QUATERNION CR-SUBMANIFOLDS OF A QUATERNION KAEHLER MANIFOLD

BASSIL J. PAPANTONIOU and M. HASAN SHAHID

(Received 7 August 2000)

ABSTRACT. We study the quaternion CR-submanifolds of a quaternion Kaehler manifold. More specifically we study the properties of the canonical structures and the geometry of the canonical foliations by using the Bott connection and the index of a quaternion CR-submanifold.

2000 Mathematics Subject Classification. 53C20, 53C21, 53C25.

1. Introduction. The notion of a CR-submanifold of a Kaehler manifold was introduced by Bejancu [3]. Subsequently a number of authors studied these submanifolds (see [4] for details). In [1], Barros et al. studied quaternion CR-submanifolds of a quaternion Kaehler manifold and obtained many interesting results. The aim of this paper is to continue the study of quaternion CR-submanifolds of a quaternion Kaehler manifold. The paper is organized as follows: in Section 2 we collect some basic formulas and results for later use and in Section 3 we study some properties of canonical structures, particularly its parallelism and QR-product. In Section 4 we study the geometry of the canonical foliations using the Bott connection and the index of a quaternion CR-submanifold. Finally, as an extension of the work of Chen [5] for the Kaehler manifolds we give a complete classification of the totally umbilical quaternion CR-submanifolds of a quaternion Kaehler manifold.

2. Preliminaries. Let \bar{M} be a quaternion Kaehler manifold with metric tensor g and quaternion structure V [7]. We will denote by $\psi_1 = I$, $\psi_2 = J$, and $\psi_3 = K$ a local basis of almost Hermitian structures for V.

Let X be a unit vector tangent to the quaternion Kaehler manifold \bar{M}. Then the vectors X, IX, JX, KX form an orthonormal frame. Let $Q(X)$ be the quaternion section determined by X. Any plane in a quaternion section is called a quaternion plane and the sectional curvature of a quaternion plane is called a quaternion sectional curvature. A quaternion Kaehler manifold is called a quaternion space form, which is denoted by $\bar{M}(c)$, if its quaternion sectional curvature is equal to a constant c at any point of the manifold. The curvature tensor \bar{R} of $\bar{M}(c)$ is given by, [7],

$$\bar{R}(X, Y)Z = \frac{c}{4} \left[g(Y, Z)X - g(X, Z)Y + \sum_{r=1}^{3} g(\psi_r Y, Z)\psi_r X - g(\psi_r X, Z)\psi_r Y + 2g(X, \psi_r Y)\psi_r Z \right],$$

(2.1)

where $\psi_1 = I$, $\psi_2 = J$, $\psi_3 = K$.
Let M be a Riemannian manifold isometrically immersed in a quaternion Kaehler manifold \bar{M}. We also denote by g the metric tensor induced on M. If ∇ is the covariant differentiation induced on M, the Gauss and Weingarten formulas are given by

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad \bar{\nabla}_X N = -A_N X + \nabla_X^\perp N,$$

(2.2)

respectively, for any X, Y tangent to M and N normal to M. Here h and ∇^\perp are the second fundamental form associated with M, and the connection of the normal bundle, respectively. The second fundamental tensor A_N is related to h by

$$g(A_N X, Y) = g(h(X, Y), N).$$

(2.3)

A differentiable distribution D_x on M such that $\psi_r(D_x) \subseteq D_x$ for all $r = 1, 2, 3$ is called a quaternion distribution. In other words, D_x is a quaternion distribution if D_x is contained into itself by its quaternion structure.

It is known [1] that a submanifold M of a quaternion Kaehler manifold \bar{M} is called a quaternion CR-submanifold if it admits a quaternion distribution D_x such that its orthogonal complementary distribution $D_\perp x$, is totally real, that is, $\psi_r(D_\perp x) \subseteq T^\perp x M$ for all $x \in M$ and $r = 1, 2, 3$, where $T^\perp_x M$ denotes the normal space of M at x.

