VARIATIONAL-LIKE INEQUALITIES FOR PSEUDOMONOTONE OPERATORS

ASHOK GANGULY

(Received 3 April 1998)

ABSTRACT. The aim of this note is to use a fixed point theorem to prove results for variational-like inequalities for pseudomonotone operators.

2000 Mathematics Subject Classification. 47H04, 47H10.

1. Introduction. Recently, Singh et al. [10] studied pseudomonotone operators and derived interesting results in variational inequality and complementarity problems using a recent fixed point theorem of Tarafdar [13], which is equivalent to F-KKM theorem [13]. They derived a few interesting results as corollaries and gave an application in minimization problems. Earlier, Parida et al. [7] studied a variational-like inequality problem and developed a theory for the existence of its solution using Kakutani’s fixed point theorem, and also established the relationship between the variational-like inequality problem and some mathematical programming problems. Further results on existence theorem for variational-like inequality problems were obtained by Wadhwa and Ganguly [14] using Tarafdar’s fixed point theorem [11], which is equivalent to the KKM fixed point theorem [13].

In this note, we use Tarafdar’s result [13] and prove an existence theorem for variational-like inequality problem for \(g \)-pseudomonotone operators and then derive some interesting results and corollaries.

We need the following definitions:

Let \(E \) stand for a real locally convex Hausdorff topological vector space and \(X \) a nonempty convex subset of \(E \) with \(E^* \neq \{0\} \), being the continuous dual of \(E \). Let \(T : X \rightarrow E^* \) be a nonlinear map. The mapping \(T : X \rightarrow E^* \) is hemicontinuous if \(T \) is continuous from the line segment of \(X \) to the weak topology of \(E^* \). A point \(y \in X \) is said to be a solution of the variational inequality if

\[
\langle Ty, x - y \rangle \geq 0 \quad \forall x \in X. \tag{1.1}
\]

Let \(g \) be a continuous map, \(g : X \times X \rightarrow E \). A point \(y \in X \) is said to be a solution of the variational-like inequality problems if

\[
\langle Ty, g(x,y) \rangle \geq 0 \quad \forall x \in X. \tag{1.2}
\]

If \(g(x,y) = x - y \), (1.2) reduces to (1.1) [7].

A map \(T : X \rightarrow E^* \) is said to be monotone if

\[
\langle Ty - Tx, y - x \rangle \geq 0 \quad \forall x, y \in X. \tag{1.3}
\]
Here, (\cdot, \cdot) denotes the pairing between E^* and E.

The map T is called pseudomonotone if

$$
(Ty, y - x) \geq 0 \quad \text{whenever} \quad (Tx, y - x) \geq 0 \quad \forall x, y \in X. \tag{1.4}
$$

Definition 1.1. A map $T : X \to E^*$ is said to be g-monotone on X if

$$
(Tx, g(y, x)) + (Ty, g(x, y)) \leq 0 \quad \forall x, y \in X. \tag{1.5}
$$

For $g(y, x) = y - x$, we get the definition of monotone operators.

Definition 1.2. A map $T : X \to E^*$ is said to be g-pseudomonotone if

$$
(Tx, g(y, x)) \geq 0 \quad \text{whenever} \quad (Ty, g(x, y)) \geq 0 \quad \forall x, y \in X. \tag{1.6}
$$

For $g(y, x) = y - x$, we get the definition of pseudomonotone operators.

We are interested in the following:

Find $x \in X$ such that

$$
(Tx, g(y, x)) + hy - hx \geq 0 \quad \forall y \in X, \tag{1.7}
$$

where $T : X \to E^*$ is a nonlinear mapping and $h : X \to \mathbb{R}$ is a low semi-continuous and convex functional.

We need the following fixed point theorem [13].

Theorem 1.3. Let X be a nonempty, convex subset of a Hausdorff topological vector space E. Let $F : X \to 2^X$ be a set-valued mapping such that

(i) for each $x \in X$, $f(x)$ is a nonempty, convex subset of X;
(ii) for each $y \in X$, $F^{-1}(y) = \{x \in X : y \in f(x)\}$ contains a relatively open subset O_y of X (O_y may be empty for some y);
(iii) $U_{x \in X} O_x = X$; and
(iv) X contains a nonempty subset X_0 contained in a compact convex subset X_1 of X such that the set $D = \bigcap_{x \in X_0} O_x$ is compact (D may be empty and O_x denotes the complement of O_x in X).

