CONVERGENCE THEOREMS AND STABILITY RESULTS FOR LIPSCHITZ STRONGLY PSEUDOCONTRACTIVE OPERATORS

ZEQING LIU, LILI ZHANG, and SHIN MIN KANG

Received 17 December 2001

Suppose that $X$ is an arbitrary real Banach space and $T : X \to X$ is a Lipschitz strongly pseudocontractive operator. It is proved that under certain conditions the Ishikawa iterative method with errors converges strongly to the fixed point of $T$ and this iteration procedure is stable with respect to $T$.

2000 Mathematics Subject Classification: 47H05, 47H06, 47H14, 47H10.

1. Introduction and preliminaries. Let $X$ be a real Banach space and $J$ denote the normalized duality mapping from $X$ into $2^X^*$ given by

$$ Jx = \{f \in X^* : \langle x, f \rangle = \|x\|^2 = \|f\|^2 \}, \quad (1.1) $$

where $X^*$ denotes the dual space of $X$ and $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. In the following, $I$ denotes the identity operator on $X$. An operator $T$ with domain $D(T)$ and range $R(T)$ in $X$ is called strongly pseudocontractive if there exists a constant $t > 1$ such that for given $x, y \in D(T)$, there exists $j(x - y) \in J(x - y)$ satisfying

$$ \langle Tx - Ty, j(x - y) \rangle \leq \frac{1}{t} \|x - y\|^2. \quad (1.2) $$

If $t = 1$ in (1.2), then $T$ is called pseudocontractive. Interest in pseudoncontractive mappings stems mainly from their firm connection with the important class of accretive operators, where an operator $T$ is called accretive if for each $x, y \in D(T)$, there exists $j(x - y) \in J(x - y)$ satisfying

$$ \langle Tx - Ty, j(x - y) \rangle \geq 0. \quad (1.3) $$

Furthermore, $T$ is called strongly accretive if there exists a constant $k \in (0, 1)$ such that for given $x, y \in D(T)$, there exists $j(x - y) \in J(x - y)$ satisfying

$$ \langle Tx - Ty, j(x - y) \rangle \geq k \|x - y\|^2. \quad (1.4) $$

It follows easily from (1.2), (1.3), and (1.4) that $T$ is strongly pseudocontractive (resp., pseudocontractive) if and only if $(I - T)$ is strongly accretive (resp., accretive), so that
the mapping theory for strongly accretive operators (resp., accretive operators) is intimately connected with the fixed point theory of strongly pseudocontractive operators (resp., pseudocontractive operators). It is well known [4] that if \( T : X \to X \) is a Lipschitz strongly pseudocontractive operator, then \( T \) has a unique fixed point.

Next we recall the definition of stability. Let \( X \) be a Banach space and \( T \) be a mapping from \( X \) into \( X \). Let \( x_0 \in X \) and \( x_{n+1} = f(T,x_n) \) define an iteration procedure which yields a sequence of points \( \{x_n\}_{n=0}^{\infty} \) in \( X \). Suppose that \( F(T) = \{x \in X : Tx = x\} \neq \emptyset \) and that \( \{x_n\}_{n=0}^{\infty} \) converges to a fixed point \( p \) of \( T \). Let \( \{y_n\}_{n=0}^{\infty} \) be an arbitrary sequence in \( X \) and \( \epsilon_n = \|y_{n+1} - f(T,y_n)\| \). If \( \lim_{n \to \infty} \epsilon_n = 0 \) implies \( \lim_{n \to \infty} y_n = p \), then the iteration procedure defined by \( x_{n+1} = f(T,x_n) \) is said to be \( T \)-stable or \( T \)-stable with respect to \( T \). Stability results for several iteration procedures for certain contractive definitions have been established in recent papers by several authors, (see [6, 10, 11, 12] and the references therein). In [6], Harder and Hicks showed how such a sequence \( \{y_n\}_{n=0}^{\infty} \) could arise in practice and demonstrated the importance of investigating the stability of various iteration procedures for various classes of nonlinear mappings.

It is our purpose in this paper to show that if \( X \) is an arbitrary real Banach space and \( T : X \to X \) is a Lipschitz strongly pseudocontractive operator, then under certain conditions the Ishikawa iterative method with errors converges strongly to the unique fixed point of \( T \). We also prove that this iteration procedure is stable with respect to \( T \). Our results generalize most of the results that have appeared recently. In particular, the results of [1, 2, 3, 5, 6, 8, 10, 11, 12, 13] and a host of others will be special cases of our theorems.

