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Abstract

Let q > 2 be a prime number and define λq :=
(

τ
q

)

where τ(n) is the number

of divisors of n and
(

·
q

)

is the Legendre symbol. When τ(n) is a quadratic residue

modulo q, then the convolution (λq ⋆ 1) (n) could be close to the number of divisors of
n. The aim of this work is to compare the mean value of the function λq ⋆1 to the well
known average order of τ . A bound for short sums in the case q = 5 is also given, using
profound results from the theory of integer points close to certain smooth curves.

1 Introduction and main result

If Ω(n) stands for the number of total prime factors of n and λ = (−1)Ω is the Liouville
function, then

L(s, λ) =
ζ(2s)

ζ(s)
(σ > 1) .

This implies the convolution identity
∑

n6x

(λ ⋆ 1) (n) =
⌊

x1/2
⌋

,

where, as usual, F ⋆ G is the Dirichlet convolution product of the arithmetic functions F
and G given by

(F ⋆ G)(n) :=
∑

d|n
F (d)G(n/d).
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Define λ3 :=
(

τ
3

)

where τ(n) is the number of divisors of n and
( ·
3

)

is the Legendre
symbol. Then from Proposition 3 below

L(s, λ3) =
ζ(3s)

ζ(s)
(σ > 1) ,

implying the convolution identity
∑

n6x

(λ3 ⋆ 1) (n) =
⌊

x1/3
⌋

.

Now let q > 2 be a prime number and define λq :=
(

τ
q

)

where
(

·
q

)

is the Legendre

symbol. Our main aim is to investigate the sum
∑

n6x

(λq ⋆ 1) (n).

When τ(n) is a quadratic residue modulo q, one may wonder if (λq ⋆ 1) (n) has a high prob-
ability to be equal to the number of divisors of n. Note that this function is multiplicative,

and, for any prime p, (λq ⋆ 1) (p) = 1 +
(

2
q

)

. Consequently, when 2 is a quadratic residue

modulo q, then (λq ⋆ 1) (n) = τ(n) for all squarefree numbers n. On the other hand, when 2
is a quadratic nonresidue modulo q, then (λq ⋆ 1) (n) = 0 unless n = 1 or n is squarefull, so
that

∑

n6x (λq ⋆ 1) (n) ≪ x1/2 in this case. It then could be interesting to compare this sum
to the average order of the function τ , i.e.,

∑

n6x

τ(n) = x (log x+ 2γ − 1) +O
(

xθ+ε
)

, (1)

where
1
4
6 θ 6

131
416

, (2)

the left-hand side being established by Hardy [5], the right-hand side being the best estimate
to date due to Huxley [6].

To state our first main result, some specific notation are needed. For any prime q > 3,

let cq, respectively dq, be least positive integer m ∈ {1, . . . , q − 2} for which
(

m
q

)

6=
(

m+1
q

)

,

respectively
(

m
q

)

6= −
(

m+1
q

)

. Note that cq and dq are well-defined, since it is known from

[3, p. 75-76] that the number of m for which
(

m
q

)

=
(

m+1
q

)

and
(

m
q

)

= −
(

m+1
q

)

are

respectively 1
2
(q − 3) and 1

2
(q − 1). Hence there is at least 1

2
(q − 3) integers m for which

(

m
q

)

6= ±
(

m+1
q

)

. For convenience, set d3 = 3.

As usual in number theory, we adopt Riemann’s notation s = σ + it ∈ C and ζ is the
Riemann zeta function, and define the Euler products

Pq(s) :=
∏

p



1 +

q−1
∑

m=cq

((

m+ 1

q

)

−
(

m

q

))

1

pms





(

σ > 1
cq

)

,
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and

Rq(s) :=
∏

p

(

1 +

q−1
∑

m=3

((

m+ 1

q

)

+

(

m

q

))

1

pms

)

(

σ > 1
3

)

.

