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1. Introduction

Variational inequalities introduced in the early sixties have played a critical and significant part
in the study of several unrelated problems arising in finance, economics, network analysis,
transportation, elasticity, and optimization. Variational inequalities theory has witnessed an
explosive growth in theoretical advances, algorithmic development, and applications across
all disciplines of pure and applied sciences, see [1–16]. A useful and important generalization
of variational inequalities is the mixed variational inequality containing a nonlinear term ϕ.
But the applicability of the projection method is limited due to the fact that it is not easy
to find the projection except in very special cases. Secondly, the projection method cannot
be applied to suggest iterative algorithms for solving general mixed variational inequalities
involving the nonlinear term ϕ. This fact has motivated many authors to develop the auxiliary
principle technique for solving the mixed variational inequalities. In recent years, several
techniques have been developed to suggest and analyze various iterative methods for solving
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different types of variational inequalities. It is worth mentioning that if the nonlinear term in
the variational inequalities is a proper, convex, and semilower continuous function, then it is
well known that the variational inequalities involving the nonlinear term ϕ are equivalent
to the fixed point problems and the resolvent equations. In [11], Noor solved the general
mixed variational inequality problem by using the resolvent equations technique. Inspired and
motivated by the results of Noor [11], we propose a new method for solving general mixed
variational inequalities by using a new direction with a new step size αk. We prove the global
convergence of the proposed method under the same assumptions as in [11]. An example is
given to illustrate the efficiency and its comparisonwith the results of Noor [11, 14]. This shows
that the method is robust and efficient. This new method can be viewed as an important and
significant improvement of Noor and other methods.

2. Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉 and ‖·‖,
let I be the identity mapping on H, and T, g : H → H be two operators. Let ∂ϕ denotes the
subdifferential of function ϕ,where ϕ : H → R∪{+∞} is a proper convex lower semicontinuous
function on H. It is well known that the subdifferential ∂ϕ is a maximal monotone operator.
We consider the problem of finding u∗ ∈ H such that

〈
T(u∗), g(v) − g(u∗)

〉
+ ϕ
(
g(v)

) − ϕ
(
g(u∗)

) ≥ 0, ∀g(v) ∈ H, (2.1)

which is known as the mixed general variational inequality, see Noor [11]. We also note that
the general variational inequality can be written in the equivalent form as find u∗ ∈ H such
that

0 ∈ Tu + ∂ϕ
(
g(u)

)
, (2.2)

which is known as the problem of finding a zero of sum of two(more) monotone operators. It
is well known that a wide class of linear and nonlinear problems arising in pure and applied
sciences can be studied via the general mixed variational inequalities, see [1–16] and the
references therein.

If K is a closed convex set in H and ϕ(v) ≡ IK(v), ∀v ∈ H, where

IK(v) =

⎧
⎨

⎩

0 if v ∈ K,

+∞, otherwise
(2.3)

is the indicator function of K, then the problem (2.1) is equivalent to finding u∗ ∈ H such that
g(u∗) ∈ K and

〈
T(u∗), g(v) − g(u∗)

〉 ≥ 0, ∀g(v) ∈ K. (2.4)

Problem (2.4) is called the general variational inequality, which was first introduced and
studied by Noor [9] in 1988. For the applications, formulation, and numerical methods of
general variational inequalities (2.4), we refer the reader to the survey, see [1–3, 7, 12, 13, 16].

If g ≡ I, then the problem (2.4) is equivalent to finding u∗ ∈ K such that
〈
T(u∗), v − u∗〉 ≥ 0, ∀v ∈ K, (2.5)

which is known as the classical variational inequality introduced and studied by Stampacchia
[17].
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Lemma 2.1 (see [4]). For a given w ∈ H, z ∈ H, and ρ > 0, the inequality
〈
w − z, z − v

〉
+ ρϕ(v) − ρϕ(z) ≥ 0, ∀v ∈ H (2.6)

holds if and only if z = Jϕ(w), where Jϕ = (I + ρ∂ϕ)−1 is the resolvent operator.