A submanifold M of a quaternion Kaehler manifold \bar{M} is called a quaternion (resp., totally real) submanifold if $\dim D_\perp x = 0$ (resp., $\dim D_x = 0$). A quaternion CR-submanifold is said to be proper if it is neither quaternion nor totally real.

We denote by μ the subbundle of the normal bundle $T^\perp M$ which is the orthogonal complement of $\psi_1 D_\perp \oplus \psi_2 D_\perp \oplus \psi_3 D_\perp$, that is,

$$T^\perp M = \psi_1 D_\perp \oplus \psi_2 D_\perp \oplus \psi_3 D_\perp \oplus \mu; \quad g(\mu, \psi_r D_\perp) = 0.$$

(2.4)

The mean curvature vector H of M in \bar{M} is defined by $H = (1/n) \text{trace} h$, where n denotes the dimension of M. If we have

$$h(X, Y) = g(X, Y) H$$

(2.5)

for any $X, Y \in TM$, then M is called a totally umbilical submanifold. In particular, if $h(X, Y) = 0$ identically for all $X, Y \in TM$, M is called a totally geodesic submanifold. Finally M is called mixed totally geodesic if $h(X, Y) = 0$ for $X \in D, Y \in D^\perp$. For totally umbilical CR-submanifolds, equations (2.2) take the forms

$$\bar{\nabla}_X Y = \nabla_X Y + g(X, Y) H, \quad \bar{\nabla}_X N = -g(H, N) X + \nabla^\perp_X N.$$

(2.6)

The Codazzi equation for a totally umbilical CR-submanifold M, is given by

$$\bar{R}(X, Y; Z, N) = g(Y, Z) g(\nabla^\perp_X H, N) - g(X, Z) g(\nabla^\perp_Y H, N).$$

(2.7)

Definition 2.1 (see [1]). Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \bar{M}. Then M is called a QR-product if M is locally the Riemannian product of a quaternion submanifold and a totally real submanifold of \bar{M}.

For any $X \in TM$ and $N \in T^\perp M$, we put
\begin{align}
\psi_r X &= P_r X + Q_r X, \\
\psi_r N &= t_r N + f_r N,
\end{align}
where $P_r X$, $t_r N$ (resp., $Q_r X$, $f_r N$) are the tangential (resp., the normal) components of $\psi_r X$ and $\psi_r N$ for $r = 1, 2, 3$.

For the second fundamental form h, the covariant differentiation is defined by
\begin{align}
(\tilde{\nabla}_X h)(Y, Z) &= \nabla^\perp_X h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z), \\
R(X, Y, Z, W) &= \tilde{R}(X, Y, Z, W) + g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W)), \\
[R(X, Y) Z]^\perp &= (\tilde{\nabla}_X h)(Y, Z) - (\tilde{\nabla}_Y h)(X, Z), \quad \forall X, Y, Z, W \text{ tangent to } \tilde{M},
\end{align}
where R is the curvature tensor associated with ∇ and \perp in (2.12) denotes the normal component.

We collect from Barros et al. [1] the following results which we shall need in the sequel.

Lemma 2.2. Every quaternion submanifold of a quaternion Kaehler manifold is totally geodesic.

Lemma 2.3. The quaternion distribution D of a quaternion CR-submanifold M in a quaternion Kaehler manifold \tilde{M} is integrable if and only if $h(D, D) = 0$.

Lemma 2.4. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \tilde{M}. Then the leaf M^\perp of D^\perp is totally geodesic in M if and only if $g(h(D, D^\perp), \psi_r D^\perp) = 0$, $r = 1, 2, 3$.