Theorem 1. Let q > 3 be a prime number.

(a) If q ≡ ±1 (mod 8)

∑

n6x

(λq ⋆ 1) (n) = xζ(q)Pq(1)

(

log x+ 2γ − 1 + q
ζ ′

ζ
(q) +

P ′
q

Pq

(1)

)

+Oq,ε

(

xmax(1/cq ,θ)+ε
)

,

where θ is defined in (1) and (2).

(b) If q ≡ ±11 (mod 24)

∑

n6x

(λq ⋆ 1) (n) = x1/2ζ
(

q
2

)

Rq

(

1
2

)

+Oq,ε

(

x1/3+ε
)

.

(c) If q ≡ ±5 (mod 24), there exists c > 0 such that

∑

n6x

(λq ⋆ 1) (n) ≪q x
1/2e−c(log x1/4)

3/5
(log log x1/4)

−1/5

.

Furthermore, if the Riemann hypothesis is true, then for x sufficiently large

∑

n6x

(λq ⋆ 1) (n) ≪q,ε x
1/4e(log

√
x)

1/2
(log log

√
x)5/2+ε

.

Example 2.

∑

n6x

(λ7 ⋆ 1) (n)
.
= 0.454x (log x+ 2γ + 0.784) +Oε

(

x1/2+ε
)

.

∑

n6x

(λ23 ⋆ 1) (n)
.
= 0.899x (log x+ 2γ − 0.678) +Oε

(

x131/416+ε
)

.

∑

n6x

(λ13 ⋆ 1) (n)
.
= 1.969x1/2 +Oε

(

x1/3+ε
)

.

∑

n6x

(λ5 ⋆ 1) (n) ≪ x1/2e−c(log x1/4)
3/5
(log log x1/4)

−1/5

.
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2 Notation

In what follows, x > e4 is a large real number, ε ∈
(

0, 1
4

)

is a small real number which does

not need to be the same at each occurrence, q always denotes an odd prime number,
(

·
q

)

is

the Legendre symbol and

λq :=

(

τ

q

)

,

where τ(n) :=
∑

d|n 1. Also, 1 is the constant arithmetic function equal to 1.

For any arithmetic functions F and G, L(s, F ) is the Dirichlet series of F , and F−1 is
the Dirichlet convolution inverse of F . If r ∈ Z>2, then

ar(n) :=

{

1, if n = mr;

0, otherwise.

For some c > 0, set

δc(x) := e−c(log x)3/5(log log x)−1/5

and ω(x) := e(log x)
1/2(log log x)5/2+ε

.

Finally, let M(x) and L(x) be respectively the Mertens function and the summatory
function of the Liouville function, i.e.

M(x) :=
∑

n6x

µ(n) and L(x) :=
∑

n6x

λ(n).

3 The Dirichlet series of λq

Proposition 3. Let q > 3 be a prime number. For any s ∈ C such that σ > 1

⊲ If q ≡ ±1 (mod 8)

L (s, λq) = ζ(qs)ζ(s)
∏

p



1 +

q−1
∑

m=cq

((

m+ 1

q

)

−
(

m

q

))

1

pms



 .

⊲ If q ≡ ±3 (mod 8)

L (s, λq) =
ζ(qs)ζ(2s)

ζ(s)

∏

p



1 +

q−1
∑

m=dq

((

m+ 1

q

)

+

(

m

q

))

1

pms



 .

4



Proof. Set χq :=
(

·
q

)

for convenience. From [8, Lemma 2.1], we have

L (s, λq) =
∏

p

(

1 +
∞
∑

α=1

χq(α + 1)

psα

)

=
∏

p

(

1 + ps
∞
∑

α=2

χq(α)

psα

)

=
∏

p

(

1 + ps

(

(

1− 1

pqs

)−1 q−1
∑

m=1

(

m

q

)

1

pms
− p−s

))

=
∏

p

(

(

1− 1

pqs

)−1 q−1
∑

m=1

(

m

q

)

1

p(m−1)s

)

= ζ(qs)
∏

p

(

1 +

q−1
∑

m=2

(

m

q

)

1

p(m−1)s

)

.