Then there exists a point $x_0 \in X$ such that $x_0 \in F(x_0)$.

We make the following hypothesis.

Condition 1.4. For $X \subset E$, let $T : X \to E^*$ and $g : X \times X \to E$ satisfy the following:

(i) for each $x \in X$, $g(y, x)$ is convex $y \in X$;
(ii) $g(x, y) + g(y, z) = g(x, z)$ for all $x, y, z \in X$;
(iii) $g(x, x) = 0$;
(iv) for every $x \in E^*$, (Tx, y) is monotone increasing in $y \in E^*$.

2. Main results. First, we give the following result.

Lemma 2.1. If X is a nonempty convex subset of a topological vector space E and $T : X \to E^*$ is a g-pseudomonotone and hemicontinuous, then $x \in X$ is a solution of

$$
(Tx, g(y, x)) + hy - hx \geq 0 \quad \forall y \in X \tag{2.1}
$$
if and only if \(x \in X \) is a solution of

\[
\langle Ty, g(y, x) \rangle + hy - hx \geq 0 \quad \forall y \in X,
\]

(2.2)

where \(h : X \to \mathbb{R} \) is a convex function and \(g : X \times X \to E \) is such that it satisfies Condition 1.4.

Proof. Let \(x \in X \) be a solution of (2.1). Then, by Condition 1.4(i), (ii) and the \(g \)-pseudomonotonicity of \(T \), we have

\[
\langle Ty, g(y, x) \rangle + hy - hx \geq 0 \quad \forall y \in X.
\]

(2.3)

Now, assume that \(x \) satisfies (2.2) and let \(y \in X \) be arbitrary. Then, using Minty’s technique [5],

\[
yt = (1 - t)x + ty \in X \quad \forall t \in (0, 1)
\]

(2.4)

since \(X \) is convex. Hence, we have

\[
\langle Ty_t, g(y_t, x) \rangle + hy_t - hx \geq 0.
\]

(2.5)

So, by Condition 1.4(ii), (iii),

\[
t \langle Ty_t, g(y, x) \rangle + t(hy - hx) \geq 0
\]

(2.6)

since \(T \) is hemicontinuous. Letting \(t \to 0 \), we get

\[
\langle Tx, g(y, x) \rangle + hy - hx \geq 0.
\]

(2.7)

Now, we state the following result.

Theorem 2.2. Let \(X \) be a nonempty closed convex subset of a real Hausdorff topological vector space \(E \) with \(E^* \neq \{0\} \). Let \(T : X \to E^* \) be \(g \)-pseudomonotone and hemicontinuous map such that Condition 1.4 is satisfied, and \(h : X \to \mathbb{R} \) is a lower semicontinuous and convex function. Further, assume that there exists a nonempty set \(X_0 \) contained in a compact convex subset \(X_1 \) of \(X \) such that the set

\[
D = \bigcap_{x \in X_0} \{ y \in X : \langle Tx, g(x, y) \rangle + hx - hy \geq 0 \}
\]

(2.8)

is either empty or compact.

Then, there exists an \(x_0 \in X \) such that

\[
\langle Tx_0, g(y, x_0) \rangle + hy - hx_0 \geq 0 \quad \forall y \in X.
\]

(2.9)

Proof. Suppose that, for each \(y \in X \), there exists an \(x \in X \) such that

\[
\langle Tx, g(y, x) \rangle + hx - hy < 0.
\]

(2.10)
First, suppose that (2.10) does not hold. This means that there exists at least one $y_0 \in X$ such that
\[\langle Tx, g(y_0, x) \rangle + hx - hy \geq 0 \quad \forall x \geq X, \tag{2.11} \]
that is, $y_0 \geq X$ is a solution of (2.2). Then, by Lemma 2.1, $y_0 \in X$ is a solution of (2.1).

Next, assume that there is no solution of (2.1) under condition (2.10) given that (2.10) holds. Then, for each $x \in X$, the set
\[F(x) = \{ y \in X : \langle Tx, g(y, x) \rangle + hy - hx < 0 \} \tag{2.12} \]
must be nonempty. It also follows from the convexity of h and by Condition 1.4 that the set $F(x)$ is convex for each $x \in X$. Thus, $F : X \to 2^X$ is a set-valued map with $F(x)$ nonempty and convex for each $x \in X$.