Lemma 2.5. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \tilde{M}. Then
\[A_{\psi_r W} Z = A_{\psi_r Z} W \quad \text{for any } W, Z \in D^\perp. \]

3. Canonical parallel structures and QR-product. Let P_r, f_r, Q_r, and t_r be the endomorphisms and the vector-bundle-valued 1-forms defined in (2.8), respectively. We define the covariant differentiation of P_r, Q_r, t_r, and f_r as follows:
\begin{align}
(\tilde{\nabla}_X P_r)(Y) &= \nabla_X (P_r Y) - P_r \nabla_X Y, \\
(\tilde{\nabla}_X Q_r)(Y) &= \nabla_X (Q_r Y) - Q_r \nabla_X Y, \\
(\tilde{\nabla}_X t_r)(N) &= \nabla_X (t_r N) - t_r \nabla_X N, \\
(\tilde{\nabla}_X f_r)(N) &= \nabla_X (f_r N) - f_r \nabla_X N,
\end{align}
for any vector fields $X, Y \in TM$ and $N \in T^\perp M$.

The endomorphisms P_r (resp., the endomorphisms f_r, the 1-forms Q_r and t_r) are parallel if $\tilde{\nabla} P_r = 0$ (resp., $\tilde{\nabla} f_r = 0$, $\tilde{\nabla} Q_r = 0$, and $\tilde{\nabla} t_r = 0$).
Now using the definition of a quaternion Kaehler manifold and taking account of (2.2), (2.8), we can easily obtain the following:

\[
(\hat{\nabla}_X P_r)(Y) = A_{Q_r}X + t_r h(X,Y), \tag{3.2}
\]
\[
(\hat{\nabla}_X Q_r)(Y) = f_r h(X,Y) - h(X, P_r Y), \tag{3.3}
\]
\[
(\hat{\nabla}_X t_r)(N) = A_{f_r}N X - P_r A_N X, \tag{3.4}
\]
\[
(\hat{\nabla}_X f_r)(N) = - h(X, t_r N), \tag{3.5}
\]
for any \(X, Y \in TM\) and \(N \in T^\perp M\).

Remark 3.1. Since the second fundamental form is symmetric, it follows from (3.2) that \(P_r\) is parallel if and only if
\[
A_{\psi_r} U V = A_{\psi_r} V U, \quad \forall U, V \in TM. \tag{3.6}
\]

Now if we set \(V = X \in D\) in (3.6), we find that \(A_{\psi_r} U X = 0\) for all \(U \in TM\), which is equivalent to \(g(h(X, Y), \psi_r U) = 0\) for any \(X \in D\), and \(Y, U \in TM\). In particular \(g(h(X, Y), \psi_r Z) = 0\) for any \(X \in D\) and \(Y, Z \in D^\perp\).

Thus, using Lemma 2.4 we obtain the following lemma.

Lemma 3.2. Let \(M\) be a quaternion CR-submanifold of a quaternion Kaehler manifold \(\bar{M}\). If \(P_r\) is parallel then the leaf \(M^\perp\) of \(D^\perp\) is totally geodesic in \(M\).

Now we state and prove the following proposition.

Proposition 3.3. Let \(M\) be a quaternion CR-submanifold of a quaternion Kaehler manifold \(\bar{M}\). Then \(Q_r\) is parallel if and only if \(t_r\) is parallel.

Proof. Suppose \(t_r\) is parallel. Then from (3.4) we have
\[
A_{f_r} U N = P_r A_N U, \quad \text{for any } U \in TM. \tag{3.7}
\]
Thus for any vector fields \(U, V \in TM\) and \(N \in T^\perp M\), we get
\[
g(A_{f_r} U N, V) = g(P_r A_N U, V), \tag{3.8}
\]
or equivalently
\[
f_r h(U, V) - h(U, P_r V) = 0, \tag{3.9}
\]
that is, \(\hat{\nabla} Q_r = 0\).

