Intermat. J. Math. & Math. Scd. 371
VoL. 6 No. 2 (1983) 371-386

THE COMBINATIONAL STRUCTURE OF
NON-HOMOGENEOUS MARKOV CHAINS WITH
COUNTABLE STATES

A. MUKHERJEA and A. NAKASSIS

University of So. Florida, Tampa, FL. 33620
and American University, Washington, D. C. 20016

(Received June 16, 1982)

ABSTRACT. Let P(s,t) denote a non-homogeneous continuous parameter Markov chain with
countable state space E and parameter space [a,b], — ® < a < b < =, Let R(s,t) =
{(1,3) = Pij(s,t) > 0}. It is shown in this paper that R(s,t) is reflexive, transi-
tive, and independent of (s,t), s < t, if a certain weak homogeneity condition holds.
It is also shown that the relation R(s,t), unlike in the finite state space case,
cannot be expressed even as an infinite (countable) product of reflexive transitive
relations for certain non-homogeneous chains in the case when E is infinite.O
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lations, homogeneity condition.
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1. INTRODUCTION AND STATEMENTS OF RESULTS

Throughout this paper, P(s,t) will denote a non-homogeneous continuous parame-
ter Markov chain with countable state space E and parameter space [a,b],
~® < a <b < », such that P is a function from the domain space

D= {(s,t): a <s <t <b}
into S, the set of countable stochastic matrices with state space E such that the
following conditions hold:

(i) Pij(s,t) is separately continuous in s and in t;
(i1) P(s,t) = P(s,u)P(u,t) if a <s <u <t < b;

(iii) Pij(t,t) = éij.
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One important result for homogeneous Markov chains (i.e. when P(s,t) above is
a function of t-s alone) is the classical Austin-Ornstein result, namely that if
P(u) = P(s,s + u), then for i,j € E,

Fij(u) > 0 for some u = > _ij(u) >0 ¥ u.
This means that the relation

R = {(i,3): Fij(u) > 0} (1.1)
is independent of u; it also follows that R is reflexive and transitive.
Conversely, given any reflexive and transitive relation R on E, there exists a stand-
ard homogeneous Markov chain P(t) on E satisfying (1.1). Thus, it is natural to ask
what an analogous result for non-homogeneous Markov chains should be. Kingman and
Williams (see Theorem 3, [2]) have shown when E is finite that the relation R(s,t)
defined by

R(s,t) = {(4,3): Pij(S,t) > 0} (1.2)
can be expressed as a finite product of reflexive and transitive relations on E. It
was also mentioned in [2] that "Our main result is Theorem 3, ... The methods de-
pend heavily on the finiteness of E, and a generalization to infinite state spaces
would require new techniques." Our aim in this paper is to tackle the case when E is
infinite.

Before we state our main results, let us point out that with no loss of genera-

lity, the non-homogeneous chain P defined on D can be considered as defined on the

domain
D' = {(s,t): - » < s <t < =}

in the following way. Define

A
o
A
t
-

P(s,t)

P(s,b) if a < s <

Iif b <s < t;

P(a,t) if s < a < t;

Iif s <t < a;

P(a,b) if s < a

A

b < t.
Notice that with this definition P is a non-homogeneous chain on D' satisfying again
conditions (i), (ii) and (iii).

Let us also point out that Theorem 1 in [2] (with the same proof) remains true
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even for E infinite so that for s < t and (s,t)C (u,v),

R(s,t) is reflexive and R(s,t) C R(u,v). (1.3)
In the rest of this section, we state our results. The state space E is always infi-
nite unless otherwise mentioned. Our main results are Theorems 1 and 2. Theorem 2
shows that the Kingman-Williams result for finite non-homogeneous Markov chains is
false in the infinite case. (This problem, though mentioned in [2], was left un-
solved in [2].) Theorem 1 presents a necessary and sufficient condition for an
Austin-Ornstein type theorem for non-homogeneous Markov chains with countable states
in terms of a weak homogeneity condition. It is doubtful to us if this condition can
be any further weakened while maintaining the same conclusion. Among other results,
there is a proposition in section 2 that holds even in the infinite case and gives a
simple proof of the main result in [2]. Finally, in section 3, we present several
results for infinite products of reflexive transitive relations on positive integers.
Here are our results.

THEOREM 1. (a) Let s be a fixed time parameter. Suppose that for each posi-
tive B, there is a h, 0 < h < B, such that for each positive integer m, the following
condition holds:

R(s+mh,s+(m+1)h) C R(s+(m-1)h,s+mh). (1.4)
™-en the relation R(s,t) is reflexive, transitive, and independent of t (for t > s).

(b) Consider the following weak homogeneity condition: for every real s and

and for each positive B, there is a h (depending on s) such that 0 < h < B and for
each positive integer m,

R(s+(m-1)h,s+mh) = R(s+mh,s+(mtl)h). (1.5)
Then the relation R(s,t) is reflexive, transitive, and independent of (s,t), s < t,

iff condition (1.5) holds.OD

THEOREM 2. There are non-homogeneous Markov chains P where the relation R(s,t)
cannot be expressed as a finite product of reflexive and transitive relations.O

Our next theorem gives a sufficient condition for R(s,t) to be a product of
reflexive, transitive relations. The conditions (i) and (i1) considered in this theo-

rem are natural in the sense that they hold in the finite dimemsional situation (see

Theorem 5, [2]).
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THEOREM 3. Suppose that for each t, there exists ht > 0 such that
(1) t-ht <t' <t=> R(t',t) = R(t—ht,t) and
(41) t<t'' < t+ht => R(t,t")=R(t,t+ht)

hold. Then for (s,t) € D, there exist reflexive, transitive relations T,,T,,...,T
1°72 m

such that R(s,t)=T1T2...Tm.D

THEOREM 4, Let t <t - t as n > ®, Then for i#j,

n+l

[ -]
;1 I“ij(tn’tn+].) <o
Also if s, < 8,1 > s as n > x, then for i#j,

= ij(sn+1’sn) < =

P
1
f %i% Pij(s,t)=0 uniformly in all i different from j (for each j),

then for tn <t -+ t, we have: for each i,

n+l
Y T Pi(tpetyyy) < =0
n=1 k#i

We remark that though Theorem 4 is not combinatorial in nature and therefore
does not blend well in this respect with out other results, we include it here since
it uncovers a structural property of a non-homogeneous chain which is by no means ob-
vious and seems to be missing in the literature even in the homogeneous case.

THEOREM 5. There exists a non-homogeneous Markov chain P such that the rela-
tion R(s,t) cannot be expressed as an infinite forward product T1T2""Tn"°"" of
reflexive transitive relations on E.G

THEOREM 6. There exists a non-homogeneous Markov chain P such that the rela-
tion R(s,t) cannot be expressed as an infinite backward product ”"Inzn+1"'zi of
reflexive transitive relations on E.D

THEOREM 7. There exists a non-homogeneous Markov chain P such that the rela-
tion R(s,t) cannot be expressed as an infinite 2-sided product
""Inln+1"'E1T0Tl""Tn-lTn"" of reflexive transitive relations on E.O

THEOREM 8. Let (Tn)n:1 be a sequence of reflexive transitive relations on E.

Then there is a non-homogeneous Markov chain P on [a,b], uniformly continuous sepa-

rately in each variable, such that R(a,b) = T1T2.....Tn......D
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One can also obtain theorems analogous to Theorem 8 for infinite backward as
well as two-sided products of reflexive transitive relations. The proofs of Theorems
5, 6 and 7 are contained in the example considered in section 3. The proof of Theo-
rem 8 is also contained in section 3. The proofs of Theorems 1, 2, 3 and 4 are given

in section 2.

2. DISCUSSION AND PROOFS (of the first four theorems)

Notice that there are simple examples of non-homogeneous Markov chains where
R(s,t) is not independent of t for a given s. For example, consider the two standard

homogeneous chains Q(t) and S(t) with state space {1,2} such that

-t -t
Q) =(1 °>, S(t) = (e 1-e )
01 0 1

Let the non-homogeneous chain P be defined by

P(s,t)

Q(t-s) if s

A

t

A

1;

S(t-s) if 1

| A

)

| A

t;

]

Q(1-s)s(t-1) if s <1 < t.
Let s < 1. Then Plz(s,l) = 0, whereas Plz(s,Z) > 0.
As we can see in this example (see also [2]), in the finite dimensional case the non-
homogeneous chains are in principle, formed by taking together several homogeneous
chains in a manner shown in the example, In the infinite dimensional case, however,
it will appear from our results in this paper that non-homogeneous Markov chains are,
in general, results of infinite products (forward, backward or two-sided) of homoge-
neous Markov chains.

Before we go into the proofs of our main results, let us present a simple pro-
position., The main result in [2] follows immediately from this proposition.

PROPOSITION 1. Suppose that R(s,t) is not transitive. Then there exists v such
that s < v < t and R(s,t)=R(s,v)R(v,t)(see [2] for definition of composition of rela-
tions), where R(s,v) as well as R(v,t) is properly included in R(s,t).O

PROOF, Write R for R(s,t). There exist i,j,k in E such that (i,j) € R,
(j,k) € R, but (i,k) ¢ R. By separate continuity, there exists u, s < u < t, such

that ij(u,t) > 0. Since P(s,t)=P(s,u)P(u,t) and (i,k) ¢ R, we must have Pij(s,u)=0.
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Let

(s,u)=01}.

v = sup{u: s < u < t and Pij
Then, Pij(s,v)=0 and v < t. Also, ij(v,t)=0, since otherwise there exists
w, Vv < w < t, such that ij(w,t) > 0 and also (because of the supremum property of v)
Pij(s,w) > 0, which mean that Pik(s,t) > 0, contradicting the assumption that (i,k) ¢
R. This means that R(s,v) and R(v,t) are both properly included in R.C

PROPOSITION 2. Let E be finite. Then given (s,t) € D, there exist

s < u1 < u2 S um <t

such that R(s,t)=R(s,ul)R(ul,u2)....R(um,t) where each relation on the right side is
reflexive and transitive.n

PROOF. This proposition follows by applying Proposition 1 repeatedly.

Now we present proofs of our main results.

PROOF OF THEOREM 1. With no loss of generality, we assume that P(s,t) is de-
fined on D = {(s,t): -» < s < t < @}, We follow closely the proof given on pages
126-128 of [1] (see Theorem 5, p. 126, [1]). We briefly sketch the proof. By.(3),
if x <y < z, then R(X,y) C R(x,z). Therefore, let us suppose, if possible, that
there exist i,j € E such that

Pij(s,t)=0 whenever s < t <t
where
t, = sup{t: Pij(s,t)=0}.
We assume that t, is finite. The theorem will be proven by reaching a contradiction.
Choose t' such that t < t' < 2t -s. Then P, (s,t') > O.
o o ij
Let ¢ > 0 such that
"=
Pij(s,t )=2c. (2.1)
Choose B > 0 such that Pij(s’t) >cif s < t'-B <t < t' +B and such that
t' + B < 2t0-s. Note that for sufficiently large m,

t'-s .\ c U t'-s t'-s+8
o, 4m ) nem Cén *  dm )"

This means that using compactness of the interval [s,t'] and separate continuity of

the mapping t - P(s,t), it follows that there exists a sufficiently large positive
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N such that ¥ t ¢ [s,t'],

2 P (s,t) <S (2.2)
> N ik 4

t'-s t'-s+8
4N 4N

and the interval ( ) contains a positive h that satisfies (1.4) and
Pij(s,s+4Nh) > c. (2.3)

Now we define the set Am, ¥m>1, by
Am={k: Pik(s,s+mh) > 0}. (2.4)

Then Am(: Am+ and it follows by assumption (1.4) that for m > 2, kE:Am_1 and

1

k' ¢ Am, we have:

Pkk,(s+mh,s+(m+l)h) =0 (2.5)
since
0=Pik,(s,s+mh)= ég? Pik(s,s+(m-1)h)Pkk,(s+(m—1)h,s+mh).
m-1

Using (2.5) and noting that j € A N while j ¢ A it follows as in the proof in

4 2N°

[1] that the sets

BIEAl and BmEAm-Am_l(Z < m < 2N)

are all nonempty and pairwise disjoint. One can then reach a contradiction by follow-
ing the same procedure as given in the proof in [1]. This completes the proof of
part (a).

To prove part (b) of the theorem, let us first show that under condition (1.5)
we have: for s < u < t, R(s,t)=R(u,t). To this end, let 0 < B < min{u-s,t-u}, where
s < u < t., By assumption then there existsah, 0 < h < B, satisfying (1.5). Let m
be the smallest positive integer such that

s < s+mh < u < s+(mtl)h < t.
Then we have:

Pij(s,t) >0

=> Pij(s,s+h) > 0 (by part (a) of this theorem)



378 A. MUKHERJEA and A. NAKASSIS

=> Pij(s+(1n+1)h,s+(m+2)h) >0 (by condition (1.5))
=> Pij(s+(m+1)h,t) > 0 (the reason being that part (a) applies if
t < s+(m+2)h, and (1.3) applies otherwise)
=> Pij(u,t) > 0 (by (1.3)).
This proves that R(s,t)=R(u,t) whenever s < u < t and condition (1.5) holds. This
result along with part (a) and the reflexivity property in (1.3) implies immediately
the conclusion in part (b).O
Now we prove the following lemma which will be needed in the proof of Theorem 2.
LEMMA. Let n be a given positive integer. Then there exists a non-homogeneous
Markov chain P with state space {1,2,...,n} such that for some s < t, R(s,t) cannot
be written as a product T1T2...Tm, where each Ti is reflexive and transitive and
m < n-1.0

PROOF. Let us define the relations R R2""’Rn— as follows:

1’ 1
Rk={(i,i): 1 <i<n}lU{(o-k,n-k+1)}, 1 < k < n-1. (2.6)

Then each Rk is reflexive and transitive, and the product

R=R;R,...R ,={(i,i): 1 <1 <n}U {(i,i+1): 1 <i < n-1 . (2.7)

By line 21, p. 82 in [2], R is embeddable; that is, there exists a non-homogeneous
Markov chain P such that R(a,b)=R.
Now suppose that there are m, m < n-1, reflexive transitive relations

Tl’Tz""’Tm such that
R=T1T2...Tm. (2.8)
We claim that

(i,i+1) ¢ T1 if i+l < n; also T,C R. (2.9)

1

Notice that T1T1=Tl so that Tle; R. If (i,i+l) ¢ Tl

(i+1,i+2) € R for i < n-2, (i,i+2) ¢ R for some i < n-1. This contradicts (2.6).

for sane i < n-1, then since

Thus (2.9) is verified. Now it follows from (2.7), (2.8) and (2.9) that the rela-

tion R(l) defined by

RV _{(4,i41): 1 < 1 < n-2}

C 1,T;...T C R. (2.10)

It again follows as in (2.9) that
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(i,i+1) ¢ T2 if i+l < n-1

(2)

so that the relation R defined by

R(2)={(i,i+l): 1 <i<n-3}C T3...ng R.
Continuing, we see that if m < n-1, then
{(1,2),(2,3)}1C T, C R
Since Tm is transitive, (1,3) € Tm{; R. This contradicts (2.7) and the lemma
follows.O
PROOF OF THEOREM 2. Define the sets Ai’ i > 1, as follows:
A= a0t

©

Consider the state space E = 531 1 For each positive integer k, let P

(k)

be a non-
homogeneous Markov chain with state space Ak defined as in the lemma. Define the

non-homogeneous Markov chain P with E as state space as follows:
P, (s,00=P (s,t) if (1,§) ¢ A x A
ij =2 ij > i Ak Ak’
=0 if (i,j) € Ak x Ak (kl# k2).
1 2
Note that by construction, the relation R(k)(a,b), a and b remaining the same for all

k- . s
k, cannot be expressed as a product of fewer than 2 l-1 reflexive transitive rela-

tions on Ak' Now if we write

R(a,b)=TlT2...Tm (the Tis are reflexive transitive), then since
each T1§; R(a,b), (i,3) ¢ Ti if (1,3) € Akl x Akz (kl#kz).

(k)

This means that if Ti is the restriction of Ti on Ak x Ak’ then

R (a,0)=1) 1) . {0,

This is a contradiction since then m cannot be finite.OD

PROOF OF THEOREM 3. Observe that if ht is as in conditions (i) and (ii), then
the relations R(t',t) as well as R(t,t'') is reflexive and transitive, where t' and
t'' are as described in the theorem. Reflexivity follows from (1.3). For the transi-

tive property, suppose that P,.(t',t) > 0 and ij(t',t) > 0. By separate continuity,

ij
there exists, u, t' < u<t, such that Pij(t',u) 0. Since by condition (i),
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R(t',t)=R(u,t), ij(u,t) > 0. Therefore, Pik(t',t) > P, (t',u)ij(u,t) > 0. Thus,

]
R(t',t) is transitive. Similarly, R(t,t'') is also transitive. The theorem now
follows easily by using compactness of the interval [s,t].O

PROOF OF THEOREM 4. Write Pn=P(tn,t

). Then Qk= %ig P Pn exists

o+l k+1Pk427 "

and equals P(tk+l,t) so that %ig Qk = I. We can also make similar observations using
backward products. The theorem now follows immediately from related results proven
in detail in [3].D

3. INFINITE PRODUCTS OF REFLEXIVE AND TRANSITIVE RELATIONS

In this section, we will consider a second example to show that for a non-homo-
geneous Markov chain P with countable states, the relation R(s,t) need not be even
of the form

TlTZ....Tn....

where each Ti is reflexive and transitive. Here an infinite product simply means a
relation that is the union of all the finite partial products of the Ti's in the same
order. It will be clear that the same result remains true even if we consider pro-

ducts of the form

....T_1 or ""T—nT—n+1'"T-lTOTl'""TnTn+l°"°'

T—nT—n+1
where each Ti is reflexive and transitive. We will also show that given any such
infinite product, there is always a non-homogeneous Markov chain P on [a,b] such that

R(a,b) is the given infinite product.

First, the example. Let E={1,2,3,...} be the state space and let

S <8 41 8, S eee. <8, < s=t and %ig s, = s- We know that there exists
on each interval [Sn+1’sn] a homogeneous Markov chain P(n) with state space E such
that

R(n)(s -s_,,) = {(n+l,n+2)}UU

n n+l 4 4

where U0={(i,i): 1<ic< o}

(Notice that above one could actually define P(n)(u) as follows:

n)

N

Pi (u) = 1 if i=j#n+l,

exp(-u) if i=j=n+1,
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= 1- exp(-u) if i=n+l and j=n+2).
Let us now define P on subintervals of [s,t] as follows:

Case 1. Let s <u <v < t. In this case, there exist positive integers n,,n,

such that
s <uU<S_ < ..... <SS <V<S_ ..
nl+1 n, n, n, 1
(n)) (n,;-1) (n,-1)
We define P(u,v)= P (s -u)P (s -s_ )....P (v-s_ ).
n, nl—l n, n,

Case 2. s=u < v. Suppose that s < v f_sm. Note that because of our definition

mtl

in Case 1, we have for n > m:

Pij(sn’v) 1 if either i=j < m+l or i=j > n,

exp(-(v-sm+1)) if i=j=mt+l,
= exp(-(s,-s, 1)) if mHl < i=j=k+l < n.

This clearly shows that %&g P(sn,v) exists and we define
P(s,v)= %}g P(sn,v).

It is now easy to see that P as defined above is a separately continuous non-homo-
geneous Markov chain and R(s,t) is given by
R(s,t) = UOIJ {(i,i+1): i € E}.

We claim that R(s,t) cannot be written in the form T T2, where T, is reflexive and

1 1

transitive, T1 # UO, and T, any reflexive relation. To see this, notice that if

2
72 :

1T2 1 l—Tl. Since Tl# U0 and Tl(: R, there is a i € E

such that (i,i+l) € T Since (i+l,i+2) € R, this means that (i,i+2) € R and this is

R=T.T, as above, then T.R=R since T
1
a contradiction. Thus, R(s,t) cannot be written as an infinite product of reflexive
transitive relations. We also claim that this R(s,t) cannot be written even in the
form

e T T e T T T e T T e

where the Ti's are reflexive and transitive and different from Uo. To prove this
claim, let us suppose that R has this form. Since T_l# UO and T_lC:R(s,t), there is
an io € E such that (10,10+l) € T—l'

R, must be in Tm for some m, but this m must be less than -1 since otherwise the ele-

The element (iO+1, i0+2), being an element of
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Tnent (io,i0+2) would be in R. Repeating this argument, it follows that
-1
(G 3 >4} C v 1.
is—o 1
Since for each i ¢ E, (i,i+l) € Tm for some m, this means that there is a positive
integer N such that
N
R(s,t)C U T,.
i
==
Since we can assume with no loss of generality that any two consecutive Ti's are
distinct, there is a m > N such that (i,i+l) e Tm for some i > 1. But since
(i-1,1) ¢ Tn for some n < N, this means that (i~1,i+2) ¢ R, and this is a contradic¢-
tion. Let us point out that in the above example the relation R(s,t) can be written,
however, in the form ""T—nT—n+l""T—1’ where T_n= U0 J {(n,n+1)} is reflexive and

transitive for each n. However, if we modify the above example so as to have
(n) _
RV (s 4158 ={(at1,n) }UT,,

then again we have a non-homogeneous Markov chain P such that R(s,t) cannot be ex-

pressed in the form ""T—nT—n+1"'T—l’ where each ’I‘i is reflexive and transitive.

In what follows, we show that given an infinite product (forward, backward or
two-sided) of reflexive and transitive relations on E, we can always construct a non-
homogeneous Markov chain P on a given interval [a,b] such that R(a,b) is the given
infinite product. First, a useful proposition.

PROPOSITION 3. Let O < c < 1. Suppose that T is any given reflexive and transitive
relation on E. Then there is a homogeneous Markov chain P(t) on [0,®) such that

lim P(t) = P(0), R(t)=T, and

t+0+
1

0 <t<, o =>[[P(O)-I[] < 2ct.0
(Here, || A || = sup ]Aijl-)

i,j

o 1

Proof. Let O < c_ < 1 such that 2: ¢ =< <. Define the matrix D with state

n &, n 2 2
space E such that

D,. =c, if (i,j) € T and i#j;

ij k|
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0 if (i,3) £ T;

==Y ¢ if i=j.
Wi K

Notice that it follows easily by induction that

CO D (Dn)ij = 0 for each positive integer n;
j=1

(2) [IDnll f_cn for each positive integer n.

Define P(t) = exp(tD). Then P(t) is well-defined and a stochastic matrix for each t

It is also verified easily that T=R(t). Notice that if 0 < 2ct < 1, then

[|p(t)-1]] ct. [T+ct+elti+. . ]

IS

ct/[l-ct] < 2ct.O

PROOF OF THEOREM 7. Choose a sequence (Sn) such that
(n)

1 < Sy < t...< s -+ b. For each Tn’ define P , a homogeneous

a=s
n+1

(n)(S

Markov chain as constructed in Prop. 3, such that R ) = Tn. We now define

-s
n+tl "n

a non-homogeneous Markov chain P on subintervals of [a,b) as follows:
If u, v are such that

s <u<s < vee. < < <
Smip — ¥ ° Smip+l’

then define

Yo . p®P) gy,

P(u,v)=P(m) (sml-u)Pml)(s p

2 Skl

We claim that lim P(u,v) exists and is a stochastic matrix. Once we prove
v->b-

this, we will define P(a,b) as the limit of P(a,v) as v - b-.
It will be sufficient to show that for each u ¢ [a,b),

(i) 1lim Pij(u’v) exists (for i,j in E) and (ii) given € > 0 and i € E, there
v->b-

is a positive integer N and a § > 0 such that

N
Zpij(u,v) >1-c¢
j=1

whenever u < vand b - § < v <b.
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To establish the above results, we choose o such that

1
m_>_mc$b - sm<2c'

Let n >m  and s_ < v < V' Then for u < v,

< s
0 n -

n+l’
—-— '
lPij(u’v) Pij(u,v )

= :Pij(u,v) - E; Pik(u,v)ij(v,v')|

A

- 1 1
Pij(u,v).|1 Pij(v,v )|+ E;jPik(u,v)ij(v,v )

A

2¢c.(v'-v)

so that

[[P(u,v) = P(u,v") || < 2c(v'-v).

Now if s_ < v <'s and s <v' then

<
n —

sn+p+1 ’

[|PCu,v) = PCu,v")]]|

< ||P(u,v) - P(u,sn+1)||
+ ”P(U,Sn+1) - P(U,Sn+2) ll
Fouinns HlPCus ) - P(u,v") ||

| A

2c(v'-v), by (3.1).
ffaking u = v, we have
[IT - PGv,v) || < €
whenever v'-v < €/2c'
Choose 6§ > 0 such that b - § <v <v'< b > v - v < e/zc-

Then for v = b - §, let N be such that

N
Z Pij(u’v)>l - €.
j=1

kince

(3.1)

(3.2)

(3.3)
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N N
P..(u,v') > P, . (u,v)P . (v,v'")
j§1 ij jgl ij ii

> 1 - 2, by (3.2) and (3.3)

the theorem follows.O
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