It follows from Lemma 2.1 that
〈
w − Jϕ(w), Jϕ(w) − v

〉
+ ρϕ(v) − ρϕ

(
Jϕ(w)

) ≥ 0, ∀v,w ∈ H. (2.7)

If ϕ is the indicator function of a closed convex set K in H, then the resolvent operator
Jϕ(·) = PK, where PK is the projection of H onto the closed convex set K. It is well known that
Jϕ is nonexpansive, that is,

∥∥Jϕ(u) − Jϕ(v)
∥∥ ≤ ‖u − v‖, ∀u, v ∈ H. (2.8)

Lemma 2.2 (see [10]). u∗ is solution of problem (2.1) if and only if u∗ ∈ H satisfies the relation:

g
(
u∗) = Jϕ

[
g
(
u∗) − ρT

(
u∗)], (2.9)

where Jϕ = (I + ρ∂ϕ)−1 is the resolvent operator .

From Lemma 2.2, it is clear that u∗ is solution of (2.1) if and only if u∗ is a zero point of
the function

r
(
u∗, ρ

)
:= g
(
u∗) − Jϕ

[
g
(
u∗) − ρT

(
u∗)]. (2.10)

In [11], Noor used the fixed-point formulation (2.9) and the resolvent equations to suggest and
analyze the following algorithm for solving problem (2.1).

Algorithm 2.3. For a given u0 ∈ H, compute the approximate solution uk+1 by the iterative schemes.

Predictor step

g
(
wk) = Jϕ

[
g
(
uk) − ρkT

(
uk)], (2.11)

where ρk satisfies

ρk
〈
T
(
uk) − T

(
g−1(Jϕ

[
g
(
uk) − ρkT

(
uk)])), r

(
uk, ρk

)〉 ≤ δ
∥∥r(uk, ρk)

∥∥2, δ ∈ (0, 1). (2.12)

Corrector step

g
(
uk+1) = Jϕ

[
g
(
uk) − αkd

(
uk, ρk

)]
, (2.13)

where

d
(
uk, ρk

)
= r
(
uk, ρk

) − ρkT
(
uk) + ρkT

(
g−1(Jϕ

[
g
(
uk) − ρkT

(
uk)])),

αk =
(1 − δ)‖r(uk, ρk)‖2

‖d(uk, ρk)‖2
(2.14)

is the corrector step size.
If ϕ is an indicator function of a closed convex set K in H, then Jϕ ≡ PK [10], the projection of

H onto K and consequently Algorithm 2.3 collapses.
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Algorithm 2.4 (see [11]). For a given u0 ∈ H, compute the approximate solution uk+1 by the iterative
schemes.

Predictor step

g
(
wk) = PK

[
g
(
uk) − ρkT

(
uk)], (2.15)

where ρk satisfies

ρk
〈
T
(
uk) − T

(
g−1(PK

[
g
(
uk) − ρkT

(
uk)])), r

(
uk, ρk

)〉 ≤ δ‖r(uk, ρk
)‖2, δ ∈ (0, 1). (2.16)

Corrector step

g
(
uk+1) = PK

[
g
(
uk) − αkd

(
uk, ρk

)]
, (2.17)

where

d
(
uk, ρk

)
= r
(
uk, ρk

) − ρkT
(
uk) + ρkT

(
g−1(PK

[
g
(
uk) − ρkT

(
uk)])),

αk =
(1 − δ)‖r(uk, ρk)‖2

‖d(uk, ρk)‖2
(2.18)

is the corrector step size.
Throughout this paper, we make following assumptions.

Assumptions

(i) H is finite dimension space.

(ii) g is homeomorphism onH, that is, g is bijective, continuous and g−1 is continuous.

(iii) T is continuous and g-pseudomonotone operator on H, that is,
〈
T(u), g

(
u′) − g(u)

〉 ≥ 0 =⇒ 〈T(u′), g
(
u′) − g(u)

〉 ≥ 0 ∀u′, u ∈ H. (2.19)

(iv) The solution set of problem (2.1) denoted by S∗ is nonempty.

3. Iterative method and basic results

In this section, we suggest and analyze a new method for solving mixed general variational
inequality (2.1) by using a new direction with a new step size αk, and this is the main
motivation of this paper.

Algorithm 3.1

Step 1. Given γ ∈ [1, 2), ρ0 > 0, δ ∈ (0, 1), u0 ∈ H, and k = 0.

Step 2. Set

wk = g−1(Jϕ
[
g
(
uk) − ρkT

(
uk)]). (3.1)
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Step 3. If

rk :=
‖ρk(T(uk) − T(wk))‖
‖g(uk) − g(wk)‖ ≤ δ, (3.2)

then set

εk = ρk
(
T
(
wk) − T

(
uk)), (3.3)

d1
(
uk, ρk

)
:= g
(
uk) − g

(
wk) + εk, (3.4)

d
(
uk, ρk

)
:= g
(
uk) − g

(
wk) + ρkT

(
wk), (3.5)

φ
(
uk, ρk

)
:=
〈
g
(
uk) − g

(
wk), d1

(
uk, ρk

)〉
(3.6)

the stepsize

αk :=
φ(uk, ρk)

‖d(uk, ρk)‖2
(3.7)

and the next iterate

g
(
uk+1) = Jϕ

[
g
(
uk) − γαkd

(
uk, ρk

)]
,

ρk :=

⎧
⎨

⎩

1.5 ∗ ρk if rk ≤ 0.5,

ρk otherwise,

(3.8)

ρk+1 = ρk and k := k + 1; go to Step 2.

Step 4. Reduce the value of ρk by ρk := 2/3∗ρk∗min{1, 1/rk};
set wk = g−1(Jϕ[g(uk) − ρkT(uk)]) and go to Step 3.
If ϕ is an indicator function of a closed convex set K in H, then Jϕ ≡ PK [10], the

projection of H onto K. Consequently, Algorithm 3.1 reduces to Algorithm 3.2 for solving the
general variational inequalities (2.4).

Algorithm 3.2

Step 1. Given γ ∈ [1, 2), ρ0 > 0, δ ∈ (0, 1), u0 ∈ H, and k = 0.

Step 2. Set

wk = g−1(PK

[
g
(
uk) − ρkT

(
uk)]). (3.9)

Step 3. If

rk :=
‖ρk(T(uk) − T(wk))‖
‖g(uk) − g(wk)‖ ≤ δ, (3.10)
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then set

εk := ρk
(
T
(
wk) − T

(
uk)),

d1
(
uk, ρk

)
:= g
(
uk) − g

(
wk) + εk,

d
(
uk, ρk

)
:= g
(
uk) − g

(
wk) + ρkT

(
wk),

φ
(
uk, ρk

)
:=
〈
g
(
uk) − g

(
wk), d1

(
uk, ρk

)〉

(3.11)

the stepsize

αk :=
φ(uk, ρk)

‖d(uk, ρk)‖2
(3.12)

and the next iterate

g
(
uk+1) = PK

[
g
(
uk) − γαkd

(
uk, ρk

)]
,

ρk :=

⎧
⎨

⎩

1.5 ∗ ρk if rk ≤ 0.5,

ρk otherwise,

(3.13)

ρk+1 = ρk and k := k + 1; go to Step 2.

Step 4. Reduce the value of ρk by ρk := 2/3∗ρk∗min{1, 1/rk};
set wk = g−1(PK[g(uk) − ρkT(uk)]) and go to Step 3.

Remark 3.3. Equation (3.2) implies that
∣∣〈g
(
uk) − g

(
wk), εk

〉∣∣ ≤ δ
∥∥g
(
uk) − g

(
wk)∥∥2, 0 < δ < 1. (3.14)

The next lemma shows that αk and φ(uk, ρk) are lower bounded away from zero,
whenever uk /=wk.

Lemma 3.4. For given uk ∈ H and ρk > 0, let wk and εk satisfy to (3.1) and (3.3), then

φ
(
uk, ρk

) ≥ (1 − δ
)∥∥g
(
uk) − g

(
wk)∥∥2,

αk ≥ (1 − δ)‖g(uk) − g(wk)‖2
‖d(uk, ρk)‖2

.
(3.15)

Proof. It follows from (3.4) and (3.14) that

φ
(
uk, ρk

)
:=
〈
g
(
uk) − g

(
wk), d1

(
uk, ρk

)〉

=
∥∥g
(
uk) − g

(
wk)∥∥2 +

〈
g
(
uk) − g

(
wk), εk

〉

≥ (1 − δ)
∥∥g
(
uk) − g

(
wk)∥∥2.

(3.16)

Otherwise, we have

αk :=

〈
g
(
uk
) − g

(
wk
)
, d1
(
uk, ρk

)〉

∥∥d
(
uk, ρk

)∥∥2
≥ (1 − δ)‖g(uk) − g(wk)‖2

‖d(uk, ρk)‖2
, (3.17)

we can get the assertion of this lemma.
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The next lemma shows that ‖r(u, ρ)‖ is a nondecreasing functionwith respect to ρ,which
can be proved using the techniques as in [1].

Lemma 3.5. For all u ∈ H and ρ′ > ρ > 0, it holds that

‖r(u, ρ′)‖ ≥ ‖r(u, ρ)‖. (3.18)

Next lemma has already been studied in [11].

Lemma 3.6. For all u ∈ H, u∗ ∈ S∗, and ρ > 0, we have

〈
g
(
uk) − g

(
u∗), d

(
uk, ρk

)〉 ≥ φ
(
uk, ρk

)
, (3.19)

where d(uk, ρk) and φ(uk, ρk) are defined in (3.5) and (3.6), respectively.

4. Convergence analysis

In this section, we prove the global convergence of the proposed method. The following result
plays a crucial role in the convergence analysis of the proposed method.

Theorem 4.1. Let u∗ ∈ H be a solution of problem (2.1) and let uk+1 be the sequence obtained from
Algorithm 3.1. Then uk is bounded and

∥∥g
(
uk+1) − g

(
u∗)∥∥2 ≤ ∥∥g(uk) − g

(
u∗)∥∥2 − γ(2 − γ)(1 − δ)2

‖g(uk) − g(wk)‖4
‖d(uk, ρk)‖2

. (4.1)

Proof. Let u∗ ∈ H be a solution of problem (2.1). Then

∥∥g
(
uk+1) − g

(
u∗)∥∥2 ≤ ∥∥g(uk) − g

(
u∗) − γαkd

(
uk, ρk

)∥∥2

=
∥∥g
(
uk) − g

(
u∗)∥∥2 − 2γαk

〈
g
(
uk) − g

(
u∗), d

(
uk, ρk

)〉
+ γ2α2

k

∥∥d
(
uk, ρk

)∥∥2

≤ ∥∥g(uk) − g
(
u∗)∥∥2 − 2γαkφ

(
uk, ρk

)
+ γ2αkφ

(
uk, ρk

)

≤ ∥∥g(uk) − g
(
u∗)∥∥2 − γ(2 − γ)(1 − δ)2

‖g(uk) − g(wk)‖4
‖d(uk, ρk)‖2

,

(4.2)

where the first inequality follows from the nonexpansiveness of the resolvent operator, the
second inequality follows from (3.7) and (3.19), and the third inequality follows from (3.15).
Since γ ∈ [1, 2) and δ ∈ (0, 1), we have

∥∥g
(
uk+1) − g

(
u∗)∥∥ ≤ ∥∥g(uk) − g

(
u∗)∥∥ ≤ · · · ≤ ∥∥g(u0) − g

(
u∗)∥∥. (4.3)

Since g is homeomorphism, it is easy to verify that the sequence uk is bounded.

We now prove the convergence of Algorithm 3.1.

Theorem 4.2. The sequence {uk} generated by the Algorithm 3.1 converges to a solution of problem
(2.1).
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Proof. It follows from (4.1) that

∞∑

k=0

‖g(uk) − g(wk)‖4
‖d(uk, ρk)‖2

< ∞, (4.4)

which means that

lim
k→∞

∥∥g
(
uk) − g

(
wk)∥∥ = 0. (4.5)

Since g is homeomorphism, we have

lim
k→∞

∥∥uk −wk
∥∥ = 0. (4.6)

This implies that {wk} is bounded. Since ‖r(uk, ρ)‖ is a nondecreasing function of ρ, it follows
from ρk ≥ ρmin that

∥∥r
(
wk, ρmin

)∥∥ ≤ ∥∥r(wk, ρk
)∥∥

=
∥∥g
(
wk) − Jϕ

[
g
(
wk) − ρkT

(
wk)]∥∥

(using (3.1) and (3.3)) =
∥∥Jϕ[g

(
uk) − ρkT

(
wk) + εk] − Jϕ[g

(
wk) − ρkT

(
wk)]

∥∥

≤ ∥∥g(uk) − g
(
wk) + εk

∥∥

(using (3.2)) ≤ (1 + δ)
∥∥g
(
uk) − g

(
wk)∥∥

(4.7)

and from (4.5), we get

lim
k→∞

r
(
wk, ρmin

)
= 0. (4.8)

Let u be a cluster point of {wk} and the subsequence {wkj} converges to u. Since r(u, ρ) is a
continuous function of u, it follows from (4.8) that

r
(
u, ρmin

)
= lim

j→∞
r
(
wkj , ρmin

)
= 0. (4.9)

From Lemma 2.2, it follows that u is a solution point of problem (2.1). Note that inequality
(4.1) is true for all solution point of problem (2.1), hence we have

∥∥g
(
uk+1) − g

(
u
)∥∥ ≤ ∥∥g(uk) − g

(
u
)∥∥, ∀k ≥ 0. (4.10)

Since {g(wkj )} → g(u) and g(uk) − g(wk) → 0, for any given ε > 0, there is an l > 0, such that

∥∥g
(
wkl
) − g

(
u
)∥∥ <

ε

2
,

∥∥g
(
ukl
) − g

(
wkl
)∥∥ <

ε

2
. (4.11)

Therefore, for any k ≥ kl, it follows from (4.10) and (4.11) that

∥
∥g
(
uk) − g

(
u
)∥∥ ≤ ∥∥g(ukl

) − g
(
u
)∥∥ ≤ ∥∥g(ukl

) − g
(
wkl
)∥∥ +

∥
∥g
(
wkl
) − g

(
u
)∥∥ < ε (4.12)
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and thus the sequence {g(uk)} converges to g(u). Using g is homeomorphism, we see that the
sequence {uk} converges to u.

We now prove that the sequence {uk} has exactly one cluster point. Assume that ũ is
another cluster point and satisfies

δ :=
∥∥g
(
ũ
) − g

(
u
)∥∥ > 0. (4.13)

Since u is a cluster point of the sequence {uk} and g is homeomorphism, there is a k0 > 0 such
that

∥
∥g
(
uk0
) − g

(
u
)∥∥ ≤ δ

2
. (4.14)

On the other hand, since u ∈ S∗ and from (4.1), we have
∥∥g
(
uk) − g

(
u
)∥∥ ≤ ∥∥g(uk0

) − g
(
u
)∥∥ ∀k ≥ k0, (4.15)

it follows that

∥∥g
(
uk) − g

(
ũ
)∥∥ ≥ ∥∥g(ũ) − g

(
u
)∥∥ − ∥∥g(uk) − g

(
u
)∥∥ ≥ δ

2
∀k ≥ k0. (4.16)

This contradicts the assumption that ũ is cluster point of {uk}. Thus the sequence {uk}
converges to u ∈ S∗.

5. Numerical results

In this section, we present some numerical results for the proposed method. In order to verify
the theoretical assertions, we consider the following problems:

min h(u) =
n∑

j=1
uj log

(
uj

pj

)
,

s.t. Au ∈ Π,

u ≥ 0,

(5.1)

where A is an n × n matrix, Π is a simple closed convex set in Rn, 0 < p ∈ Rn is a parameter
vector. Here, the statement that the set Π is simple means that the projection onto Π is simple
to carry out. For the same reason given in Fletcher (see [5, page 222]), each element of the
optimal solution of problem (5.1) is positive. Thus the bounds u ≥ 0 are inactive and can be
ignored, therefore problem (5.1) can be written as

min h(u) =
n∑

j=1
uj log

(
uj

pj

)
,

s.t. Au − v = 0,

v ∈ Π.

(5.2)

By attaching the Lagrangemultiplier y ∈ Rn to the equality constraintsAu−v = 0, the Lagrange
function of problem (5.2) is

L(u, v, y) = h(u) − yT(Au − v), (5.3)
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which is defined on Rn ×Π × Rn. If (u∗, v∗, y∗) ∈ Rn ×Π × Rn is a KKT point of problem (5.2),
then we have

∇h
(
u∗) −ATy∗ = 0,
(
v − v∗)Ty∗ ≥ 0, ∀v ∈ Π,

Au∗ − v∗ = 0.

(5.4)

Note that problem (5.1) is invariant under multiplication h by some positive scalar ρ.Denoting
f(u) = ∇h(u) and eliminating v and v∗ in (5.4), we see that problem (5.1) is equivalent to a
general variational inequality problem. Find w∗ such that

Q
(
w∗) ∈ Ω,

[
Q
(
v1
) −Q

(
w∗)]TF

(
w∗) ≥ 0, ∀Q(v1

) ∈ Ω, (5.5)

where

w =

(
u

y

)

, Q(w) =

(
u

Au

)

, F(w) =

(
ρf(u) −ATy

y

)

, Ω = Rn ×Π. (5.6)

It is well known (see [7, Theorem 1]) that solving (5.5)-(5.6) is equivalent to finding a zero
point of the function

e(w) := Q(w) − PΩ
[
Q(w) − F(w)

]
=

(
ρf(u) −ATy

Au − PΠ[Au − y]

)

. (5.7)

Then, solving (5.5)-(5.6) is equivalent to find a pair (u∗, y∗), such that

ρf(u∗) = ATy∗, (5.8)

g
(
u∗) ∈ Π,

(
g(v) − g

(
u∗))Ty∗ ≥ 0, ∀g(v) ∈ Π, (5.9)

where

g(u) = Au. (5.10)

In this case Algorithms 2.3 and 3.1 collapse to Algorithms 2.4 and 3.2, respectively.
In the test, we let v′ ∈ Rn be a randomly generated vector, v′

j ∈ (−0.5, 0.5), and A =

I − 2(v′v′T)/(v′Tv′) be an n × n Householder matrix. Let

u∗
j ∈ (0.1, 1.1), y∗

i ∈ (−0.5, 0.5). (5.11)

Note that

fj
(
u∗) =

(∇h
(
u∗))

j = log
(
u∗
j

) − log
(
pj
)
+ 1. (5.12)

Since

f
(
u∗) = ATy∗, (5.13)
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Table 1:Numerical results for problem (5.9)with n = 200.

ρ
Algorithm 3.2 Algorithm 2.4

No. It. CPU(Sec.) ‖uk − u∗‖ No. It. CPU(Sec.) ‖uk − u∗‖
105 37 2.17 1.4 ∗ 10−15 307 4.31 1.12 ∗ 10−7
104 32 1.80 1.4 ∗ 10−15 377 4.33 1.16 ∗ 10−7
102 20 1.05 1.4 ∗ 10−15 293 2.81 1.22 ∗ 10−7
1 9 0.46 1.4 ∗ 10−15 321 2.66 1.22 ∗ 10−7
10−1 3 0.75 1.4 ∗ 10−15 280 2.25 1.21 ∗ 10−7
10−3 6 1.62 1.4 ∗ 10−15 11484 51.23 9.54 ∗ 10−8

Table 2:Numerical results for problem (5.9)with n = 300.

ρ
Algorithm 3.2 Algorithm 2.4

No. It. CPU(Sec.) ‖uk − u∗‖ No. It. CPU(Sec.) ‖uk − u∗‖
105 39 2.47 1.88 ∗ 10−15 539 8.39 9.36 ∗ 10−8
104 34 1.95 1.88 ∗ 10−15 645 9.53 9.71 ∗ 10−8
102 22 1.37 1.88 ∗ 10−15 527 6.81 9.5 ∗ 10−8
1 11 0.66 1.88 ∗ 10−15 572 6.43 9.45 ∗ 10−8
10−1 5 0.84 1.88 ∗ 10−15 516 6.21 9.18 ∗ 10−8
10−3 5 1.75 1.88 ∗ 10−15 11532 120.01 9.56 ∗ 10−8

we set

pj = u∗
j exp

(
1 − eTj A

Ty∗),

Π = {z | lB ≤ z ≤ uB},
(5.14)

where

(
lB
)
i =

⎧
⎨

⎩

(
Au∗)

i if y∗
i ≥ 0,

(
Au∗)

i + y∗
i otherwise,

(
uB

)
i =

⎧
⎨

⎩

(
Au∗)

i if y∗
i < 0,

(
Au∗)

i + y∗
i otherwise.

(5.15)

In this way, we have

Au∗ ∈ Π, Au∗ = PΠ
[
Au∗ − y∗]. (5.16)

In all the tests, we take δ = 0.95 and γ = 1.95. The calculations are started with a vector
u0, whose elements are randomly chosen in (0,1) and stopped, whenever ‖r(u, ρ)‖∞ ≤ 10−7.

Since u∗ is known, we also report the distance ‖uk − u∗‖ after ‖r(u, ρ)‖∞ ≤ 10−7. All
codes are written in Matlab and run on a P4-2.00G note book computer. We test the problem
with dimensions n = 200 and n = 300. The iteration numbers and the computational time for
Algorithms 2.4 and 3.2 with different dimensions and initial parameter ρ are given in the Tables
1-2, and for Algorithm 3.2 and the method of Noor [14] in Tables 3-4.
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Table 3:Numerical results for problem (5.9)with n = 200.

ρ
Algorithm 3.2 The method in [14]

No. It. CPU(Sec.) ‖uk − u∗‖ No. It. CPU(Sec.) ‖uk − u∗‖
104 32 1.80 1.4 ∗ 10−15 42 3.17 1.4 ∗ 10−15
102 20 1.05 1.4 ∗ 10−15 32 2.56 1.4 ∗ 10−15
10 15 1.51 1.4 ∗ 10−15 25 1.56 1.4 ∗ 10−15
10−1 3 0.75 1.4 ∗ 10−15 15 1.15 1.4 ∗ 10−15
10−5 16 2.56 1.4 ∗ 10−15 715 7.78 9.49 ∗ 10−8
10−6 22 2.86 1.4 ∗ 10−15 6651 44.99 9.18 ∗ 10−8

Table 4:Numerical results for problem (5.9)with n = 300.

ρ
Algorithm 3.2 The method in [14]

No. It. CPU(Sec.) ‖uk − u∗‖ No. It. CPU(Sec.) ‖uk − u∗‖
104 34 1.95 1.88 ∗ 10−15 46 3.45 1.88 ∗ 10−15
102 22 1.37 1.88 ∗ 10−15 36 2.16 1.88 ∗ 10−15
10 17 1.56 1.88 ∗ 10−15 29 1.75 1.88 ∗ 10−15
10−1 5 0.84 1.88 ∗ 10−15 16 1.79 1.88 ∗ 10−15
10−5 15 2.78 1.88 ∗ 10−15 408 10.51 1.88 ∗ 10−15
10−6 21 2.31 1.88 ∗ 10−15 4057 82.82 1.88 ∗ 10−15

From Tables 1–4, we could see that Algorithms 2.4 and the method in [14] work well,
if ρ is sufficient large. If the parameter ρ is too small, then the iteration numbers and the
computational time can increase significantly. Also these tables show that Algorithm 3.2 is very
efficient for the problem tested. In addition, for our method, it seems that the computational
time and the iteration numbers are not very sensitive to the problem size.
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