The proof of the converse statement is similar. \(\Box\)

Lemma 3.4. Let \(M\) be a QR-product of a quaternion Kaehler manifold \(\bar{M}\). Then
(a) \(\nabla_Z X \in D\),
(b) \(\nabla_X Z \in D^\perp\),
for all \(X \in D\) and \(Z \in D^\perp\).
Proof. By using (2.2) and the definition of a quaternion Kaehler manifold, we find

\[\psi_\tau \nabla ZX = \nabla Z \psi_\tau X + h(Z, \psi_\tau X) - \psi_\tau (X, Z) \quad \text{for } X \in D, Z \in D^\perp. \]

(3.10)

The above equation yields

\[g(\psi_\tau \nabla ZX, \psi_\tau W) = g(\nabla Z \psi_\tau X, \psi_\tau W) + g(h(Z, \psi_\tau X), \psi_\tau W), \]
\[g(\nabla ZX, W) = g(h(Z, \psi_\tau X), \psi_\tau W) \quad \text{for } X \in D, W, Z \in D^\perp. \]

(3.11)

Since \(M \) is a QR-product the leaf \(M^\perp \) of \(D^\perp \) is totally geodesic. Thus using Lemma 2.4 we get (a).

Next for \(X \in D, Z \in D^\perp \) we have

\[\hat{\nabla}_X \psi_\tau Z = \psi_\tau \hat{\nabla}_X Z \]

(3.12)

which, by virtue of (2.2), gives

\[\psi_\tau \nabla ZX = -A_{\psi_\tau} ZX + \nabla_Z \psi_\tau Z - \psi_\tau h(X, Z). \]

(3.13)

Taking inner products with \(Y \in D \) and using the fact that the leaf \(M^\perp \) of \(D^\perp \) is totally geodesic, we find

\[g(\psi_\tau \nabla ZX, Y) = -g(A_{\psi_\tau} ZX, Y) = -g(h(X, Y), \psi_\tau Z) \quad \text{for } X, Y \in D, Z \in D^\perp. \]

(3.14)

On the other hand, for \(X \in D \) and \(W, Z \in D^\perp \) and the use of Lemma 2.5, (3.13) gives

\[g(\psi_\tau \nabla ZX, W) = -g(\psi_\tau h(X, Z), W) - g(h(X, W), \psi_\tau Z) \]
\[= g(A_{\psi_\tau} ZX - A_{\psi_\tau} W, X) \]
\[= 0. \]

(3.15)

Thus from (3.14) and (3.15) we see that \(\psi_\tau \nabla ZX \) is normal to \(M \). So \(\nabla ZX \in D^\perp \) for all \(X \in D \) and \(Z \in D^\perp \).

Therefore by virtue of [1, Lemma 5.1, page 403], we get \(h(D, D^\perp) = 0 \) or \(h(D, D) = 0 \). So the quaternion distribution \(D \) is integrable by virtue of Lemma 2.3. Thus it follows that each leaf \(M^\perp \) is totally geodesic in \(\hat{M} \) and in particular \(M^\perp \) is totally geodesic in \(M \) by virtue of Lemma 2.2.

Theorem 3.5. Let \(M \) be a quaternion CR-submanifold of a quaternion Kaehler manifold \(\hat{M} \). Then \(M \) is a QR-product if and only if \(P_\tau \) is parallel.

Proof. Suppose \(P_\tau \) is parallel, then from (3.2), we have

\[A_{Q_\tau} X + t_\tau h(X, Y) = 0 \quad \forall X, Y \in TM. \]

(3.16)

If \(Y \in D \), then \(Q_\tau Y = 0 \). Hence (3.16) is reduced to \(t_\tau h(X, Y) = 0 \) for all \(X \in TM, Y \in D \).

Therefore by virtue of [1, Lemma 5.1, page 403], we get \(h(D, D^\perp) = 0 \) or \(h(D, D) = 0 \).

