CHARACTERIZATIONS OF SOME NEAR-CONTINUOUS FUNCTIONS AND NEAR-OPEN FUNCTIONS

C.W. BAKER
Department of Mathematics
Indiana University Southeast
New Albany, Indiana 47150

(Received April 7, 1986)

ABSTRACT. A subset N of a topological space is defined to be a \(\theta \)-neighborhood of x if there exists an open set U such that \(x \in U \subseteq \text{Cl} U \subseteq N \). This concept is used to characterize the following types of functions: weakly continuous, \(\theta \)-continuous, strongly \(\theta \)-continuous, almost strongly \(\theta \)-continuous, weakly \(\delta \)-continuous, weakly open and almost open functions. Additional characterizations are given for weakly \(\delta \)-continuous functions. The concept of \(\theta \)-neighborhood is also used to define the following types of open maps: \(\theta \)-open, strongly \(\theta \)-open, almost strongly \(\theta \)-open, and weakly \(\delta \)-open functions.

KEY WORDS AND PHRASES. \(\theta \)-neighborhood, weakly continuous function, \(\theta \)-continuous function, strongly \(\theta \)-continuous function, almost strongly \(\theta \)-continuous function, weakly \(\delta \)-continuous function, weakly open function, almost open function, \(\theta \)-open function, strongly \(\theta \)-open function, almost strongly \(\theta \)-open function, weakly \(\delta \)-open function.

1980 AMS SUBJECT CLASSIFICATION CODE. 54C10.

1. INTRODUCTION.

Near-continuity has been investigated by many authors including Levine [1], Long and Herrington [2], Noiri [3], and Rose [4]. Near-openness has been developed by Rose [5] and Singal and Singal [6]. The purpose of this note is to characterize several types of near-continuity and near-openness in terms of the concept of \(\theta \)-neighborhood. These characterizations clarify both the nature of these functions and the relationships among them. Additional characterizations of weak \(\delta \)-continuity are given. The concept of \(\theta \)-neighborhood also leads to the definition of several new types of near-open functions.

2. DEFINITIONS AND NOTATION.

The symbols X and Y denote topological spaces with no separation axioms assumed unless explicitly stated. Let U be a subset of a space X. The closure of U and the interior of U are denoted by \(\text{Cl} U \) and \(\text{Int} U \) respectively. The set U is said to be regular open (regular closed) if \(U = \text{Int} \text{Cl} U \) (\(U = \text{Cl} \text{Int} U \)). The \(\theta \)-closure (\(\delta \)-closure) (Velicko [7]) of U is the set of all x in X such that every closed neighborhood (the interior of every closed neighborhood) of x intersects
The θ-closure and the δ-closure of U are denoted by $\text{Cl}_\theta U$ and $\text{Cl}_\delta U$ respectively. The set U is called θ-closed (δ-closed) if $U = \text{Cl}_\theta U$ ($U = \text{Cl}_\delta U$). A set is said to be θ-open (δ-open) if its complement is θ-closed (δ-closed). For a given space X the collection of all θ-open sets and the collection of all δ-open sets both form topologies. The space X with the θ-open (δ-open) topology will be signified by X_θ (X_δ).

Definition 1. A function $f: X \to Y$ is said to be weakly continuous (Levine [1]) (θ-continuous (Fomin [8]), strongly θ-continuous (Long and Herrington [2]), almost strongly θ-continuous (Noiri and Kang [9]), weakly δ-continuous (Baker [10])) if for each $x \in X$ and each open neighborhood V of $f(x)$, there exists an open neighborhood U of x such that $f(U) \subseteq \text{Cl}_\theta V$ ($f(\text{Cl}_\theta U) \subseteq \text{Cl}_\delta V$, $f(\text{Cl}_\delta U) \subseteq V$, $f(\text{Cl}_\delta U) \subseteq \text{Int} \text{Cl}_\delta V$, $f(\text{Int} \text{Cl}_\theta U) \subseteq \text{Cl}_\delta V$).