Now, for each $x \in X$,
\[F^{-1}(x) = \{ y \in X : x \in (y) \} = \{ y \in X : \langle Ty, g(x, y) \rangle + hx - hy < 0 \}. \tag{2.13} \]
For each $x \in X$,
\[\{ F^{-1}(x) \}^c = \text{complement of } F^{-1}(x) \text{ in } X \]
\[= \{ y \in X : \langle Ty, g(x, y) \rangle + hx - hy \geq 0 \} \tag{2.14} \]
by the g-pseudomonotonicity of $T = G(x)$.

Again, using Condition 1.4 and the convexity of h, we can show that $G(x)$ is convex for each $x \in X$. Since g is continuous and h is lower semi-continuous, $G(x)$ is a relatively closed subset of X.

Hence, for each $x \in X$,
\[F^{-1}(x) \supset [G(x)]^c = 0_x \quad \text{is a relatively open subset of } X. \tag{2.15} \]

Now, by condition (2.10), we can easily see that $\bigcup_{x \in X} O_x = X$. (Indeed, if $y \in X$, by (2.10), there exists an $x \in X$ such that $y \in [G(x)]^c = O_x$. Thus, $y \in \bigcup_{x \in X} O_x$. Hence, $\bigcup_{x \in X} O_x = X$.)

Finally, $D = \bigcap_{x \in X} G(x) = \bigcap_{x \in X} O_x^c$ is compact or empty by the given condition. Hence, by Theorem 1.3, there exists an $x \in X$ such that $\langle Tx, g(x, x) \rangle + hx - hx < 0$, which is impossible. Hence, there is a solution in this case as well.

Here, we give a few results that are special cases of Theorem 2.2.

Corollary 2.3. Let $T : X \to E^*$ be g-monotone and hemicontinuous, where g-satisfies Condition 1.4, $h : X \to \mathbb{R}$ is convex and lower semi-continuous. Further, assume that there exists a nonempty set X_0 contained in a compact convex subset X_1 of X such that $D = \bigcap_{x \in X_0} \{ y \in X : \langle Tx, g(x, y) \rangle + hx - hy \geq 0 \}$ is either empty or compact. Then there is an $x \in X$ satisfying (2.1).

Remark 2.4. For $g(x, y) = x - y$, Corollary 2.3 implies Corollary 1.2 of Singh et al. [10] which, in turn, implies a well-known result of Tarafdar [12].
Corollary 2.5. Let X be a compact convex subset of E and $T : X \to E^*$ be g-pseudomonotone and hemicontinuous where g satisfies Condition 1.4. Suppose that $h : X \to \mathbb{R}$ is lower semicontinuous and convex. Then there is an $x \in X$ satisfying (2.1).

Remark 2.6. For $g(x,y) = x - y$,

(i) Corollary 2.5 implies [10, Corollary 1.3].

(ii) If we take $T = A - B$, where A is a monotone map and B is antimonotone and both are hemicontinuous, then we derive a result due to Siddiqui et al. [8]. Here, we need only two conditions, the lower semicontinuity, and the convexity of the function h.

Remark 2.7. For $h = 0$, Corollary 2.5 implies Theorem 2 and Corollary 1 of Wadhwa and Ganguly [14] which implies, respectively, Theorem 2 and Corollary of Tarafdar [11]. Tarafdar’s result covered the result of Browder [1] and Theorem 1.1 of Hartman and Stampacchia [3].

Now, we prove a result similar to Theorem 2.1 of Singh et al. [9]. For $A \subset E$, $\text{int}(A)$ and $\partial(A)$ denote, respectively, the interior and the boundary of A, while for $A, X \subset E$, $\text{int}_X(A)$ and $\partial(A)$ denote, respectively, the relative interior and the relative boundary of A in X. A subset of a Banach space is said to be solid if it has a nonempty interior.