So the quaternion distribution \(D \) is integrable by virtue of Lemma 2.3. Thus it follows that each leaf \(M^\perp \) is totally geodesic in \(\hat{M} \) and in particular \(M^\perp \) is totally geodesic in \(M \) by virtue of Lemma 2.2.
Again from (3.2), we have

\[A_{\psi_r} W + t_r h(W, Z) = 0 \quad \forall W, Z \in D^\perp. \tag{3.17} \]

So for \(X \in D \), we have

\[g(A_{\psi_r} W, X) + g(t_r h(W, Z), X) = 0 \tag{3.18} \]

which means

\[g(h(X, Z), Q_r W) - g(h(W, Z), Q_r X) = 0, \tag{3.19} \]

that is,

\[g(h(X, Z), Q_r W) = 0 \tag{3.20} \]

or

\[g(h(D, D^\perp), Q_r D^\perp) = 0. \tag{3.21} \]

Thus using Lemma 2.4, it follows that the leaf \(M^\perp \) of \(D^\perp \) is totally geodesic. Hence \(M \) is a QR-product.

Conversely, let \(M \) be a QR-product. First we show that \(\nabla_U X \in D \) for any \(X \in D \) and \(U \) tangent to \(M \). Since \(M \) is a QR-product, that is, locally a Riemannian product of a quaternion submanifold and a totally real submanifold, it is sufficient to show that \(\nabla_Z X \in D \) for any \(X \in D, Z \in D^\perp \) but this was proved in Lemma 3.4(a). Using this fact, we have

\[\nabla_U \psi_r X + h(U, \psi_r X) = \psi_r \nabla_U X + \psi_r h(X, U) \tag{3.22} \]

for any \(X \in D, U \) tangent to \(M \), which yields

\[\psi_r h(U, X) = h(U, \psi_r X), \quad \nabla_U \psi_r X = \psi_r \nabla_U X. \tag{3.23} \]

Thus \((\nabla_U P_r)(X) = \nabla_U P_r X - P_r \nabla_U X = 0 \), for any \(X \in D \), and \(U \) tangent to \(M \).

Similarly, by using Lemma 3.4(b), it follows that \(\nabla_Z X \in D^\perp \) for any \(Z \in D^\perp \), and \(U \) tangent to \(M \). But since \(M \) is a QR-product, it follows that \(\nabla_X Z \in D^\perp \) for \(U = X \in D \) and \(Z \in D^\perp \).

Thus, we have \((\nabla_U P_r)(Z) = 0 \) for any \(Z \in D^\perp \), \(U \) tangent to \(M \). Therefore \(\nabla P_r = 0 \), which completes the proof.

Corollary 3.6. Let \(M \) be a QR-product of a quaternion Kaehler manifold \(\bar{M} \). Then \(M \) is mixed totally geodesic, that is, \(h(D, D^\perp) = 0 \).

Remark 3.7. If \(M \) is a proper QR-product of a quaternion space form \(\bar{M}(c) \), then the ambient manifold \(\bar{M} \) is necessarily a space of zero curvature. Hence there does not exist a proper QR-product of a quaternion space form \(\bar{M}(c) \) with \(c \neq 0 \).

4. Canonical foliations and index of a quaternion CR-submanifold

Definition 4.1 (see [8]). Let \(D \) be a distribution on the Riemannian manifold \(M \), \(D^\perp \) the orthogonal distribution, \(\Pi^\perp : TM \to D^\perp \) the projection and \(\nabla \) the Levi-Civita
connection. Then the second fundamental form of the plane field D, is defined by

$$S_{\nabla}(X,Y) = \frac{1}{2} \Pi(\nabla_X Y + \nabla_Y X).$$

(4.1)

The distribution D is called a totally geodesic plane field, if the geodesics tangent to it at one point remain tangent for all their length.

Thus we say that the distribution D is a totally geodesic plane field if

$$S_{\nabla}(X,Y) = \Pi(\nabla_X Y + \nabla_Y X) = 0 \quad \forall X,Y \in D.$$

(4.2)

A geometric definition of this notion is given in [9].

A foliation f on a Riemannian manifold M is called a Riemannian foliation, if the Bott connection $\nabla^{\parallel} = \nabla$ in the normal bundle of f preserves the Riemannian metric. Also f is a Riemannian foliation if and only if the second fundamental form S_{∇} of the plane field D vanishes (see [9, page 157]).