The following lemma plays a crucial role in the proofs of our main results.

**Lemma 1.1** [9]. Let \( \{a_n\}_{n=0}^{\infty}, \{b_n\}_{n=0}^{\infty}, \{c_n\}_{n=0}^{\infty} \) be three nonnegative real sequences satisfying the inequality

\[
a_{n+1} \leq (1 - w_n)a_n + b_n w_n + c_n \tag{1.5}
\]

for all \( n \geq 0 \), where \( \{w_n\}_{n=0}^{\infty} \subset [0,1], \sum_{n=0}^{\infty} w_n = \infty, \lim_{n \to \infty} b_n = 0 \), and \( \sum_{n=0}^{\infty} c_n < \infty \). Then \( \lim_{n \to \infty} a_n = 0 \).

**2. Main results.** In the sequel, \( k = (t - 1)/t \) and \( t \) is the constant appearing in (1.2) and \( L \) denotes the Lipschitz constant of \( T \) with \( L \geq 1 \).

**Theorem 2.1.** Let \( X \) be an arbitrary real Banach space and let \( T : X \to X \) be a Lipschitz strongly pseudocontractive mapping. Define the sequence \( \{x_n\}_{n=0}^{\infty} \) iteratively by \( x_0, u_0, v_0 \in X \),

\[
y_n = (1 - \beta_n)x_n + \beta_n Tx_n + v_n, \quad n \geq 0,
\]

\[
x_{n+1} = (1 - \alpha_n)x_n + \alpha_n Ty_n + u_n, \quad n \geq 0,
\]

where \( \{\alpha_n\}_{n=0}^{\infty}, \{\beta_n\}_{n=0}^{\infty} \) are two real sequences and \( \{u_n\}_{n=0}^{\infty}, \{v_n\}_{n=0}^{\infty} \) are two sequences in \( X \) satisfying the following conditions:
where $r \in (0, 1]$ is a constant. Then $\{x_n\}_{n=0}^{\infty}$ converges strongly to the unique fixed point of $T$.

**Proof.** It follows from [4, Corollary 1] that $T$ has a unique fixed point $p$ in $X$. Since $T$ is strongly pseudocontractive, it follows from (1.2) that for all $x, y \in X$, there exists $j(x - y) \in J(x - y)$ such that

$$\langle (I - T)x - (I - T)y, j(x - y) \rangle \geq k\|x - y\|^2. \quad (2.5)$$

Thus

$$\langle (I - T - kI)x - (I - T - kI)y, j(x - y) \rangle \geq 0, \quad (2.6)$$

and by [7, Lemma 1.1], we have

$$\|x - y\| \leq \|x - y + s[(I - T - kI)x - (I - T - kI)y]\| \quad (2.7)$$

for all $x, y \in X$ and $s > 0$. Using (2.1), we obtain that

$$(1 - \alpha_n)x_n = x_{n+1} - \alpha_n Ty_n - u_n$$

$$= [1 - (1 - k)\alpha_n]x_{n+1} + \alpha_n(I - T - kI)x_{n+1}$$

$$+ \alpha_nTx_{n+1} - \alpha_nTy_n - u_n. \quad (2.8)$$

Note that,

$$(1 - \alpha_n)p = [1 - (1 - k)\alpha_n]p + \alpha_n(I - T - kI)p. \quad (2.9)$$

It follows from (2.7), (2.8), and (2.9) that

$$(1 - \alpha_n)\|x_n - p\|$$

$$\geq [1 - (1 - k)\alpha_n]\|x_{n+1} - p + \frac{\alpha_n}{1 - (1 - k)\alpha_n}[(I - T - kI)x_{n+1} - (I - T - kI)p]\|$$

$$- \alpha_n\|Tx_{n+1} - Ty_n\| - \|u_n\|$$

$$\geq [1 - (1 - k)\alpha_n]\|x_{n+1} - p\| - \alpha_n\|Tx_{n+1} - Ty_n\| - \|u_n\|, \quad (2.10)$$

which implies that

$$\|x_{n+1} - p\| \leq \frac{1 - \alpha_n}{1 - (1 - k)\alpha_n}\|x_n - p\| + \frac{\alpha_n}{1 - (1 - k)\alpha_n}\|Tx_{n+1} - Ty_n\|$$

$$+ \frac{1}{1 - (1 - k)\alpha_n}\|u_n\|. \quad (2.11)$$
We have the following estimates:

\[
\|x_n - y_n\| \leq \beta_n \|x_n - T x_n\| + \|v_n\| \leq (L + 1) \beta_n \|x_n - p\| + \|v_n\|,
\]

\[
\|T y_n - y_n\| \leq (L + 1) \|y_n - p\| \leq (L + 1)(1 - \beta_n + L \beta_n) \|x_n - p\| + (L + 1) \|v_n\| \tag{2.12}
\]

\[
\leq L(1 + L \beta_n + L^2 (L + 1) \alpha_n) \|x_n - p\| + L(L + 1) \|v_n\| + \|u_n\|.
\]