If q ≡ ±1 (mod 8), then
(

2
q

)

= 1 and

L (s, λq) = ζ(qs)ζ(s)
∏

p

(

1− 1

ps
+

(

1− 1

ps

) q−1
∑

m=2

(

m

q

)

1

p(m−1)s

)

,

where

(

1− 1

ps

) q−1
∑

m=2

(

m

q

)

1

p(m−1)s
=

q−1
∑

m=2

(

m

q

)(

1

p(m−1)s
− 1

pms

)

=

q−2
∑

m=1

(

m+ 1

q

)

1

pms
−

q−1
∑

m=2

(

m

q

)

1

pms

=

(

2

q

)

1

ps
+

q−1
∑

m=2

((

m+ 1

q

)

−
(

m

q

))

1

pms
−
(

q

q

)

1

p(q−1)s

=

q−1
∑

m=2

((

m+ 1

q

)

−
(

m

q

))

1

pms
+

1

ps
.

Similarly, if q ≡ ±3 (mod 8), then
(

2
q

)

= −1 and

L (s, λq) =
ζ(qs)ζ(2s)

ζ(s)

∏

p

(

1 +
1

ps
+

(

1 +
1

ps

) q−1
∑

m=2

(

m

q

)

1

p(m−1)s

)

,
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where

(

1 +
1

ps

) q−1
∑

m=2

(

m

q

)

1

p(m−1)s
=

q−1
∑

m=2

(

m

q

)(

1

p(m−1)s
+

1

pms

)

=

q−2
∑

m=1

(

m+ 1

q

)

1

pms
+

q−1
∑

m=2

(

m

q

)

1

pms

=

(

2

q

)

1

ps
+

q−1
∑

m=2

((

m+ 1

q

)

+

(

m

q

))

1

pms
−
(

q

q

)

1

p(q−1)s

=

q−1
∑

m=2

((

m+ 1

q

)

+

(

m

q

))

1

pms
− 1

ps
.

We achieve the proof noting that, if q ≡ ±1 (mod 24), then
(

3
q

)

−
(

2
q

)

=
(

4
q

)

−
(

3
q

)

= 0

and, similarly, if q ≡ ±11 (mod 24), then
(

3
q

)

+
(

2
q

)

= 0 whereas
(

4
q

)

+
(

3
q

)

= 2.

4 Proof of Theorem 1

4.1 The case q ≡ ±1 (mod 8)

For σ > 1, we set

Gq(s) = ζ(qs)
∏

p



1 +

q−1
∑

m=cq

((

m+ 1

q

)

−
(

m

q

))

1

pms



 = ζ(qs)Pq(s) :=
∞
∑

n=1

gq(n)

ns
.

This Dirichlet series is absolutely convergent in the half-plane σ > 1
cq
, so that

∑

n6x

|gq(n)| ≪q,ε x
1/cq+ε.

By partial summation, we infer

∑

n6x

gq(n)

n
= ζ(q)Pq(1) +O

(

x−1+1/cq+ε
)

,

∑

n6x

gq(n)

n
log

x

n
= ζ(q)Pq(1) log x+ qPq(1)ζ

′(q) + P ′
q(1)ζ(q) +O

(

x−1+1/cq+ε
)

.
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From Proposition 3, λq ⋆ 1 = gq ⋆ τ . Consequently

∑

n6x

(λq ⋆ 1) (n) =
∑

d6x

gq(d)
∑

k6x/d

τ(k)

=
∑

d6x

gq(d)

(

x

d
log

x

d
+ (2γ − 1)

x

d
+O

(

(x

d

)θ+ε
))

= x
(

ζ(q)Pq(1) log x+ qPq(1)ζ
′(q) + P ′

q(1)ζ(q) + (2γ − 1)ζ(q)Pq(1)
)

+O
(

xmax(1/cq ,θ)+ε
)

,

where θ is defined in (1) and where we used

x−ε
∑

d6x

|gq(d)|
dθ

≪
{

x1/cq−θ, if c−1
q > θ ;

1, otherwise.