THEOREM 4.2. Let M be a quaternion CR-submanifold of a quaternion Kaehler manifold \tilde{M} such that $D_{\tilde{M}}$ is a totally real foliation of M. Then the Bott connection of $D_{\tilde{M}}$ preserves the volume form ψ of $D_{\tilde{M}}$, that is, $\nabla_Z \psi = 0$, for all $Z \in D_{\tilde{M}}$.

PROOF. For any $X,Y \in D$ and $Z \in D^\perp$, we have

$$g\left(\left(\nabla_Z \psi_r\right)(X,Y)\right) = g\left(\nabla_Z \psi_r X, Y\right) - g\left(\psi_r \nabla_Z X, Y\right)$$

$$= g\left(\left[[Z,\psi_r X], Y\right] + g\left(\left[Z,X\right],\psi_r Y\right)\right)$$

$$= g\left(\nabla_Z \psi_r X, Y\right) - g\left(\nabla_{\psi_r X} Z, Y\right)$$

$$+ g\left(\nabla_Z X, \psi_r Y\right) - g\left(\nabla_X Z, \psi_r Y\right)$$

$$= g\left(\nabla_Z \psi_r X, Y\right) + g\left(\nabla_{\psi_r X} Z, Y\right)$$

$$- g\left(\nabla_X, \nabla_Z \psi_r Y\right) + g\left(\nabla_{\psi_r Z} Y, \psi_r X\right)$$

$$= g\left(\nabla_{\psi_r Z} Y, Z\right) + g\left(\nabla_X \psi_r Z, Y\right)$$

$$= g\left(\nabla_X \psi_r Z, Y\right) - g\left(A_{\psi_r Z} X, Y\right).$$

(4.3)

Also,

$$g(\nabla_X X, Z) = g(\nabla_X Z)$$

$$= g(\psi_r \nabla_X X, \psi_r Z)$$

$$= g(\nabla_X \psi_r X, \psi_r Z)$$

$$= -g(\nabla_X \psi_r Z, \psi_r X)$$

$$= g(A_{\psi_r Z} X, \psi_r X).$$

(4.4)

If $D_{\tilde{M}}$ is Riemannian then D_M is a totally geodesic plane field and so (4.4) gives $g(A_{\psi_r Z} X, \psi_r X) = 0$.
Therefore \(g(A_{\psi r}Z(X + Y), \psi r(X + Y)) = 0 \), and hence we obtain
\[
g(A_{\psi r}Z X, \psi r Y) + g(A_{\psi r}Z Y, \psi r X) = 0. \tag{4.5}
\]

Thus using (4.3) and (4.5), we have
\[
g(({\nabla}_Z \psi r)(X), \psi r Y) = g(\bar{\nabla}_Y \psi r X \psi r Y, Z) - g(A_{\psi r}Z X, \psi r Y)
= g(\bar{\nabla}_Y \psi r X, Z) + g(A_{\psi r}Z Y, \psi r X)
= 0. \tag{4.6}
\]

Moreover, it is known that \(D_M \) is a minimal distribution \([2]\), which implies that
\[
(d\psi)(Z, X_1, \ldots, X_{4n}) = 0 \quad \text{for} \quad Z \in D^\perp, \ X_1, \ldots, X_{4n} \in D. \tag{4.7}
\]

Hence
\[
({\nabla}_Z \psi)(X_1, \ldots, X_{4n}) = Z\psi(X_1, \ldots, X_{4n}) - \sum_{a=1}^{4n} \psi(X_1, \ldots, \Pi[Z, X_a], \ldots, X_{4n})
= (d\psi)(Z, X_1, \ldots, X_{4n}) = 0,
\tag{4.8}
\]
which completes the proof. \(\square \)