From (2.1) and (2.12), we have

\[
\|T x_{n+1} - T y_n\| \leq L \|x_{n+1} - y_n\|
\]

\[
\leq L(1 - \alpha_n) \|x_n - y_n\| + \alpha_n L \|T y_n - y_n\| + L \|u_n\| \tag{2.13}
\]

\[
\leq [L(L + 1) \beta_n + L^2 (L + 1) \alpha_n] \|x_n - p\| + L(L + 1) \|v_n\| + \|u_n\|.
\]

Using (2.13) in (2.11), we get

\[
\|x_{n+1} - p\|
\]

\[
\leq \left\{ \frac{1 - \alpha_n}{1 - (1 - k) \alpha_n} + \frac{\alpha_n}{L(L + 1) \beta_n + L^2 (L + 1) \alpha_n} \right\} \|x_n - p\| + \frac{\alpha_n}{1 - (1 - k) \alpha_n} L \|v_n\| + \frac{L}{1 - (1 - k) \alpha_n} \|u_n\| \tag{2.14}
\]

\[
\leq \left[ 1 - \frac{\alpha_n}{1 - (1 - k) \alpha_n} k - L(L + 1) \beta_n - L^2 (L + 1) \alpha_n \right] \|x_n - p\| + D \alpha_n \|v_n\| + D \|u_n\|
\]

where \(D = (L^2 + L)/k\). It follows from (2.3) and (2.14) that

\[
\|x_{n+1} - p\| \leq (1 - r \alpha_n) \|x_n - p\| + D \alpha_n \|v_n\| + D \|u_n\|. \tag{2.15}
\]

Put \(a_n = \|x_n - p\|\), \(w_n = r \alpha_n\), \(b_n = (D/r) \|v_n\|\), and \(c_n = D \|u_n\|\) for any \(n \geq 0\). Then Lemma 1.1 ensures that \(\|x_n - p\| \to 0\) as \(n \to \infty\). This completes the proof.

**Theorem 2.2.** Let \(X, T\), \(\{x_n\}_{n=0}^{\infty}\), \(\{\alpha_n\}_{n=0}^{\infty}\), \(\{\beta_n\}_{n=0}^{\infty}\), and \(\{v_n\}_{n=0}^{\infty}\) be as in Theorem 2.1. Suppose that there exists a sequence \(\{y_n\}_{n=0}^{\infty}\) with \(\lim_{n \to \infty} y_n = 0\) and \(\|u_n\| = y_n \alpha_n\) for any \(n \geq 0\). Then \(\{x_n\}_{n=0}^{\infty}\) converges strongly to the unique fixed point of \(T\).

**Proof.** Just as in the proof of Theorem 2.1, we have

\[
\|x_{n+1} - p\| \leq (1 - r \alpha_n) \|x_n - p\| + D \alpha_n \|v_n\| + D \|u_n\| \tag{2.16}
\]

Put \(a_n = \|x_n - p\|\), \(w_n = r \alpha_n\), \(b_n = (D/r) (\|v_n\| + y_n)\), and \(c_n = 0\) for any \(n \geq 0\). Then Lemma 1.1 ensures that \(\|x_n - p\| \to 0\) as \(n \to \infty\). This completes the proof.

**Remark 2.3.** Examples 2.4 and 2.5 show that Theorems 2.1 and 2.2 extend properly [3, Theorem 1], [1, Theorem 4.2], and [5, Theorem 1].
**Example 2.4.** Let $X$, $T$ be as in Theorem 2.1 and

$$r = \frac{k}{2}, \quad \alpha_n = \frac{k}{4L^2(L+1)(n+1)}, \quad \beta_n = \frac{k}{4L(L+1)},$$

$$\|u_n\| = \frac{1}{(n+1)^2}, \quad \|v_n\| = \frac{1}{n+1}$$

(2.17)

for all $n \geq 0$. Then the conditions of Theorem 2.1 are satisfied. But [3, Theorem 1], [1, Theorem 4.2], and [5, Theorem 1] are not applicable.

**Example 2.5.** Let $X$, $T$, $r$, $\{v_n\}_{n=0}^{\infty}$, and $\{\beta_n\}_{n=0}^{\infty}$ be as in Theorem 2.1. Put

$$\alpha_n = \frac{k}{4L^2(L+1)\sqrt{n+1}}, \quad \|u_n\| = \frac{1}{n+1}$$

(2.18)

for all $n \geq 0$. Then the assumptions of Theorem 2.2 are fulfilled. However we do not invoke [3, Theorem 1], [1, Theorem 4.2], and [5, Theorem 1] to show the sequence $\{x_n\}_{n=0}^{\infty}$ converges strongly to the unique fixed point of $T$, because $\{\beta_n\}_{n=0}^{\infty}$ does not converge to 0.

Now we prove the Ishikawa iterative procedure with errors is stable with respect to Lipschitz strong pseudocontraction.

**Theorem 2.6.** Let $X$, $T$, $\{u_n\}_{n=0}^{\infty}$, and $\{v_n\}_{n=0}^{\infty}$ be as in Theorem 2.1. Define the sequence $\{x_n\}_{n=0}^{\infty}$ iteratively by $x_0, u_0, v_0 \in X$,

$$z_n = (1 - \beta_n)x_n + \beta_nTx_n + v_n, \quad n \geq 0,$$

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_nTz_n + u_n, \quad n \geq 0,$$

(2.19)

where $\{\alpha_n\}_{n=0}^{\infty}$ and $\{\beta_n\}_{n=0}^{\infty}$ are two real sequences satisfying (2.4) and

$$0 < a \leq \alpha_n \leq 1, \quad 0 \leq \beta_n \leq 1, \quad n \geq 0;$$

$$\lim_{n \to \infty} \|v_n\| = \lim_{n \to \infty} \|u_n\| = 0,$$

(2.20)

(2.21)

where $a$ is a constant. Let $\{y_n\}_{n=0}^{\infty}$ be an arbitrary sequence in $X$. Define $\{\epsilon_n\}_{n=0}^{\infty} \subset [0, \infty)$ by

$$w_n = (1 - \beta_n)y_n + \beta_nTy_n + v_n, \quad n \geq 0,$$

$$\epsilon_n = \|\gamma_{n+1} - (1 - \alpha_n)y_n - \alpha_nT\gamma_n + u_n\|, \quad n \geq 0.$$  

(2.22)

Then,

1. the sequence $\{x_n\}_{n=0}^{\infty}$ converges strongly to the fixed point $p$ of $T$;
2. $\|y_{n+1} - p\| \leq (1 - ar)\|y_n - p\| + \epsilon_n + D\|v_n\| + D\|u_n\|, \quad n \geq 0$, where $D = (L^2 + L)/k$;
3. $\lim_{n \to \infty} y_n = p \iff \lim_{n \to \infty} \epsilon_n = 0$.

**Proof.** It follows from Theorem 2.1 that $x_n \to p$ as $n \to \infty$. This completes the proof of (1).
Using (2.22), we have
\[\|y_{n+1} - p\| \leq \epsilon_n + \|(1 - \alpha_n)y_n + \alpha_n T w_n + u_n - p\|.\] (2.23)

Set \(P_n = (1 - \alpha_n)y_n + \alpha_n T w_n + u_n\), then \((1 - \alpha_n)y_n = P_n - \alpha_n T w_n - u_n\). As the proof in Theorem 2.1 and by (2.20), we obtain that
\[\|P_n - p\| \leq (1 - \alpha_n r)\|y_n - p\| + D\alpha_n\|v_n\| + D\|u_n\|.\] (2.24)

Hence \(\|y_{n+1} - p\| \leq (1 - \alpha r)\|y_n - p\| + \epsilon_n + D\|v_n\| + D\|u_n\|.\) This completes the proof of (2).

Now suppose that \(\lim_{n \to \infty} y_n = p\). Then
\[
\epsilon_n = \|y_{n+1} - (1 - \alpha_n)y_n - \alpha_n T w_n - u_n\| \\
\leq \|y_{n+1} - p\| + \|(1 - \alpha_n)y_n + \alpha_n T w_n + u_n - p\| \\
\leq \|y_{n+1} - p\| + (1 - \alpha r)\|y_n - p\| + D(\|v_n\| + \|u_n\|). \] (2.25)

It is easy to verify that \(\epsilon_n \to 0\) as \(n \to \infty\).