4.2 The case q ≡ ±11 (mod 24)

For σ > 1, we set

Hq(s) = ζ(qs)
∏

p

(

1 +

q−1
∑

m=3

((

m+ 1

q

)

+

(

m

q

))

1

pms

)

= ζ(qs)Rq(s) :=
∞
∑

n=1

hq(n)

ns
.

Since q > 5, this Dirichlet series is absolutely convergent in the half-plane σ > 1
3
, so that

∑

n6x

|hq(n)| ≪q,ε x
1/3+ε.

From Proposition 3, λq ⋆ 1 = hq ⋆ a2, hence

∑

n6x

(λq ⋆ 1) (n) =
∑

d6x

hq(d)

⌊
√

x

d

⌋

= x1/2
∑

d6x

hq(d)√
d

+O
(

x1/3+ε
)

= x1/2Hq

(

1
2

)

+O
(

x1/3+ε
)

.

4.3 The case q ≡ ±5 (mod 24)

In this case, it is necessary to rewrite L(s, λq) in the following shape.
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Lemma 4. Assume q ≡ ±5 (mod 24). For any σ > 1, L(s, λq) =
Kq(s)

ζ(s)ζ(2s)
with

Kq(s) :=



































ζ(5s), if q = 5;

ζ(4s)Lq(s), if q ≡ ±19,±29 (mod 120);

Lq(s)

ζ(4s)
, if q ≡ ±43,±53 (mod 120);

where

Lq(s) := ζ(qs)
∏

p

(

1 +
2 (p2s + ps + 1)

p7s − p5s
+

p2s + 1

p2s − 1

q−1
∑

m=6

((

m+ 1

q

)

+

(

m

q

))

1

pms

)

and

Lq(s) := ζ(qs)
∏

p

(

1− 2p2s − 1

(p2s − 1)3 (p2s + 1)

+
p8s

(p2s − 1)3 (p2s + 1)

q−1
∑

m=6

((

m+ 1

q

)

+

(

m

q

))

1

pms

)

.

The Dirichlet series Lq is absolutely convergent in the half-plane σ > 1
5
, and the Dirichlet

series Lq is absolutely convergent in the half-plane σ > 1
6
.

Proof. From Proposition 3, we immediately get

L(s, λ5) =
ζ(5s)

ζ(s)ζ(2s)
. (3)

Now suppose q > 5 and q ≡ ±5 (mod 24). In this case,
(

3
q

)

+
(

2
q

)

= −2 and
(

4
q

)

+
(

3
q

)

= 0

so that we may write by Proposition 3

L (s, λq) =
ζ(qs)ζ(2s)

ζ(s)

∏

p

(

1− 2

p2s
+

q−1
∑

m=4

((

m+ 1

q

)

+

(

m

q

))

1

pms

)

=
Kq(s)

ζ(s)ζ(2s)

where

Kq(s) := ζ(qs)
∏

p

(

1− 1

(p2s − 1)2
+

p4s

(p2s − 1)2

q−1
∑

m=4

((

m+ 1

q

)

+

(

m

q

))

1

pms

)

.
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Assume q ≡ ±19,±29 (mod 120). Then
(

5

q

)

+

(

4

q

)

=

(

6

q

)

+

(

5

q

)

= 2.

Kq(s) can therefore be written as

Kq(s) = ζ(qs)
∏

p

(

1 +
ps + 2

ps (p2s − 1)2
+

p4s

(p2s − 1)2

q−1
∑

m=6

((

m+ 1

q

)

+

(

m

q

))

1

pms

)

= ζ(qs)ζ(4s)
∏

p

(

1 +
2 (p2s + ps + 1)

p7s − p5s
+

p2s + 1

p2s − 1

q−1
∑

m=6

((

m+ 1

q

)

+

(

m

q

))

1

pms

)

= ζ(4s)Lq(s).

Similarly, if q ≡ ±43,±53 (mod 120), then
(

5

q

)

+

(

4

q

)

=

(

6

q

)

+

(

5

q

)

= 0.

Hence

Kq(s) := ζ(qs)
∏

p

(

1− 1

(p2s − 1)2
+

p4s

(p2s − 1)2

q−1
∑

m=6

((

m+ 1

q

)

+

(

m

q

))

1

pms

)

=
Lq(s)

ζ(4s)
.

The proof is complete.

We now are in a position to prove Theorem 1 in the case q ≡ ±5 (mod 24).

Assume first that q ≡ ±19,±29 (mod 120) and let ℓq(n) be the n-th coefficient of the
Dirichlet series Lq(s). From Lemma 4, λq ⋆ 1 = ℓq ⋆ a4 ⋆ a

−1
2 and therefore

∑

n6x

(λq ⋆ 1) (n) =
∑

d6x

ℓq(d)
∑

m6(x/d)1/4

M

(

1

m2

√

x

d

)

=
∑

d6x

ℓq(d)L

(
√

x

d

)

.

Since L(z) ≪ zδc(z) for some c > 0

∑

n6x

(λq ⋆ 1) (n) ≪ x1/2
∑

d6x

|ℓq(d)|√
d

δc

(
√

x

d

)

≪ x1/2





∑

d6
√
x

+
∑

√
x<d6x





|ℓq(d)|√
d

δc

(
√

x

d

)

≪ x1/2δc
(

x1/4
)

+ x1/2
∑

d>
√
x

|ℓq(d)|√
d

.
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The Dirichlet series Lq(s) :=
∑∞

n=1 ℓq(n)n
−s is absolutely convergent in the half-plane σ > 1

5
,

consequently
∑

d6z

|ℓq(d)| ≪q,ε z
1/5+ε

and by partial summation
∑

d>z

|ℓq(d)|√
d

≪q,ε z
−3/10+ε.

We infer that

∑

n6x

(λq ⋆ 1) (n) ≪ x1/2δc
(

x1/4
)

+ x7/20+ε ≪ x1/2δc
(

x1/4
)

.

Now suppose that the Riemann hypothesis is true. By [1], which is a refinement of [9], we
know that M(z) ≪ε z1/2 ω(z). The method of [9, 1] may be adapted to the function L
yielding

L(z) ≪ε z
1/2 ω(z) log z.

Observe that, for any a > 2, ε > 0 and z > ee
e

log z exp
(

√

log z (log log z)a
)

6 exp
(

√

log z (log log z)a+ε
)

so that L(z) ≪ε z
1/2 ω(z) and hence

∑

n6x

(λq ⋆ 1) (n) ≪ x1/4
∑

d6x

|ℓq(d)|
d1/4

ω

(
√

x

d

)

≪ x1/4ω
(√

x
)

∑

d6x

|ℓq(d)|
d1/4

≪ x1/4ω
(√

x
)

completing the proof in that case. The case q = 5 is similar but simpler since λ5⋆1 = a5⋆a
−1
2

by (3).
Finally, when q ≡ ±43,±53 (mod 120), we proceed as above. Let νq(n) be the n-th

coefficient of the Dirichlet series Lq(s). Then λq ⋆ 1 = νq ⋆ a
−1
4 ⋆ a−1

2 from Lemma 4, so that

∑

n6x

(λq ⋆ 1) (n) =
∑

d6x

νq(d)
∑

m6(x/d)1/4

µ(m)M

(

1

m2

√

x

d

)

and estimating trivially yields

∑

n6x

(λq ⋆ 1) (n) ≪ x1/2
∑

d6x

|νq(d)|√
d

∑

m6(x/d)1/4

1

m2
δc

(

1

m2

√

x

d

)

and we complete the proof as in the previous case.
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Remark 5. Let us stress that a bound of the shape

∑

n6x

(λq ⋆ 1) (n) ≪ x1/4+ε

for all x sufficiently large and small ε > 0, is a necessary and sufficient condition for the
Riemann hypothesis. Indeed, if this estimate holds, then by partial summation the series
∑∞

n=1 (λq ⋆ 1) (n)n
−s is absolutely convergent in the half-plane σ > 1

4
. Consequently, the

function Kq(s)ζ(2s)
−1 is analytic in this half-plane. In particular, ζ(2s) does not vanish

in this half-plane, implying the Riemann hypothesis, proving the necessary condition, the
sufficiency being established above.

5 A short interval result for the case q = 5

5.1 Introduction

This section deals with sums of the shape

∑

x<n6x+y

(λ5 ⋆ 1) (n)

where xε 6 y 6 x. From Theorem 1

∑

x<n6x+y

(λ5 ⋆ 1) (n) ≪ x1/2e−c(log x1/4)
3/5
(log log x1/4)

−1/5

and if the Riemann hypothesis is true, then

∑

x<n6x+y

(λ5 ⋆ 1) (n) ≪ε x
1/4e(log

√
x)

1/2
(log log

√
x)5/2+ε

.

The purpose is to improve significantly upon these estimates when y = o(x), by using
fine results belonging to the theory of integer points near a suitably chosen smooth curve.
To this end, we need the following additional notation. Let δ ∈

(

0, 1
4

)

, N ∈ Z>1 large,
f : [N, 2N ] −→ R be any map, and define R(f,N, δ) to be the number of elements of the
set of integers n ∈ [N, 2N ] such that ‖f(n)‖ < δ, where ‖x‖ is the distance from x to its
nearest integer. Note that the trivial bound is given by

∑

x<n6x+y

(λ5 ⋆ 1) (n) ≪
∑

x<n6x+y

τ(n) ≪ y log x.

11



5.2 Tools from the theory

In what follows, N ∈ Z>1 is large and δ ∈
(

0, 1
4

)

. The first result is [7, Theorem 5] with
k = 5. See also [2, Theorem 5.23 (iv)].

Lemma 6 (5th derivative test). Let f ∈ C5 [N, 2N ] such that there exist λ4 > 0 and λ5 > 0
satisfying λ4 = Nλ5 and, for any x ∈ [N, 2N ]

∣

∣f (4)(x)
∣

∣ ≍ λ4 and
∣

∣f (5)(x)
∣

∣ ≍ λ5.

Then
R(f,N, δ) ≪ Nλ

1/15
5 +Nδ1/6 +

(

δλ−1
4

)1/4
+ 1.

Remark 7. The basic result of the theory is the following first derivative test (see [2, Theorem
5.6]): Let f ∈ C1 [N, 2N ] such that there exist λ1 > 0 such that |f ′(x)| ≍ λ1. Then

R(f,N, δ) ≪ Nλ1 +Nδ + δλ−1
1 + 1. (4)

This result is essentially a consequence of the mean value theorem.

The second tool is [4, Theorem 7] with k = 3.

Lemma 8. Let s ∈ Q∗ \ {±2,±1} and X > 0 such that N 6 X1/s. Then there exists a
constant c3 := c3(s) ∈

(

0, 1
4

)

depending only on s such that, if

N2δ 6 c3 (5)

then

R
(

X

ns
, N, δ

)

≪
(

XN3−s
)1/7

+ δ
(

XN59−s
)1/21

.

Our last result relates the short sum of λ5 ⋆ 1 to a problem of counting integer points
near a smooth curve.

Lemma 9. Let 1 6 y 6 x. Then

∑

x<n6x+y

(λ5 ⋆ 1) (n) ≪ max
(16y2x−1)1/5<N6(2x)1/5

R
(
√

x

n5
, N,

y√
N5x

)

log x+ yx−1/2 + x−1/5y2/5.

Proof. Using (3), we get

∑

n6x

(λ5 ⋆ 1) (n) =
∑

d6
√
x

µ(d)

⌊

( x

d2

)1/5
⌋

12



so that

∑

x<n6x+y

(λ5 ⋆ 1) (n) =
∑

d6
√
x

µ(d)

(⌊

(

x+ y

d2

)1/5
⌋

−
⌊

( x

d2

)1/5
⌋

)

+
∑

√
x<d6

√
x+y

µ(d)

≪
∑

d6
√
x

(⌊

(

x+ y

d2

)1/5
⌋

−
⌊

( x

d2

)1/5
⌋

)

+ yx−1/2

≪
∑

d6
√
x

∑

x<d2n56x+y

1 + yx−1/2

≪
∑

n6(2x)1/5

∑

( x
n5 )

1/2
<d6(x+y

n5 )
1/2

1 + yx−1/2

≪
∑

(16y2x−1)1/5<n6(2x)1/5

(⌊

√

x+ y

n5

⌋

−
⌊
√

x

n5

⌋

)

+ x−1/5y2/5 + yx−1/2

and for any integers N ∈
]

(16y2x−1)
1/5

, (2x)1/5
]

and n ∈ [N, 2N ]

√

x+ y

n5
−
√

x

n5
<

y√
N5x

<
1

4

so that the sum does not exceed

≪ max
(16y2x−1)1/5<N6(2x)1/5

R
(
√

x

n5
, N,

y√
N5x

)

log x+ x−1/5y2/5 + yx−1/2

as asserted.

5.3 The main result

Theorem 10. Assume y 6 c3 x
11/20 where c3 := c3

(

5
2

)

is given in (5). Then

∑

x<n6x+y

(λ5 ⋆ 1) (n) ≪
(

x1/12 + yx−4/9
)

log x.

Furthermore, if y 6 c3 x
19/36

∑

x<n6x+y

(λ5 ⋆ 1) (n) ≪ x1/12 log x.

Proof. We split the first term in Lemma 9 into three parts, according to the ranges

(

16y2x−1
)1/5

< N 6 2x1/10, 2x1/10 < N 6 2x1/6 and 2x1/6 < N 6 (2x)1/5.
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In the first case, we use Lemma 6 with λ4 = (xN−13)
1/2

and λ5 = (xN−15)
1/2

which yields

max
(16y2x−1)1/5<N62x1/10

R
(
√

x

n5
, N,

y√
N5x

)

≪ x1/12 + x−1/40y1/6 + x−3/20y1/4.

For the second range, we use Lemma 8 with X = x1/2, s = 5
2
and δ = y (N5x)

−1/2
. Notice

that the conditions N > 2x1/10 and y 6 c3 x
11/20 ensure that δ < 1

4
and N2δ 6 c3. We get

max
2x1/10<N62x1/6

R
(
√

x

n5
, N,

y√
N5x

)

≪ x1/12 + yx−4/9.

The last range is easily treated with (4), giving

max
2x1/6<N6(2x)1/5

R
(
√

x

n5
, N,

y√
N5x

)

≪ x1/12 + yx−3/4.

Using Lemma 9, we finally get

∑

x<n6x+y

(λ5 ⋆ 1) (n) ≪
(

x1/12 + x−1/40y1/6 + x−3/20y1/4 + yx−4/9
)

log x+ x−1/5y2/5

and note that x−1/40y1/6+x−3/20y1/4+x−1/5y2/5 ≪ x1/12 as soon as y 6 x13/20. This completes
the proof of the first estimate, the second one being obvious.
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