Definition 2. A function $f: X \to Y$ is said to be weakly open (Rose [5]) (almost open (Rose [5])) provided that for each open subset U of X, $f(U) \subseteq \text{Int} f(\text{Cl}_\theta U)$ ($f(U) \subseteq \text{Int} f(\text{Cl}_\delta U)$).

Definition 3. A subset N of a space X is said to be a θ-neighborhood (δ-neighborhood) of a point x in X if there exists an open set U such that $x \in U \subseteq \text{Cl}_\theta U \subseteq N$ ($x \in U \subseteq \text{Int} \text{Cl}_\delta U \subseteq N$).

Note that a θ-neighborhood is not necessarily a neighborhood in the θ-topology, but a δ-neighborhood is a neighborhood in the δ-topology.

3. NEAR-CONTINUOUS FUNCTIONS.

The main results can be paraphrased as follows: weak continuity corresponds to "$f^{-1}(\theta$-neighborhood) = neighborhood"; θ-continuity corresponds to "$f^{-1}(\theta$-neighborhood) = θ-neighborhood"; strong θ-continuity corresponds to "$f^{-1}(neighborhood) = \theta$-neighborhood"; almost strong θ-continuity corresponds to "$f^{-1}(\delta$-neighborhood) = θ-neighborhood", and weak δ-continuity corresponds to "$f^{-1}(\theta$-neighborhood) = δ-neighborhood".

Theorem 1. A function $f: X \to Y$ is weakly continuous if and only if for each x in X and each θ-neighborhood N of $f(x)$, $f^{-1}(N)$ is a neighborhood of x.

Proof. Assume f is weakly continuous. Let $x \in X$ and let N be a θ-neighborhood of $f(x)$. Then there exists an open set V such that $f(x) \in V \subseteq \text{Cl}_\theta V \subseteq N$. Since f is weakly continuous, there exists an open neighborhood U of x such that $f(U) \subseteq \text{Cl}_\theta V \subseteq N$. Thus $x \in U \subseteq f^{-1}(N)$ and hence $f^{-1}(N)$ is a neighborhood of x.

Assume for each $x \in X$ and each θ-neighborhood N of x that $f^{-1}(N)$ is a neighborhood of x. Let $x \in X$ and let V be an open neighborhood of $f(x)$. Since $\text{Cl}_\theta V$ is a θ-neighborhood of $f(x)$, $f^{-1}(\text{Cl}_\theta V)$ is a neighborhood of x. Thus there is an open set U for which $x \in U \subseteq f^{-1}(\text{Cl}_\theta V)$ and $f(U) \subseteq \text{Cl}_\theta V$ which proves f is weakly continuous.

Theorem 2. A function $f: X \to Y$ is θ-continuous if and only if for each x in X and each θ-neighborhood N of $f(x)$, $f^{-1}(N)$ is a θ-neighborhood of x.
PROOF. Assume $f: X \to Y$ is θ-continuous. Let $x \in X$ and let N be a θ-neighborhood of $f(x)$. Then there exists an open set V for which $f(x) \in V \subseteq C_1 V \subseteq N$. By the θ-continuity of f, there exists an open neighborhood U of x such that $f(C_1 U) \subseteq C_1 V \subseteq N$. Thus $x \in U \subseteq C_1 U \subseteq f^{-1}(N)$ and hence $f^{-1}(N)$ is a θ-neighborhood of x.

Assume for each x in X and for each θ-neighborhood N of $f(x)$ that $f^{-1}(N)$ is a θ-neighborhood of x. Let $x \in X$ and let V be an open neighborhood of $f(x)$. Since $C_1 V$ is a θ-neighborhood of $f(x)$, $f^{-1}(C_1 V)$ is a θ-neighborhood of x. Hence there exists an open set U for which $x \in U \subseteq C_1 U \subseteq f^{-1}(C_1 V)$. That is, $f(C_1 U) \subseteq C_1 V$ and thus f is θ-continuous.