Next suppose that \(\lim_{n \to \infty} \epsilon_n = 0\). From (2.23) and (2.24), we obtain that
\[\|y_{n+1} - p\| \leq (1 - \alpha_n r)\|y_n - p\| + D\alpha_n\|v_n\| + D\|u_n\| + \epsilon_n \\
\leq (1 - \alpha r)\|y_n - p\| + D\|v_n\| + D\|u_n\| + \epsilon_n, \] (2.26)

which means that \(y_n \to p\) as \(n \to \infty\) according to Lemma 1.1 and (2.21). This completes the proof of Theorem 2.6.

\textbf{Remark 2.7.} Example 2.8 below shows that Theorem 2.6 extends substantially [11, Theorem 1] and [12, Theorem 3].

\textbf{Example 2.8.} Let \(X, T\) be as in Theorem 2.6 and
\[
\begin{align*}
r &= \frac{k}{2}, \\
a &= \frac{k}{16L^2(L + 1)}, \\
\alpha_n &= \frac{k(n + 1)}{8L^2(L + 1)(n + 2)}, \\
\beta_n &= \frac{k(n + 1)}{4L^2(L + 1)(n + 2)}, \quad \|u_n\| = \|v_n\| = \frac{1}{n + 1}.
\end{align*}
\] (2.27)

for \(n \geq 0\). Then the conditions in Theorem 2.6 are fulfilled. But [11, Theorem 1] and [12, Theorem 3] are not applicable since \(\alpha_n < \beta_n\) for all \(n \geq 0\).

\textbf{Acknowledgment.} This work was supported by Korea Research Foundation Grant (KRF-2001-005-D00002).
REFERENCES


ZEQING LIU: DEPARTMENT OF MATHEMATICS, LIAONING NORMAL UNIVERSITY, P.O. BOX 200, DALIAN, LIAONING 116029, CHINA
E-mail address: zeqingliu@sina.com.cn

LILI ZHANG: DEPARTMENT OF MATHEMATICS, LIAONING NORMAL UNIVERSITY, P.O. BOX 200, DALIAN, LIAONING 116029, CHINA

SHIN MIN KANG: DEPARTMENT OF MATHEMATICS, GYEONGSANG NATIONAL UNIVERSITY, CHINJU 660-701, KOREA
E-mail address: smkang@nongae.gsnu.ac.kr
Special Issue on
Decision Support for Intermodal Transport

Call for Papers

Intermodal transport refers to the movement of goods in a single loading unit which uses successive various modes of transport (road, rail, water) without handling the goods during mode transfers. Intermodal transport has become an important policy issue, mainly because it is considered to be one of the means to lower the congestion caused by single-mode road transport and to be more environmentally friendly than the single-mode road transport. Both considerations have been followed by an increase in attention toward intermodal freight transportation research.

Various intermodal freight transport decision problems are in demand of mathematical models of supporting them. As the intermodal transport system is more complex than a single-mode system, this fact offers interesting and challenging opportunities to modelers in applied mathematics. This special issue aims to fill in some gaps in the research agenda of decision-making in intermodal transport.

The mathematical models may be of the optimization type or of the evaluation type to gain an insight in intermodal operations. The mathematical models aim to support decisions on the strategic, tactical, and operational levels. The decision-makers belong to the various players in the intermodal transport world, namely, drayage operators, terminal operators, network operators, or intermodal operators.

Topics of relevance to this type of decision-making both in time horizon as in terms of operators are:

- Intermodal terminal design
- Infrastructure network configuration
- Location of terminals
- Cooperation between drayage companies
- Allocation of shippers/receivers to a terminal
- Pricing strategies
- Capacity levels of equipment and labour
- Operational routines and lay-out structure
- Redistribution of load units, railcars, barges, and so forth
- Scheduling of trips or jobs
- Allocation of capacity to jobs
- Loading orders
- Selection of routing and service

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/jamds/guidelines.html. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/, according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>June 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>September 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>December 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Gerrit K. Janssens, Transportation Research Institute (IMOB), Hasselt University, Agoralaan, Building D, 3590 Diepenbeek (Hasselt), Belgium; Gerrit.Janssens@uhasselt.be

Guest Editor

Cathy Macharis, Department of Mathematics, Operational Research, Statistics and Information for Systems (MOSI), Transport and Logistics Research Group, Management School, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium; Cathy.Macharis@vub.ac.be