Now, let \(M \) be a compact totally geodesic quaternion CR-submanifold of a quaternion Kaehler manifold \(\bar{M} \). Let \(N \) be a normal vector field and denote by \(\nu''(N) \) the second normal variation of \(M \) induced by \(N \). Then we have (see [6, Chapter 1]),
\[
\nu''(N) = \int_M \left\{ \left| \nabla^\perp N \right|^2 - \sum_{i=1}^n R(X_i, N, N, X_i) - \left| A_N \right|^2 \right\} dV, \tag{4.9}
\]
where \(N \in T^\perp M, \ dV \) denotes the volume element of \(M \) and \(\{X_i\} \) is an orthonormal frame in \(TM \). Applying the Stokes theorem to the integral of the first term of (4.9), we have
\[
I(N, N) =: \nu''(N) = \int_M g(LN, N) \star 1, \tag{4.10}
\]
where \(L \) is a selfadjoint, strongly elliptic linear differential operator of the second order. The differential operator \(L \) is called the Jacobi operator of \(M \) in \(\bar{M} \) and has discrete eigenvalues \(\lambda_1 < \lambda_2 < \cdots \). We put \(E_\lambda = \{N \in T^\perp M : L(N) = \lambda N\} \). The dimension of the space \(E_\lambda, \dim(E_\lambda) \), is called the index of \(M \) in \(\bar{M} \). For two normal vector fields \(N_1, N_2 \) to a minimal submanifold \(M \) in \(\bar{M} \), their index form is defined by
\[
I(N_1, N_2) = \int_M g(LN_1, N_2) \star 1. \tag{4.11}
\]

It is easy to see that the index form \(I \) is a symmetric bilinear form; \(I : T^\perp M \times T^\perp M \to R \). Now we prove the following theorem.

Theorem 4.3. Let \(M \) be a compact \(n \)-dimensional minimal quaternion CR-submanifold of a quaternion Kaehler manifold \(\bar{M} \). If \(M \) has nonpositive holomorphic bisectional curvature, then the index form satisfies
\[
I(N, N) + I(\psi r N, \psi r N) \geq 0 \quad \text{for} \quad N \in \mu. \tag{4.12}
\]
Proof. By using the Weingarten equation we have that for all $X,Y \in D^\perp$,

\[
g(\nabla^\perp_X N, \psi_r Y) = g(\nabla_X N, \psi_r Y) = -g(\psi_r \nabla_X N, Y) = -g(\tilde{\nabla}_X \psi_r N, Y) = g(A_{\psi_r N} X, Y) \quad (4.13)
\]

which implies that

\[
\|\nabla^\perp N\|^2 \geq \|A_{\psi_r N}\|^2, \quad \|\nabla^\perp \psi_r N\|^2 \geq \|A_N\|^2 \quad \text{for any } N \in \mu, \quad (4.14)
\]

where μ is defined in (2.4). Thus by using (4.9), (4.10), (4.13), and (4.14) we get

\[
I(N,N) + I(\psi_r N, \psi_r N) \geq -\int_M \sum_{i=1}^n \{\tilde{R}(N, e_i, e_i, N) + \tilde{R}(\psi_r N, e_i, e_i, \psi_r N)\} \star 1 \quad (4.15)
\]

from which the proof follows, since M has nonpositive holomorphic bisectional curvature.

Finally, we prove a classification theorem for the totally umbilical quaternion CR-submanifolds of a quaternion Kaehler manifold.

Theorem 4.4. Let M be a compact totally umbilical quaternion CR-submanifold of a quaternion Kaehler manifold \bar{M}. Then

(a) M is a totally geodesic submanifold, or,
(b) M is locally the Riemannian product of a quaternion submanifold and a totally real submanifold, or,
(c) M is a totally real submanifold, or,
(d) the totally real distribution is one dimensional, that is, $\dim D^\perp = 1$,
(e) $\nabla^\perp X H \in \mu$, for $X \in D$.

Proof. We take $X, W \in D^\perp$ and using (2.6) with the fact that \bar{M} is a quaternion Kaehler manifold, we have

\[
\psi_r \nabla_X W + g(X,W) \psi_r H = -A_{\psi_r W} X + \nabla_X \psi_r W. \quad (4.16)
\]

Taking inner product with X we get

\[
g(H, \psi_r W) \|X\|^2 = g(X,W) g(H, \psi_r X). \quad (4.17)
\]

Exchanging X and W in (4.17) we have

\[
g(H, \psi_r X) \|W\|^2 = g(X,W) g(H, \psi_r W). \quad (4.18)
\]

This together with (4.17) gives

\[
g(H, \psi_r W) = \frac{g(X,W)^2}{\|X\|^2 \|W\|^2} g(H, \psi_r W). \quad (4.19)
\]
The possible solutions of (4.19) are
(i) $H = 0$,
(ii) $H \perp \psi_r W$,
(iii) $X \parallel W$.

Suppose that condition (i) holds, that is, $H = 0$. This implies that M is totally geodesic which proves (a). Combining (ii) with a result in [1, page 407] we get (b) of the theorem.

Now from (2.7) we have
\[
O = \tilde{R}(IX,JX,KX,N) \\
= \tilde{R}(KX,N,IX,JX) \\
= -\tilde{R}(KX,N,X,KX) \\
= -\tilde{R}(X,KX,KX,N) \\
= -g(\nabla_H N, X)^2
\]
which implies that
\[
\nabla_H \in \mu \quad \forall X \in D
\]
proving (e). Next we have
\[
\nabla_X \psi_r H = \psi_r \nabla_X H \quad \text{for } X \in D
\]
which, by (2.6) gives
\[
\nabla_X \psi_r H = -g(H,H)\psi_r X + \psi_r \nabla_X H.
\]
Since $\nabla_H \in \mu$, from (4.23) we have $\psi_r X = 0$ for all $X \in D$. Hence $D = \{0\}$ which proves (c). Finally if (iii) is valid then $\dim D^\perp = 1$, which completes the proof.

Acknowledgements. The authors would like to acknowledge the financial support of the Research Committee, University of Patras, Programme Karatheodori (# 2461), and of the Greek State Scholarships Foundation (I.K.Y).

References

BASSIL J. PAPANTONIOU: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PATRAS, 26100, PATRAS, GREECE
E-mail address: bipapant@math.upatras.gr

M. HASAN SHAHID: DEPARTMENT OF MATHEMATICS, FACULTY OF NATURAL SCIENCE, JAMIA MILLIA ISLAMIA, NEW DELHI, INDIA
E-mail address: hasan.mt@jmi.ernet.in
Special Issue on
Singular Boundary Value Problems for Ordinary Differential Equations

Call for Papers

The purpose of this special issue is to study singular boundary value problems arising in differential equations and dynamical systems. Survey articles dealing with interactions between different fields, applications, and approaches of boundary value problems and singular problems are welcome.

This Special Issue will focus on any type of singularities that appear in the study of boundary value problems. It includes:

- Theory and methods
- Mathematical Models
- Engineering applications
- Biological applications
- Medical Applications
- Finance applications
- Numerical and simulation applications

Before submission authors should carefully read over the journal’s Author Guidelines, which are located at http://www.hindawi.com/journals/bvp/guidelines.html. Authors should follow the Boundary Value Problems manuscript format described at the journal site http://www.hindawi.com/journals/bvp/. Articles published in this Special Issue shall be subject to a reduced Article Processing Charge of €200 per article. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Deadline</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript Due</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>First Round of Reviews</td>
<td>August 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>November 1, 2009</td>
</tr>
</tbody>
</table>

Lead Guest Editor

Juan J. Nieto, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain; juanjose.nieto.roig@usc.es

Guest Editor

Donal O’Regan, Department of Mathematics, National University of Ireland, Galway, Ireland; donal.oregan@nuigalway.ie