The proof of the following theorem is similar to that of Theorem 2 and is omitted.

THEOREM 3. A function $f: X \to Y$ is strongly θ-continuous if and only if for each x in X and each neighborhood N of $f(x)$, $f^{-1}(N)$ is a θ-neighborhood of x.

THEOREM 4. A function $f: X \to Y$ is almost strongly θ-continuous if and only if for each x in X and each δ-neighborhood N of $f(x)$, $f^{-1}(N)$ is a θ-neighborhood of x.

PROOF. Assume $f: X \to Y$ is almost strongly θ-continuous. Let $x \in X$ and let N be a δ-neighborhood of $f(x)$. Then there exists an open set V such that $f(x) \in V \subseteq Int C_1 V \subseteq N$. Since f is almost strongly θ-continuous, there exists an open neighborhood U of x for which $f(C_1 U) \subseteq Int C_1 V \subseteq N$. Then $x \in U \subseteq C_1 U \subseteq f^{-1}(N)$ which proves that $f^{-1}(N)$ is a θ-neighborhood of x.

Assume for each $x \in X$ and each δ-neighborhood N of $f(x)$ that $f^{-1}(N)$ is a θ-neighborhood of x. Let $x \in X$ and let V be an open neighborhood of $f(x)$. Since $Int C_1 V$ is a δ-neighborhood of $f(x)$, $f^{-1}(Int C_1 V)$ is a θ-neighborhood of x. Hence there is an open set U such that $x \in U \subseteq C_1 U \subseteq f^{-1}(Int C_1 V)$. That is, $f(C_1 U) \subseteq Int C_1 V$ and hence f is almost strongly θ-continuous.

THEOREM 5. A function $f: X \to Y$ is weakly δ-continuous if and only if for each $x \in X$ and each θ-neighborhood N of $f(x)$, $f^{-1}(N)$ is a δ-neighborhood of x.

The proof of this theorem is similar to that of Theorem 4. The following theorem gives additional characterizations of weak δ-continuity. These results are analogous to those obtained by Noiri and Kang in [9] for almost strongly θ-continuous functions.

LEMMA. Let X be a space and $H \subseteq X$. Then

(a) $C_1 H = \{x \in X: \text{every } \theta\text{-neighborhood of } x \text{ intersects } H\}$ and
(b) $C_1 H = \{x \in X: \text{every } \delta\text{-neighborhood of } x \text{ intersects } H\}$.

The proof follows easily from the definitions.

THEOREM 6. For $f: X \to Y$ the following statements are equivalent:

(a) $f: X \to Y$ is weakly δ-continuous.

(b) For each $H \subseteq X$, $f(C_1 H) \subseteq C_1 f(H)$.

(c) For each $K \subseteq Y$, $C_1 f^{-1}(K) \subseteq f^{-1}(C_1 K)$.

(d) $f: X \to Y$ is weakly continuous.
PROOF. (a) \(\Rightarrow\) (b). Let \(H \subseteq X\) and let \(y \in f(\text{Cl}_\delta H)\). Then there exists an \(x\) in \(\text{Cl}_\delta H\) such that \(y = f(x)\). Let \(N\) be a \(\theta\)-neighborhood of \(f(x)\). By Theorem 5 \(f^{-1}(N)\) is a \(\delta\)-neighborhood of \(x\). Since \(x \in \text{Cl}_\delta H\), \(f^{-1}(N) \cap H \neq \emptyset\). That is, \(N \cap f(H) \neq \emptyset\). Hence \(y \in \text{Cl}_\theta f(H)\). Thus \(f(\text{Cl}_\delta H) \subseteq \text{Cl}_\theta f(H)\).

(b) \(\Rightarrow\) (c). Let \(K \subseteq Y\). By (b) \(f(\text{Cl}_\delta f^{-1}(K)) \subseteq \text{Cl}_\theta f(f^{-1}(K)) \subseteq \text{Cl}_\theta K\). Thus \(\text{Cl}_\delta f^{-1}(K) \subseteq f^{-1}(\text{Cl}_\theta K)\).

(c) \(\Rightarrow\) (d). Let \(x \in X\) and let \(V\) be an open neighborhood of \(f(x)\). Since \(\text{Cl} V\) is a \(\theta\)-neighborhood of \(f(x)\), \(f(x) \notin \text{Cl}_\theta (Y \setminus \text{Cl} V)\). Hence \(x \notin f^{-1}(\text{Cl}_\theta (Y \setminus \text{Cl} V))\).

By (c) \(x \notin \text{Cl}_\delta f^{-1}(Y \setminus \text{Cl} V)\). Thus there is a neighborhood \(U\) of \(x\) such that \((\text{Int} \text{Cl} U) \cap f^{-1}(Y \setminus \text{Cl} V) = \emptyset\). Then \(f(\text{Int} \text{Cl} U) \subseteq \text{Cl} V\). Since \(\text{Int} \text{Cl} U\) is a regular open, \(f: X_\delta \to Y\) is weakly continuous.

(d) \(\Rightarrow\) (a). Let \(x \in X\) and let \(V\) be an open neighborhood of \(f(x)\). Since \(f: X_\delta \to Y\) is weakly continuous, there exists a \(\delta\)-open set \(W\) containing \(x\) such that \(f(W) \subseteq \text{Cl} V\). Then there is a regular open set \(U\) for which \(x \in U \subseteq W\). Then \(f(\text{Int} \text{Cl} U) = f(U) \subseteq f(W) \subseteq \text{Cl} V\) and hence \(f\) is weakly \(\delta\)-continuous.

4. NEAR-OPEN FUNCTIONS.

In this section weak openness and almost openness are characterized in terms of the concept of \(\theta\)-neighborhood.

THEOREM 7. A function \(f: X \to Y\) is weakly open if and only if for each \(x \in X\) and each \(\theta\)-neighborhood \(N\) of \(x\), \(f(N)\) is a neighborhood of \(f(x)\).

PROOF. Assume \(f\) is weakly open. Let \(x \in X\) and let \(N\) be a \(\theta\)-neighborhood of \(x\). Then there is an open set \(U\) such that \(x \in U \subseteq \text{Cl} U \subseteq N\). Since \(f\) is weakly open \(f(x) \in f(U) \subseteq \text{Int} f(\text{Cl} U) \subseteq \text{Int} f(N)\). Hence \(f(N)\) is a neighborhood of \(f(x)\).

Assume for each \(x\) in \(X\) and each \(\theta\)-neighborhood \(N\) of \(x\) that \(f(N)\) is a neighborhood of \(f(x)\). Let \(U\) be an open set in \(X\). Suppose \(x \in U\). Since \(\text{Cl} U\) is a \(\theta\)-neighborhood of \(x\), \(f(\text{Cl} U)\) is a neighborhood of \(f(x)\). Hence \(f(x) \in \text{Int} f(\text{Cl} U)\). Thus \(f(U) \subseteq \text{Int} f(\text{Cl} U)\) and \(f\) is weakly open.

The proof of the following theorem is similar and is omitted.

THEOREM 8. A function \(f: X \to Y\) is almost open if and only if for each \(x \in X\) and each neighborhood \(N\) of \(x\), \(\text{Cl} f(N)\) is a \(\theta\)-neighborhood of \(f(x)\).

Theorem 7 and the characterizations of near-continuous functions in Section 3 suggest the following definitions of near-open functions.