Theorem 2.8. Let X be a closed convex subset of a reflexive Banach space E and $T : X \to E^*$ a g-pseudomonotone and hemicontinuous mapping, $g : X \times X \to E$ satisfy Condition 1.4, and h is convex and lower semicontinuous. Then the following conditions are equivalent:

(i) There exists $\hat{x} \in X$ such that $\langle T\hat{x},g(x,\hat{x}) \rangle + hx - h\hat{x} \geq 0$ for all $x \in X$, that is, x is a solution of (2.1).

(ii) There exists a $u \in X$ and a constant $r > \|u\|$ such that $X\langle T(x),g(x,u) \rangle + hx - hu \geq 0$ for all $x \in X$ with $\|x\| = r$.

(iii) There exists $r > 0$ such that the set $\{x \in X : \|x\| \leq r\}$ is nonempty with the property that, for each $x \in X$ with $\|x\| = r$, there exists a $u \in X$ with $\|u\| < r$ and $\langle T(x),g(x,u) \rangle hxhu \geq 0$.

Proof. This can be proved following Cottle and Yao [2, Theorem 2.2] as well as Parida et al. [7, Theorem 3.4].

Remark 2.9. For a monotone T operator and $h = 0$:

(1) Theorem 2.8(i), (ii), and (iii) were obtained by Parida et al. [7].

(2) For $g(x,\hat{x}) = x - \hat{x}$, Theorem 2.8(ii) and (iii) reduce to the results of Theorems 2.3 and 2.4 of Moré [6], respectively.

Remark 2.10. For $g(x,x) = x - \hat{x}$ and $h = 0$, Theorem 2.8(i), (ii), and (iii) were obtained as Theorem 2.1(i), (ii), and (iii) by Singh et al. [9] and, in Hilbert spaces, similar results were obtained by Cottle and Yao (see [1, Theorem 2.2]).

Let H,K be nonempty, closed subsets of \mathbb{R}^n, then we denote, by $B_H(K)$, the set of $z \in K$ such that $U(z) \cap (H - K) \neq \emptyset$ and, by $I_H(K)$, the set of $z \in K$ such that $U(z) \cap (H - K) = \emptyset$, for some neighbourhood $U(z)$ of z.

Finally, we present a result similar to Hirano and Takahashi [4] for unbounded subsets in \(\mathbb{R}^n \). Before that, we present the following result of Singh et al. [9, Corollary 1.12].

Corollary 2.11. Let \(X \) be a closed bounded convex subset of a reflexive Banach space \(E \) and \(T : X \to E^* \) a pseudomonotone and hemicontinuous mapping. Then the set of solutions of variational inequality for a point \(x_0 \in X \), \(\langle Tx_0, y - x_0 \rangle \geq 0 \) for all \(y \in X; y \in x; \) is a nonempty weakly compact convex subset of \(X \).

Theorem 2.12. Let \(X \) be a nonempty closed convex subset of \(\mathbb{R}^n \) and \(T : X \to \mathbb{R}^n \) be \(g \)-pseudomonotone such that Condition 1.4 is satisfied; \(h : X \to \mathbb{R} \) a lower semicontinuous and convex function. Then there exists a solution of (2.1) in \(X \) if and only if there exists a bounded closed convex subset \(K \) of \(X \) such that, for each \(z \in B_x(K) \), there exists \(y \in I_x(K) \) such that

\[
\langle Tz, g(y^*, z) \rangle + hz - hy \to 0. \tag{2.16}
\]

Proof. Using Corollary 2.11, with little modification, it can be shown that if there exists a solution of (2.1), then there exists a weakly compact convex subset \(K \) of \(X \) such that (2.16) is satisfied. Conversely, let \(K \) be a weakly compact convex subset and there exists \(x^* \in K \) such that

\[
\langle Tx^*, g(x, x^*) \rangle \geq 0 \quad \forall x \geq K, \tag{2.17}
\]

where \(T \) is a \(g \)-pseudomonotone operator. The rest of the proof is similar to that of Theorem 3 of Wadhwa and Ganguly [14].

Acknowledgement. We are indebted to Prof S. P. Singh, Canada, for his kind help in the preparation of this note.

References

ASHOK GANGULY: DEPARTMENT OF APPLIED MATHEMATICS, SHRI G.S. INSTITUTE OF TECHNOLOGY AND SCIENCE, 23, PARK ROAD, INDORE 452-003, INDIA
E-mail address: director@gsits.ernet.in
Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manuscript Due</th>
<th>May 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O'Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie