312),
we know there are n− k − i width-k descents. Since there is only one such permutation for
each i, we simply add all of the qn−k−i, so long as n− k − i ≥ 0. If this inequality does not
hold, then there are no width-k descents in this range. This accounts for the first summand.

The second summand is computed very similarly to that of the second summand in
Proposition 16. The final summand is a direct result of noting that when an = 1, then
(a1 − 1) · · · (an−1 − 1) may be any element of Avn−1(123, 312; q), which accounts for the
factor F desk

n−1 (123, 312; q). For each of these choices, we know n − k ∈ Desk(σ), hence the
factor of q. Adding the sums results in the identity claimed.
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Now we consider {132, 231}. Note that if a1 · · · an ∈ Avn(132, 231), then ai 6= n for any
1 < i < n. If a1 = n, then std(a2 · · · an) ∈ Avn−1(132, 231), and similarly if an = n. Once
again, this allows us to quickly compute that |Avn(132, 231)| = 2n−1.

Proposition 18. Let K = {k1, . . . , kl} be a nonempty subset of [n− 1] whose elements are

listed in increasing order. We then have

F desK
n (132, 231; q) =

l+1
∏

i=1

(1 + qi−1)ki−ki−1

where k0 = 1 and kl+1 = n.

Proof. It follows from the description of elements in Avn(132, 231) that there are two sum-
mands in a recurrence for F desK

n (132, 231; q): one corresponding to a1 = n and one corre-
sponding to an = n. When a1 = n, then there are |K| = l copies of 1 ∈ DesK(σ); if an = n,
then an makes no contribution to DesK(σ). Thus, by deleting n from σ, we get the recurrence

F desK
n (132, 231; q) = (1 + ql)F desK

n−1 (132, 231; q).

Repeating this, a factor of 1 + ql appears until we get to

F desK
n (132, 231; q) = (1 + ql)n−klF desK

kl
(132, 231; q).

At this point, note that

F desK
kl

(132, 231; q) = F
desK\{kl}

kl
(132, 231; q).

Repeating the previous argument ends up with the identity claimed.

Next, consider {132, 213}. If σ = a1 · · · an ∈ Avn(132, 213), then if ai = n for any i, then
a1 · · · ai−1 must be increasing in order to avoid 213. Moreover,

max(ai+1, · · · , an) < a1

in order to avoid 132, and std(ai+1 · · · an) ∈ Avn−i(132, 213).

Proposition 19. For all n and 1 ≤ k < n,

F desk
n (132, 213; q) =

k
∑

i=1

qmin(i,n−k)F desk
n−i (132, 213; q)

+
n−k
∑

i=k+1

qmin(k,n−i)F desk
n−i (132, 213; q)

+
n
∑

i=max(k+1,n−k+1)

qn−iF desk
n−i (132, 213; q).
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Proof. The proof of this is entirely analogous to the proof of Proposition 16.

In this case, when k = 2, the sequence of coefficients as n grows is the sequence A208343.
No other nontrivial choice of k appears to have been previously studied. Additionally, for
all remaining choices of Π we consider, the instances of previously-studied sequences appear
to be only when k = 1.

Next, we consider {132, 312}. For each i = 1, . . . , n−1, either ai+1 = max{a1, . . . , ai}+1
or ai+1 = min{a1, . . . , ai} − 1. This doubleton often results in especially pleasant formulas,
and our results are no exception.

Proposition 20. Let K = {k1, . . . , kl} be a nonempty subset of [n− 1] whose elements are

listed in increasing order. We then have

F desK
n (132, 312; q) =

l+1
∏

i=1

(1 + qi−1)ki−ki−1

where k0 = 1 and kl+1 = n.

Proof. From the description of elements σ = a1 · · · an ∈ Avn(132, 312), we know that either
an = 1 or an = n. In the former case, n − k ∈ DesK(σ) for each k ∈ K, and in the latter
case, n− k /∈ DesK(σ) for each k ∈ K. This leads to the recurrence

F desK
n (132, 312; q) = (1 + ql)F desK

n−1 (132, 312; q).

Following an analogous argument as in the proof of Proposition 18 obtains the result.

From the general formula given above, we are able to quickly determine F invk
n (132, 312; q).

Corollary 21. For fixed n, k, write n = dk + r for unique nonnegative integers d, r such

that 0 ≤ r < k. We then have

F invk
n (132, 312; q) = F invk

n (132, 231; q) = 2k−1(1 + qd)r
d−1
∏

i=1

(1 + qi)k.

Proof. This is a direct consequence of the general formulas from Propositions 18 and 20, and
recalling that

F invk
n (Π; q) = F

des[n−1]∩kZ

n (Π; q).
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