DEFINITION 4. A function \(f: X \to Y\) is said to be \(\theta\)-open (strongly \(\theta\)-open, almost strongly \(\theta\)-open, weakly \(\delta\)-open) if for each \(x \in X\) and each \(\theta\)-neighborhood \(N\) of \(x\), \(f(N)\) is a \(\theta\)-neighborhood of \(f(x)\).

The following theorems characterize these near-open functions in terms of the closure and interior operators. Since the proofs are all similar, only the first theorem is proved.

THEOREM 9. A function \(f: X \to Y\) is \(\theta\)-open if and only if for each \(x \in X\) and each open neighborhood \(U\) of \(x\), there exists an open neighborhood \(V\) of \(f(x)\) such that \(\text{Cl} V \subseteq f(\text{Cl} U)\).
PROOF. Assume $f: X \to Y$ is θ-open. Let $x \in X$ and let U be an open neighborhood of x. Since $f(Cl U)$ is a θ-neighborhood of $f(x)$, there exists an open set V such that $f(x) \in V \subseteq Cl V \subseteq f(Cl U)$.

Assume that for each $x \in X$ and each open neighborhood U of x there exists an open neighborhood V of $f(x)$ for which $Cl V \subseteq f(Cl U)$. Let $x \in X$ and let N be a θ-neighborhood of $f(x)$. Then there is an open set U for which $x \in U \subseteq Cl U \subseteq N$. There exists an open set V such that $f(x) \in V \subseteq Cl V \subseteq f(Cl U) \subseteq f(N)$. Hence $f(N)$ is a θ-neighborhood of $f(x)$ and f is θ-open.

THEOREM 10. A function $f: X \to Y$ is strongly θ-open if and only if for each $x \in X$ and each open neighborhood U of x, there exists an open neighborhood V of $f(x)$ such that $Cl V \subseteq f(U)$.

THEOREM 11. A function $f: X \to Y$ is almost strongly θ-open if and only if for each $x \in X$ and each open neighborhood U of x there exists an open neighborhood V of $f(x)$ such that $Cl V \subseteq f(Int Cl U)$.

THEOREM 12. A function $f: X \to Y$ is weakly δ-open if and only if for each $x \in X$ and each open neighborhood U of x, there exists an open neighborhood V of $f(x)$ such that $Int Cl V \subseteq f(Cl U)$.

We have the following implications: almost open \Rightarrow st. θ-open \Rightarrow almost st. θ-open \Rightarrow θ-open \Rightarrow weak δ-open \Rightarrow weak open. The following examples show that these implications are not reversible.

EXAMPLE 1. Let $X = \{a, b\}$, $T_1 = \{X, \emptyset, \{a\}\}$, $Y = \{a, b, c\}$, and $T_2 = \{Y, \emptyset, \{a\}, \{a, b\}\}$. The inclusion mapping: $(X, T_1) \to (Y, T_2)$ is weak open but not weak δ-open.

In the next example the space (Y, T_2) is from Example 2.2 in Noiri and Kang [9].

EXAMPLE 2. Let (X, T_1) be as in Example 1. Let $Y = \{a, b, c, d\}$, and $T_2 = \{Y, \emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$. The inclusion mapping: $(X, T_1) \to (Y, T_2)$ is weak δ-open, but not θ-open.

EXAMPLE 3. Let (Y, T_2) be as in Example 2. The identity mapping: $(Y, T_2) \to (Y, T_2)$ is θ-open but not almost strongly θ-open.

EXAMPLE 4. Let $X = \{a, b, c\}$, $T_1 = \{X, \emptyset, \{a\}, \{a, c\}\}$ and $T_2 = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$. The identity mapping: $(X, T_1) \to (X, T_2)$ is almost strongly θ-open and almost open, but not strongly θ-open.

REFERENCES

Special Issue on
Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>March 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>June 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>September 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

Edson Denis Leonel, Department of Statistics, Applied Mathematics and Computing, Institute of Geosciences and Exact Sciences, State University of São Paulo at Rio Claro, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob’evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru