ON THE EXISTENCE OF SOLUTIONS OF STRONGLY DAMPED NONLINEAR WAVE EQUATIONS

JONG YEOL PARK and JEONG JA BAE

(Received 18 June 1998)

ABSTRACT. We investigate the existence and uniqueness of solutions of the following equation of hyperbolic type with a strong dissipation:

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2}(t,x) - & \left(\alpha + \beta \left(\int_{\Omega} |\nabla u(t,y)|^2 \, dy \right)^\gamma \right) \Delta u(t,x) \\
& - \lambda \Delta \frac{\partial u}{\partial t}(t,x) + \mu |u(t,x)|^{q-1} u(t,x) = 0, \quad x \in \Omega, \ t \geq 0,
\end{align*}
\]

where \(q > 1, \lambda > 0, \mu \in \mathbb{R}, \alpha, \beta \geq 0, \alpha + \beta > 0, \) and \(\Delta \) is the Laplacian in \(\mathbb{R}^N. \)

Keywords and phrases. Quasilinear wave equation, nondegenerate equation, existence and uniqueness, continuously differentiable solution, variation of parameters representation.

2000 Mathematics Subject Classification. Primary 35L70, 35L15, 65M60.

1. Introduction. Let \(\Omega \) be a bounded domain in \(\mathbb{R}^N \) with smooth boundary \(\partial \Omega. \)

In this paper, we consider the initial boundary value problem for the second order equations:

\[
\begin{align*}
\frac{\partial^2 u}{\partial t^2}(t,x) - & \left(\alpha + \beta \left(\int_{\Omega} |\nabla u(t,y)|^2 \, dy \right)^\gamma \right) \Delta u(t,x) \\
& - \lambda \Delta \frac{\partial u}{\partial t}(t,x) + \mu |u(t,x)|^{q-1} u(t,x) = 0, \quad x \in \Omega, \ t \geq 0,
\end{align*}
\]

(1.1)

where \(q > 1, \lambda > 0, \mu \in \mathbb{R}, \alpha, \beta \geq 0, \alpha + \beta > 0, \) and \(\Delta \) is the Laplacian in \(\mathbb{R}^N. \)

Equation (1.1) has its origin in the nonlinear vibrations of an elastic string (cf. Narasimha [6]). We call equation (1.1) a nondegenerate equation when \(\alpha > 0 \) and \(\beta > 0 \) and a degenerate one when \(\alpha = 0 \) and \(\beta > 0. \) In the case of \(\alpha > 0 \) and \(\beta = 0, \) equation (1.1) is the usual semilinear wave equations.

Many authors have studied the existence and uniqueness of solutions of (1.1) by using various methods. When \(\lambda > 0 \) and \(\mu = 0, \) for the degenerate case (i.e., \(\alpha = 0, \) Nishihara and Yamada [7] have proved the global existence of a unique solution under the assumptions that the initial data \(\{u_0, u_1\} \) are sufficiently small and \(u_0 \neq 0. \) However, the method in [7] cannot be applied directly to the case that degenerate equations have the blow-up term \(|u|^{q-1} u. \) When \(\alpha > 0 \) and \(\mu > 0, \) for the degenerate case (i.e., \(\alpha = 0, \) Ono and Nishihara [9] have proved the global existence and decay
structure of solutions of (1.1) without small condition of initial data using Galerkin method. Ono [8] has obtained the global existence of solutions of problem (1.1) with dissipative term u' instead of $\Delta u'$. In this paper, we prove the existence of solutions of problem (1.1) using the method of Fitzgibbon and Parrot [3].

Our plan in this paper is as follows: in Section 2, we collect the results about abstract semigroup theory and present some lemmas. In Section 3, we deal with a priori estimates for solutions of (1.1) and in Section 4, we investigate convergence of solution.

2. Preliminaries. In this section, we formulate (1.1) as abstract Cauchy initial value problems. We denote by H the Hilbert space $L^2(\Omega)$ with norm $\| \cdot \|_2$ and inner product (\cdot, \cdot). We define $A : D(A) \subset H \to H$ by

$$Au = -\Delta u \quad \text{for } u \in D(A),$$

(2.1)

where

$$D(A) = H^2(\Omega) \cap H^1_0(\Omega).$$

(2.2)

Here, $H^1_0(\Omega)$ and $H^2(\Omega)$ are the usual Sobolev spaces. It is well known that A so defined is a strictly positive selfadjoint operator on H. Positive powers of A, A^γ for $\gamma > 0$, may be computed via the elementary spectral calculus and are seen to be positive selfadjoint operators themselves. We can make $D(A^\gamma)$ into a Hilbert space H_{A^γ} by imposing a graph norm

$$\| u \|_{A^\gamma} = \| A^\gamma u \|_2 \quad \text{for } u \in D(A^\gamma).$$

(2.3)

It should be evident that the damped beam equation (1.1) may be written abstractly as

$$u''(t) + \left(\alpha + \beta \| A^{1/2}u(t) \|_2^{2\gamma} \right)Au(t) + \lambda Au'(t) + \mu |u(t)|^{q-1}u(t) = 0, \quad t \geq 0,$$

$$u(0) = u_0, \quad u'(0) = u_1, \quad u_{|\partial\Omega} = 0.$$

(2.4)

In order to prove the existence of solutions of (1.1), first we consider the following initial value problem:

$$u''(t) + \left(\alpha + \beta \| A^{1/2}u(t) \|_2^{2\gamma} \right)Au(t) + \epsilon A^2 u(t) + \lambda Au'(t) + \mu |u(t)|^{q-1}u(t) = 0, \quad t \geq 0,$$

$$u(0) = u_0, \quad u'(0) = u_1, \quad u_{|\partial\Omega} = 0.$$

(2.5)

Now, it is convenient to resort to the standard artifice of writing (2.5) as a first order system. We let $X = H_A \times H$ and define $\bar{A}_\epsilon : X \to X$ by the operator matrix

$$\bar{A}_\epsilon = \begin{pmatrix} 0 & -I \\ \epsilon A^2 & \lambda A \end{pmatrix} \quad \text{with } D(\bar{A}_\epsilon) = D(A^2) \times D(A) \equiv D_1.$$

(2.6)

Proposition 2.1 [3]. If \bar{A}_ϵ is defined by (2.6), then $-\bar{A}_\epsilon$ is the infinitesimal generator of an analytic semigroup $\{ \bar{T}_\epsilon(t) \} \in X$, $\{ \bar{T}_\epsilon(t) \}$ is an analytic semigroup of contractions in $X_\epsilon = H_{A^2} \times H$.

We note that while \(\{ T_\epsilon(t) | t \geq 0 \} \) is an analytic semigroup in \(X \), we can no longer claim that it is a contraction semigroup. In fact, due to the singularity imposed by the factor \(\epsilon \), we expect the norm of \(\bar{T}_\epsilon(t) \) in \(X \) to blow up as \(\epsilon \to 0 \). Now we define a nonlinear operator

\[
F_0(U_\epsilon) = \begin{pmatrix}
0 \\
-(\alpha + \beta \| A^{1/2} u \|^2) A u - \mu |u|^{q-1} u
\end{pmatrix} \quad \text{for } U_\epsilon = \begin{pmatrix} u \\ v \end{pmatrix} \in X. \tag{2.7}
\]

Then solutions to (2.5) now assume the form

\[
\frac{d}{dt} U_\epsilon + \bar{A}_\epsilon U_\epsilon = F_0(U_\epsilon), \quad t > 0, \\
U_\epsilon(0) = U_0 = (u_0, u_1)^T. \tag{2.8}
\]

We point out that if \(\pi_1 \) and \(\pi_2 \) project \(X \) onto its first and second coordinates, respectively, then \(\pi_1 U_\epsilon(t) = u(t) \) and \(\pi_2 U_\epsilon(t) = u'(t) \), where \(u(t) \) is the strong solution of (2.5). We have the following results.

Proposition 2.2. If \(U_0 = (u_0, u_1)^T \in D_1 \), then there exists a strong, continuously differentiable solution to (2.8) on \([0, \infty) \) which has variation of parameters representation

\[
U_\epsilon(t) = T_\epsilon(t) U_0 + \int_0^t T_\epsilon(t-s) F_0(U_\epsilon(s)) \, ds. \tag{2.9}
\]

Proof. Since the mapping \(F_0; X \to X \) is \(C^\infty \), mild solution \(u \) is Hölder continuous and so it is continuously differentiable (cf. Pazy [10, Chapter 4]). \(\Box \)

We have pointed out that one expects the norm of \(\bar{T}_\epsilon(t) \) in \(X \) denoted by \(\| \bar{T}_\epsilon \|_X \) to blow up as \(\epsilon \to 0 \) (although the norm in \(X_\epsilon \), \(\| \bar{T}_\epsilon \|_{X_\epsilon} \) remains bounded by one). For this reason, we want to prove an alternative representation to (2.9) for solutions to (2.8). We define

\[
\bar{A} = \begin{pmatrix}
0 \\
\alpha A & -I \\
\lambda A
\end{pmatrix} \quad \text{with } D(\bar{A}) = D(A) \times D(A). \tag{2.10}
\]

It is well known that \(-\bar{A} \) is the infinitesimal generator of an analytic semigroup on \(X \). (cf. Webb [12, Proposition 2.2]). We denote the semigroup generated by \(-\bar{A} \) as \(\{ \bar{T}(t); t \geq 0 \} \) and introduce a new nonlinearity \(F_\epsilon \) defined by

\[
F_\epsilon(U_\epsilon) = \begin{pmatrix}
0 \\
-\beta \| A^{1/2} u \|^2 - \epsilon A^2 u - \mu |u|^{q-1} u
\end{pmatrix} \quad \text{for } U_\epsilon = \begin{pmatrix} u \\ u' \end{pmatrix} \in X. \tag{2.11}
\]

By merely regrouping terms, we can rewrite (2.8) as

\[
\frac{d}{dt} U_\epsilon + \bar{A} U_\epsilon = F_\epsilon(U_\epsilon), \quad t > 0, \\
U_\epsilon(0) = U_0 = (u_0, u_1). \tag{2.12}
\]

We have the following proposition.
Proposition 2.3. If \(U_0 = (u_0, u_1)^T \in D_1 \), then the strong solution to (2.12) may be represented as

\[
U_\epsilon(t) = T(t)U_0 + \int_0^t T(t-s)F_\epsilon(U_\epsilon(s))\,ds. \tag{2.13}
\]

Proof. We let \(f_\epsilon(t) = F_\epsilon(U_\epsilon(t)) \) and refer to Pazy [10, page 106] for a discussion of the representation theory for the inhomogeneous Cauchy initial value problems of the form

\[
\frac{d}{dt}U_\epsilon + \bar{A}U_\epsilon = f_\epsilon(t), \quad t > 0, \quad U_\epsilon(0) = U_0. \tag{2.14}
\]

Now we turn our attention to (1.1). We know that there exists a unique strong solution \(u(t,x) \) to (1.1) if \((u_0, u_1) \in D(A^{1/2}) \times H \). Moreover, if \(T > 0 \) and \((u(t))(x) = u(t,x) \), then

\[
u \in L^\infty((0,T);H_{A^{1/2}}) \quad \text{and} \quad u' \in L^\infty((0,T);H) \cap L^2((0,T);H_{A^{1/2}}). \tag{2.15}
\]

See Ono [8] and Matos and Pereira [4].

The abstract second order equation

\[
u''(t) + \alpha A\nu(t) + \beta \|A^{1/2}\nu(t)\|_2^{2\gamma} A\nu(t) + \lambda (1+|u(t)|^{q-1})u(t) = 0, \quad t \geq 0,
\]

\[
u(0) = u_0, \quad \nu'(0) = u_1 \tag{2.16}
\]

places (1.1) in a function space setting. We introduce a nonlinear operator \(F \) defined by

\[
F(U) = \begin{pmatrix} -\beta \|A^{1/2}\nu\|_2^{2\gamma} A\nu - \mu |u|^{q-1}u \\ 0 \end{pmatrix} \quad \text{for} \quad U = \begin{pmatrix} u \\ u' \end{pmatrix} \tag{2.17}
\]

and observe that solutions to (1.1) satisfy

\[
\frac{d}{dt}U + \tilde{A}U(t) = F(U(t)), \quad t > 0, \quad U(0) = U_0 = (u_0, u_1)^T. \tag{2.18}
\]

We have the following proposition which we state without proof.

Proposition 2.4 [10]. If \(U_0 = (u_0, u_1)^T \in D_1 \), then there exists a strong solution to (1.1) on \([0, \infty)\) which has abstract variation of parameters representation

\[
U(t) = T(t)U_0 + \int_0^t T(t-s)F(U(s))\,ds. \tag{2.19}
\]

3. A priori estimates. We first prepare the following well-known lemmas which are needed later.

Lemma 3.1 (Sobolev-Poincaré [5]). If either \(1 \leq q < +\infty \) where \(N = 1, 2 \) or \(1 \leq q \leq (N+2)/(N-2) \) where \(N \geq 3 \), then there is a constant \(C(\Omega,q+1) \) such that

\[
\|u\|_{q+1} \leq C(\Omega,q+1)\|\nabla u\|_2 \quad \text{for} \quad u \in H_0^1(\Omega). \tag{3.1}
\]
In other words,

$$C(Ω, q + 1) = \sup \left\{ \frac{∥u∥^{q+1}}{∥\nabla u∥_2} \middle| u \in H^1_0(Ω), u \neq 0 \right\}$$ \hspace{1cm} (3.2)$$

is positive and finite.

Lemma 3.2 (Gagliardo-Nirenberg [5]). Let $1 \leq r < q \leq +\infty$ and $p \leq q$. Then the inequality

$$∥u∥_{w^{k,q}} \leq C∥u∥^q_{w^{m,p}}∥u∥^{1-q}_{r} \text{ for } u \in W^{m,p}(Ω) \cap L^r(Δ)$$ \hspace{1cm} (3.3)$$

holds with some $C > 0$ and

$$θ = \left(\frac{k}{N} + \frac{1}{r} - \frac{1}{q} \right) \left(\frac{m}{N} + \frac{1}{r} - \frac{1}{p} \right)^{-1}$$ \hspace{1cm} (3.4)$$

provided that $0 < θ \leq 1$ (we assume that $0 < θ < 1$ if $q = +\infty$).

Now, we develop a priori estimates for solutions to (1.1) by applying energy methods to abstract second order equations. Throughout this section, let u be the solution to (2.5).

Proposition 3.3. If $(u_0, u_1)^T \in D_1$, then there exists a positive constant M_0, which does not depend on $ε$, so that

$$\sup_{t>0} \{∥u′(t)∥_2^2, ∥A^{1/2}u(t)∥_2^2, ε∥Au(t)∥_2^2\} \leq M_0.$$ \hspace{1cm} (3.5)$$

Proof. If we multiply equation (2.5) by $u′(t)$ and integrate in space, we obtain

$$\frac{1}{2} \frac{d}{dt} \left(∥u′(t)∥_2^2 + α∥A^{1/2}u(t)∥_2^2 + ε∥Au(t)∥_2^2 + \frac{2μ}{q+1}∥u(t)∥^{q+1}_{q+1} \right) + \frac{β}{2(γ+1)} \frac{d}{dt} ∥A^{1/2}u(t)∥_{2γ+1}^2 + λ∥A^{1/2}u′(t)∥_2^2 = 0.$$ \hspace{1cm} (3.6)$$

We may integrate (3.6) with respect to $t > 0$ to obtain the desired result (3.5).

We obtain greater regularity of solutions by placing additional smoothness requirements on our initial data.

Proposition 3.4. If $(u_0, u_1)^T \in D(A^2) × D(A)$ and

$$\frac{N}{N−2} \leq q \leq \min \left\{ \frac{N+2}{N−2}, \frac{N−2}{[N−4]^\frac{1}{2}} \right\} \quad (N ≥ 3),$$ \hspace{1cm} (3.7)$$

then there exists a positive constant M_1, which does not depend on $ε$, so that

$$\sup_{t>0} \{∥A^{1/2}u′(t)∥_2^2, ∥Au(t)∥_2^2, ε∥A^{3/2}u(t)∥_2^2\} \leq M_1.$$ \hspace{1cm} (3.8)$$

Proof. Multiplying equation (2.5) by $Au′(t)$,

$$\frac{1}{2} \frac{d}{dt} \left(∥A^{1/2}u′(t)∥_2^2 + α∥Au(t)∥_2^2 + ε∥A^{3/2}u(t)∥_2^2 \right) + \lambda∥Au′(t)∥_2^2 + μ(A^{1/2}[|u(t)|^{q−1}u(t)], A^{1/2}u′(t)) + \frac{β}{2} ∥A^{1/2}u(t)∥_2^2 \frac{d}{dt} ∥Au(t)∥_2^2 = 0.$$ \hspace{1cm} (3.9)$$
Integrating (3.9) from 0 to t, we get

$$
\frac{1}{2}||A^{1/2}u'(t)||^2_2 + \frac{\alpha}{2}||Au(t)||^2_2 + \frac{\beta}{2}||A^{1/2}u(t)||^{2\gamma}_2||Au(t)||^\gamma_2 + \frac{\epsilon}{2}||A^{3/2}u(t)||^2_2
\geq \frac{1}{2}||A^{1/2}u||^2_2 + \frac{\alpha}{2}||A\mu||^2_2 + \frac{\beta}{2}||A^{1/2}u_0||^{2\gamma}_2||A\mu||^\gamma_2 + \frac{\epsilon}{2}||A^{3/2}u_0||^2_2
+ \mu \int_0^t (A^{1/2}||u'(s)||^{q-1}u(s), A^{1/2}u'(s))ds + \lambda \int_0^t ||Au'(s)||^2_2 ds
$$

(3.10)

In the case $N/(N-2) \leq q \leq \min\{(N+2)/(N-2), (N-2)/(N-4)^+\}$ where $N \geq 3$, we have

$$
\left| \mu \int_0^t (A^{1/2}||u(s)||^{q-1}u(s), A^{1/2}u'(s))ds \right|
\leq q\mu \int_0^t ||u(s)||^{q-1}A^{1/2}u(s)||_2 ||A^{1/2}u'(s)||_2 ds
\leq q\mu C \int_0^t ||u(s)||^{q-1}(1)N ||A^{1/2}u(s)||_2 ||A^{1/2}u'(s)||_2 ds
\leq q\mu C \int_0^t ||u(s)||^{q-1}(1)N ||Au(s)||_2 ||A^{1/2}u'(s)||_2 ds,
$$

(3.11)

where we have used Hölder’s inequality and Sobolev-Poincaré’s inequality. We observe from Gagliardo-Nirenberg inequality, Sobolev-Poincaré’s inequality, and (3.5) that

$$
||u(s)||^{q-1}_N \leq C ||u(s)||^{(q-1)(1-\theta)}_N ||Au(s)||^{(q-1)\theta}_2
\leq C ||A^{1/2}u(s)||^{(q-1)(1-\theta)}_2 ||Au(s)||^{(q-1)\theta}_2
\leq CM_0^{(q-1)(1-\theta)/2} ||Au(s)||^{(q-1)\theta}_2
$$

(3.12)

with $\theta = \frac{N-2}{2} - \frac{1}{q-1} (< 1)$.

Thus, (3.11) and (3.12) imply that

$$
\left| \mu \int_0^t (A^{1/2}||u(s)||^{q-1}u(s), A^{1/2}u'(s))ds \right|
\leq q\mu CM_0^{(q-1)(1-\theta)/2} \int_0^t ||Au(s)||^{1+(q-1)\theta}_2 ||A^{1/2}u'(s)||_2 ds.
$$

(3.13)

We also note that (3.5) implies

$$
\beta y \int_0^t ||Au(s)||^2_2 ||A^{1/2}u(s)||^{2(y-1)}_2 (A^{1/2}u'(s), A^{1/2}u(s)) ds
\leq \beta y \int_0^t ||Au(s)||^2_2 ||A^{1/2}u'(s)||_2 ||A^{1/2}u(s)||^{2y-1}_2 ds
\leq \beta y M_0^{2(y-1)/2} \int_0^t ||Au(s)||^2_2 ||A^{1/2}u'(s)||_2 ds.
$$

(3.14)
Consequently, (3.10), (3.13), and (3.14) give
\[
\frac{1}{2} \|A^{1/2}u'(t)\|_2^2 + \frac{\alpha}{2} \|Au(t)\|_2^2 + \frac{\epsilon}{2} \|A^{3/2}u(t)\|_2^2 + \frac{\beta}{2} \|Au(t)\|_2^2 \|A^{1/2}u(t)\|_2^{2\gamma} + \lambda \int_0^t \|Au'(s)\|_2^2 ds
\]
\[
\leq \frac{1}{2} \|A^{1/2}u|_2^2 + \frac{\alpha}{2} \|Au_0\|_2^2 + \frac{\epsilon}{2} \|A^{3/2}u_0\|_2^2 + \frac{\beta}{2} \|Au_0\|_2^2 \|A^{1/2}u_0\|_2^{2\gamma} + q \mu CM_0^{(q-1)(1-\theta)/2}
\]
\[
\times \int_0^t \|Au(s)\|_2^{1+(q-1)\theta} \|A^{1/2}u'(s)\|_2 ds + \beta \mu M_0^{(2\gamma-1)/2}
\]
\[
\times \int_0^t \|Au(s)\|_2^2 \|A^{1/2}u'(s)\|_2 ds.
\]
Set
\[
E_1(t) = \frac{1}{2} \|A^{1/2}u'(t)\|_2^2 + \frac{\alpha}{2} \|Au(t)\|_2^2 + \frac{\epsilon}{2} \|A^{3/2}u(t)\|_2^2 + \frac{\beta}{2} \|Au(t)\|_2^2 \|A^{1/2}u(t)\|_2^{2\gamma}
\]
(3.15)

Then
\[
E_1(t) \leq E_1(0) + C_1 \int_0^t (E_1(s))^{1+(q-1)\theta} + E_1(s) + E_1(s)^2 ds.
\]
(3.16)

Here, we set \(g(s) = s + s^{1+(q-1)\theta} + s^2\) on \(s \geq 0\). Then we have
\[
E_1(t) \leq E_1(0) + C_1 \int_0^t g(E_1(s)) ds.
\]
(3.17)

Note that \(g(s)\) is continuous and nondecreasing on \(s \geq 0\). By applying Bihari-Langenhop's inequality (see [1]), we obtain
\[
E_1(t) \leq M_1 \text{ for some constant } M_1 > 0
\]
(3.18)

and so the desired result (3.8).

Proposition 3.5. If \((u_0, u_1)^T \in D(A^4) \times D(A^2)\) and
\[
\frac{N}{N-2} \leq q \leq \min \left\{ \frac{N+2}{N-2}, \frac{N-2}{[N-4]^+} \right\} \quad (N \geq 3),
\]
(3.19)

then there exists a positive constant \(M_2\), which does not depend on \(\epsilon\), so that
\[
\sup_{t>0} \left\{ \|Au'(t)\|_2^2, \|A^{3/2}u(t)\|_2^2, \epsilon \|A^2u(t)\|_2^2 \right\} \leq M_2.
\]
(3.20)

Proof. Multiplying equation (2.5) by \(A^2u'(t)\),
\[
\frac{1}{2} \frac{d}{dt} \left(\|Au'(t)\|_2^2 + \alpha \|A^{3/2}u(t)\|_2^2 + \epsilon \|A^2u(t)\|_2^2 \right) + \lambda \|A^{3/2}u'(t)\|_2^2
\]
\[
+ \frac{\beta}{2} \|A^{1/2}u(t)\|_2^{2\gamma} \frac{d}{dt} \|A^{3/2}u(t)\|_2^2 + \mu (A^{1/2}[u(t)]^{q-1}u(t), A^{3/2}u'(t)) = 0.
\]
(3.21)
On the other hand, (3.5) and (3.8) imply that

\[
\frac{1}{2} \left(\|Au'(t)\|_2^2 + \alpha \|A^{3/2}u(t)\|_2^2 + \epsilon \|A^2u(t)\|_2^2 + \beta \|A^{1/2}u(t)\|_2^{2Y} \right) + \frac{\lambda}{2} \int_0^t \|A^{3/2}u'(s)\|_2^2 ds \\
\leq \frac{1}{2} \left(\|Au_1\|_2^2 + \alpha \|A^{3/2}u_0\|_2^2 + \epsilon \|A^2u_0\|_2^2 + \beta \|A^{1/2}u_0\|_2^{2Y} \right) + \frac{\lambda}{2} \int_0^t \|A^{3/2}u_0\|_2^2 ds + \mu \int_0^t \left(A^{1/2} |u(s)|^{q-1} u(s) \right) A^{3/2}u'(s) ds + \beta Y \int_0^t \|A^{1/2}u'(s)\|_2^{2y-1} \|A^{1/2}u(s)\|_2 \|A^{3/2}u(s)\|_2^2 ds.
\]

(3.23)

In the case \((N/(N-2)) \leq q \leq \min\{(N+2)/(N-2), (N-2)/(N-4)\} \) where \((N \geq 3)\), we have

\[
\mu \left(A^{1/2} |u(s)|^{q-1} u(s) \right) A^{3/2}u'(s) \\
\leq q \mu \|u(s)|^{q-1} A^{1/2}u(s)\|_2 \|A^{3/2}u'(s)\|_2 \\
\leq q \mu C \|u(s)|^{q-1} A^{1/2}u(s)\|_{2N/(N-2)} \|A^{3/2}u'(s)\|_2 \\
\leq q \mu C \|A^{1/2}u(s)\|_{2N/(N-2)}^{q-1} \|A^{3/2}u'(s)\|_2.
\]

(3.24)

Thus (3.5), (3.8), and (3.24) imply that

\[
\mu \left(A^{1/2} |u(s)|^{q-1} u(s) \right) A^{3/2}u'(s) \leq q \mu C M_0^{q-1/2} M_1^{1/2} \|A^{3/2}u'(s)\|_2 \\
\leq \frac{1}{2\lambda} (q \mu C)^2 M_0^{q-1} M_1 + \frac{\lambda}{2} \|A^{3/2}u'(s)\|_2^2
\]

(3.25)

and so

\[
\mu \int_0^t \left(A^{1/2} |u(s)|^{q-1} u(s) \right) A^{3/2}u'(s) ds \\
\leq \frac{1}{2\lambda} (q \mu C)^2 M_0^{q-1} M_1 t + \frac{\lambda}{2} \int_0^t \|A^{3/2}u'(s)\|_2^2 ds.
\]

(3.26)

On the other hand, (3.5) and (3.8) imply that

\[
\beta Y \int_0^t \|A^{1/2}u(s)\|_2^{2y-1} \left(A^{1/2}u'(s), A^{1/2}u(s) \right) \|A^{3/2}u'(s)\|_2^2 ds \\
\leq \beta Y \int_0^t \|A^{1/2}u(s)\|_2^{2y-1} \|A^{1/2}u'(s)\|_2 \|A^{3/2}u(s)\|_2^2 ds \\
\leq \beta Y M_0^{(2y-1)/2} M_1^{1/2} \int_0^t \|A^{3/2}u(s)\|_2^2 ds.
\]

(3.27)

Thus, from (3.23), (3.26), and (3.27),

\[
\frac{1}{2} \left(\|Au'(t)\|_2^2 + \alpha \|A^{3/2}u(t)\|_2^2 + \epsilon \|A^2u(t)\|_2^2 + \beta \|A^{1/2}u(t)\|_2^{2Y} \right) + \frac{\lambda}{2} \int_0^t \|A^{3/2}u'(s)\|_2^2 ds \\
\leq \frac{1}{2} \left(\|Au_1\|_2^2 + \alpha \|A^{3/2}u_0\|_2^2 + \epsilon \|A^2u_0\|_2^2 + \beta \|A^{1/2}u_0\|_2^{2Y} \right) + \frac{\lambda}{2} \int_0^t \|A^{3/2}u_0\|_2^2 ds + \frac{1}{2\lambda} (q \mu C)^2 M_0^{q-1} M_1 t + \beta Y M_0^{(2y-1)/2} M_1^{1/2} \int_0^t \|A^{3/2}u(s)\|_2^2 ds.
\]

(3.28)
Thus,

\[
E_2(t) + \frac{\lambda}{2} \int_0^t \|A^{3/2}u'(s)\|_2^2 \, ds \leq E_2(0) + C_1 + C_2 \int_0^t \alpha \|A^{3/2}u(s)\|_2^2 \, ds
\]

\[
\leq E_2(0) + C_1 + C_2 \int_0^t E_2(s) \, ds,
\]

where

\[
E_2(t) = \frac{1}{2} \left(\|Au'(t)\|_2^2 + \alpha \|A^{3/2}u(t)\|_2^2 + \epsilon \|A^2u(t)\|_2^2 + \beta \|A^{1/2}u(t)\|_2^2 \|A^{3/2}u(t)\|_2^2 \right),
\]

\[
C_1 = \frac{1}{2\lambda} (q\mu C)^2 M_0^{q-1} M_1 T, \quad C_2 = \frac{1}{2} \beta y M_0^{(2y-1)/2} M_1^{1/2}.
\]

(3.30)

Applying Gronwall's inequality, we easily obtain the desired result.

\[\square\]

Proposition 3.6. If \(T > 0\) and \((u_0, u_1)^T \in D(A^2) \times D(A)\) and

\[
\frac{N}{N-2} \leq q \leq \min \left\{ \frac{N+2}{N-2}, \frac{N-2}{\lfloor (N-4)^+ \rfloor} \right\} \quad (N \geq 3),
\]

then there exists a positive constant \(N\), which does not depend on \(\epsilon\), so that

\[
\sup_{t>0} \left\{ \|u''(t)\|_2^2 \right\} \leq N.
\]

(3.32)

Proof. Multiplying the differentiated equation of (2.5) in \(t\) by \(u''(t)\), we get

\[
\frac{1}{2} \frac{d}{dt} \|u''(t)\|_2^2 + \frac{\alpha}{2} \frac{d}{dt} \|A^{1/2}u'(t)\|_2^2 + \frac{\epsilon}{2} \frac{d}{dt} \|Au'(t)\|_2^2 + \lambda \|A^{1/2}u''(t)\|_2^2
\]

\[
+ \frac{\beta}{2} \|A^{1/2}u(t)\|_2^2 \|u(t)\|_2^2 (A^2u'(t), u''(t)) + q\mu \int_\Omega |u(t)|^{q-1} u'(t) u''(t) \, dx
\]

\[
+ 2\beta y \|A^{1/2}u(t)\|_2^2 \|A^{1/2}u(t), A^{1/2}u'(t)\|_2 (Au(t), u''(t)) = 0.
\]

(3.33)

Note that if \((N/(N-2)) \leq q \leq \min\{(N+2)/(N-2), (N-2)/(N-4)^+\}\) where \(N \geq 3\), then (3.5) and (3.8) imply that

\[
q\mu \int_\Omega |u(t)|^{q-1} u'(t) u''(t) \, dx
\]

\[
\leq q\mu \|u(t)\|_{(q-1)N} \|u'(t)\|_{2N/(N-2)} \|u''(t)\|_2
\]

\[
\leq q\mu C \|u(t)\|_{(q-1)(1-\theta)N} \|Au(t)\|_{(q-1)\theta} \|u'(t)\|_{2N/(N-2)} \|u''(t)\|_2
\]

\[
\leq q\mu C \|A^{1/2}u(t)\|_{(q-1)(1-\theta)} \|Au(t)\|_{(q-1)\theta} \|A^{1/2}u'(t)\|_2 \|u''(t)\|_2
\]

\[
\leq q\mu C M_0^{(q-1)(1-\theta)/2} M_1^{1+(q-1)\theta/2} \|u''(t)\|_2.
\]

(3.34)

Also, (3.5) and (3.8) give

\[
2\beta y \|A^{1/2}u(t)\|_2^2 \|A^{1/2}u'(t), A^{1/2}u''(t)\|_2 (Au(t), u''(t))
\]

\[
\leq 2\beta y \|A^{1/2}u(t)\|_2^2 \|A^{1/2}u'(t)\|_2 \|Au(t)\|_2 \|u''(t)\|_2
\]

\[
\leq 2\beta y M_0^{(2y-1)/2} M_1 \|u''(t)\|_2
\]

(3.35)
and
\[\frac{B}{2} \|A^{1/2}u(t)\|_2^2 (Au'(t),u''(t)) \leq \frac{B}{2} \|A^{1/2}u(t)\|_2^2 \|Au'(t)\|_2 \|u''(t)\|_2 \]
\[\leq \frac{B}{2} M_0' \|Au'(t)\|_2 \|u''(t)\|_2. \]

Thus, from (3.33), (3.34), (3.35), and (3.36), we get
\[\frac{1}{2} \frac{d}{dt} \|u''(t)\|_2^2 + \frac{\alpha}{2} \|A^{1/2}u'(t)\|_2^2 + \frac{\epsilon}{2} \|Au'(t)\|_2^2 + \lambda \|A^{1/2}u''(t)\|_2^2 \]
\[\leq (q\mu C_0 M_0^{((q-1)(1-\theta)/2)} M_1^{1+(q-1)\theta/2} + 2\beta y M_0^{2(2y-1)/2} M_1) \|u''(t)\|_2 \]
\[+ \frac{B}{2} M_0' \|Au'(t)\|_2 \|u''(t)\|_2. \]

Integrating (3.37) from 0 to t, we get
\[E_3(t) + \lambda \int_0^t \|A^{1/2}u''(s)\|_2^2 ds \leq E_3(0) + C_3 \int_0^t (\|Au'(s)\|_2 \|u''(s)\|_2 + \|u''(s)\|_2) ds \]
\[\leq E_3(0) + C_4 \int_0^t (E_3(s)^{1/2} + E_3(s)) ds, \]

where
\[E_3(t) = \frac{1}{2} \|u''(t)\|_2^2 + \frac{\alpha}{2} \|A^{1/2}u'(t)\|_2^2 + \frac{\epsilon}{2} \|Au'(t)\|_2^2, \]
\[C_3 = \max \left\{ q\mu C_0 M_0^{((q-1)(1-\theta)/2)} M_1^{1+(q-1)\theta/2}, 2\beta y M_0^{2(2y-1)/2} M_1, \frac{B}{2} M_0' \right\}. \]

Here, we set \(g(s) = s^{1/2} + s \) on \(s \geq 0 \). Then we have
\[E_3(t) \leq E_3(0) + C_4 \int_0^t g(E_3(s)) ds. \]

Note that \(g(s) \) is continuous and nondecreasing on \(s \geq 0 \). By applying Bihari-Langenhop's inequality (see [1]), we obtain
\[E_3(t) \leq M_2 \quad \text{for some constant } M_2 > 0 \]
and so we have the desired result (3.32). \(\square \)

4. Convergence results. In this section, we establish the uniform convergence of strong solutions to (2.5) as \(\epsilon \to 0 \). At this point, we find it advantageous to make the dependence of solutions to (2.5) on \(\epsilon \) explicit. To be more precise, we let \(U_\epsilon(t) = (u_\epsilon(t), u_\epsilon'(t)) \) be the solution to (2.12) and observe that \(U_\epsilon \) is the solution of (2.5). Continuing in this manner, \((u_\epsilon(t))(x) = u_\epsilon(x,t) \) satisfies (2.5). We are concerned with the convergence of solutions to (1.1) on finite interval of arbitrary length. In what follows, we let \(T > 0 \) and consider the convergence on \([0,T]\). In particular, we want to establish that
\[\lim_{\epsilon \to 0^+} \left(\sup_{t \in [0,T]} \|u_\epsilon(\cdot,t) - u(\cdot,t)\|_\infty \right) = 0, \]
where \(u \) is the strong solution to (1.1). Our proofs rely upon the classical Arzela-Ascoli arguments and the uniqueness of solutions to (1.1).

Lemma 4.1. Let \(\{\epsilon_n\} \) converge to zero and \((u_0, u_1)^T = U_0 \in D(A^2) \times D(A^2)\). If, for each \(\epsilon_n, u_{\epsilon_n} \) is a solution to (2.5), then there exists a subsequence \(\epsilon_{n'} \rightarrow 0 \) and \(u_*: [0, T] \rightarrow H_{A^{1/2}} \) such that

\[
\lim_{n \to \infty} \|u_{\epsilon_{n'}}(t) - u_*(t)\|_{A^{1/2}} = 0 \quad \text{uniformly for } t \in [0, T].
\]

Moreover, if \((u_{\epsilon_{n'}}(t))(x) = u_{\epsilon_{n'}}(x, t) \) and \((u_*(t))(x) = u_*(x, t) \), then

\[
\lim_{n \to \infty} \|u_{\epsilon_{n'}}(\cdot, t) - u_*(\cdot, t)\|_\infty = 0 \quad \text{uniformly for } t \in [0, T].
\]

Proof. From Proposition 3.4, we observe that

\[
\|A^{1/2}u_{\epsilon_n}(t) - A^{1/2}u_n(s)\|_2 \leq \int_s^t \|A^{1/2}u_n'(r)\|_2 dr
\leq M_1^{1/2}|t-s| \quad \text{for } t, s \in [0, T].
\]

Moreover, we also have from Proposition 3.3

\[
\|A^{1/2}u_{\epsilon_n}(t)\|_2 \leq M_0^{1/2} \quad \text{for } t \in [0, T].
\]

Thus, the above results, together with the compactness of \(A^{-1/2} \), imply that the sequence \(\{u_{\epsilon_n}(t)\} \) is uniformly bounded and uniformly equicontinuous in \(H_{A^{1/2}} \). Hence, we can apply Arzela-Ascoli theorem to the sequence \(\{u_{\epsilon_n}(t)\} \) in \(H_{A^{1/2}} \). Thus, we can find a subsequence \(\{u_{\epsilon_{n'}}\} \) and the limit function \(u_*: [0, T] \rightarrow H_{A^{1/2}} \) such that

\[
u_{\epsilon_n}(t) \rightharpoonup u_*(t) \quad \text{in } H_{A^{1/2}} \text{ uniformly for } t \in [0, T].
\]

The final assertion follows immediately from the Sobolev embedding theorem. \(\square \)

Now, subsequent results presuppose that the hypotheses of Lemma 4.1 remain in effect.

Proposition 4.2. If we define \(f_{\epsilon_n} : [0, T] \rightarrow H \) by

\[
f_{\epsilon_n}(t) = \pi_2(F_{\epsilon_n}(u_{\epsilon_n}(t)))
= \beta\|A^{1/2}u_{\epsilon_n}(t)\|_2^{2y}Au_{\epsilon_n}(t) - \epsilon_n A^2 u_{\epsilon_n}(t) - \mu u_{\epsilon_n}(t) |^{q-1} u_{\epsilon_n}(t),
\]

then \(\{f_{\epsilon_n}(t)\} \) converges weakly to \(f_*(t) \) in \(H \) on \([0, T]\), where \(f_*(t) \) is defined by

\[
f_*(t) = -\beta\|A^{1/2}u_*(t)\|_2^{2y}Au_(t) - \mu u_*(t) |^{q-1} u_*(t).
\]

Proof. Since \(\lim_{n \to -\infty} u_{\epsilon_n}(t) = u_*(t) \) in \(H_{A^{1/2}} \), we have

\[
\lim_{n \to -\infty} \|A^{1/2}u_{\epsilon_n}(t)\|_2^{2y} = \lim_{n \to -\infty} \|u_{\epsilon_n}(t)\|_{A^{1/2}} = \|u_*(t)\|_{A^{1/2}} = \|A^{1/2}u_*(t)\|_2^{2y}.
\]

By virtue of Proposition 3.4, the sequence \(\{Au_{\epsilon_n}(t)\} \) is uniformly bounded in \(H \) for \(t \in [0, T] \). Moreover, \(\{u_{\epsilon_n}(t)\} \) converges to \(u_*(t) \) in \(H \). Since \(A \) is closed, we have \(u_*(t) \in D(A) \) and \(Au_{\epsilon_n}(t) \) converges weakly to \(Au_*(t) \) in \(H \). Note that \(\{\epsilon_n A^2 u_{\epsilon_n}(t)\} \) converges to zero as \(n \to -\infty \) and \(\{\epsilon_n A^2 u_{\epsilon_n}(t)\} = \{A^2(\epsilon_n u_{\epsilon_n}(t))\} \) is uniformly bounded in \(H \). Since \(A^2 \) is closed, \(\{\epsilon_n A^2 u_{\epsilon_n}\} \) converges weakly to zero. This completes the proof. \(\square \)
Proposition 4.3. The sequence \(\{u_{\epsilon_n}(t)\} \) converges weakly in \(X \). Moreover, \(u_{\epsilon_n}'(t) \) exists and \(u_{\epsilon_n}'(t) \) converges weakly to \(u_*(t) \) for a.e. \(t \in [0, T] \).

Proof. Since \(X \) is a product of Hilbert spaces, it is of course reflexive. Thus, \(\{U_{\epsilon_n}(t)\} = \{(u_{\epsilon_n}(t), u_{\epsilon_n}'(t))^T\} \) is a bounded sequence in a reflexive Banach space \(X \) and so it must have a subsequence \(\{U_{\epsilon_n}(t)\} = \{(u_{\epsilon_n}(t), u_{\epsilon_n}'(t))^T\} \) such that \(\{U_{\epsilon_n}(t)\} \) converges weakly to \(\{U_*(t)\} \).

But Lemma 4.1 implies that \(\{U_*(t)\} = \{(u_*(t), u_*(t))^T\} \).

Proposition 4.4. The function \(F_*(t) \), defined by

\[
F_*(t) = (0, f_*(t))^T = (0, -\beta \|A^{1/2}u_*(t)\|^2 + y A_0^2 u_*(t) - \mu |u_*(t)|^{q-1} u_*(t))^T, \tag{4.10}
\]

is differentiable a.e. \(t \in [0, T] \).

Proof. Note that \(A^{1/2}u_*(\cdot) \) is the limit of a uniformly convergent sequence of uniformly Lipschitz continuous functions in reflexive Banach space \(H \) and so it is differentiable almost everywhere. Thus, \(\|A^{1/2}u_*(\cdot)\|^2 \) is differentiable for a.e. \(t \in [0, T] \). And \(d/dt(Au_{\epsilon_n}(t)) \) exists since it is a weak limit of a bounded sequence \(d/dt(Au_{\epsilon_n}(t)) \).

Lemma 4.5. Let \(u(t) \) be the unique solution to (2.18) represented by (2.19) on \([0, T] \). If \(u_0 = (u_0, u_1)^T \in D(A^4) \times D(A^2) \) and \(\epsilon_n \to 0 \), then \(u_{\epsilon_n}(t) \) converges weakly to \(u(t) \) in \(X \) on \([0, T] \).

Proof. Note that solutions to (2.5) have abstract variation of parameters representation

\[
U_{\epsilon_n}(t) = T(t)U_0 + \int_0^t T(t-s)F(U_{\epsilon_n}(s)) \, ds = T(t)U_0 + \int_0^t T(t-s)f_{\epsilon_n}(s) \, ds, \tag{4.11}
\]

where

\[
f_{\epsilon_n}(t) = (0, f_{\epsilon_n}(t))^T = (0, -\beta \|A^{1/2}u_{\epsilon_n}(t)\|^2 + \epsilon_n A_0^2 u_{\epsilon_n}(t) - \mu |u_{\epsilon_n}(t)|^{q-1} u_{\epsilon_n}(t))^T. \tag{4.12}
\]

If \(W \in X \) and \(\langle \cdot, \cdot \rangle_X \) denotes the inner product of \(X \), we apply \(W \) to each side of (4.11) and take the inner product to obtain

\[
\langle U_{\epsilon_n}(t), W \rangle_X = \langle T(t)U_0, W \rangle_X + \int_0^t \langle T(t-s)f_{\epsilon_n}(s), W \rangle_X \, ds. \tag{4.13}
\]

We have shown that \(U_{\epsilon_n}(t) = (u_{\epsilon_n}(t), u_{\epsilon_n}'(t))^T \) has a weakly convergent subsequence which we denote by \(U_{\epsilon_m}(t) = (u_{\epsilon_m}(t), u_{\epsilon_m}'(t))^T \). The limit of this subsequence, for the time being, is denoted by \(U_*(t) = (u_*(t), u_*(t))^T \). Additionally, we have shown that \(f_{\epsilon_m}(t) = (0, f_{\epsilon_m}(t))^T \) converges weakly to \(f_*(t) = (0, f_*(t))^T = (0, -\beta \|A^{1/2}u_*(t)\|^2 + \epsilon_n A_0^2 u_*(t) - \mu |u_*(t)|^{q-1} u_*(t))^T \). We may compute the limit as \(m \to \infty \) of each side of (4.13) to produce

\[
\langle U_*(t), W \rangle_X = \langle T(t)U_0, W \rangle_X + \int_0^t \langle T(t-s)f_*(s), W \rangle_X \, ds. \tag{4.14}
\]
ON THE EXISTENCE OF SOLUTIONS OF STRONGLY DAMPED ...

Standard techniques yield

\[U_\ast(t) = T(t)U_0 + \int_0^t T(t-s)\bar{f}_\ast(s)\,ds. \] \hspace{1cm} (4.15)

The differentiability of \(f_\ast(t) \), together with the regularity results for abstract Cauchy initial value problem (cf. Pazy [10, Chapter 4]), allows us to differentiate (4.15) to produce a strong solution to (2.18). However, solutions of (2.18) are unique and, therefore,

\[U_\ast(t) = (u_\ast(t), u'_\ast(t))^T = U(t) = (u(t), u'(t))^T. \] \hspace{1cm} (4.16)

Now, we are in a position to obtain our result.

Theorem 4.6. If \((u_0, u_1)^T = U_0 \in D(A^4) \times D(A^2)\) and \(T > 0 \) and

\[\frac{N}{N-2} \leq q \leq \min\left\{ \frac{N+2}{N-2}, \frac{N-2}{[N-4]^+} \right\} \quad (N \geq 3), \] \hspace{1cm} (4.17)

then

\[\lim_{\epsilon \to 0^+} \sup_{t \in [0,T]} \| u_\epsilon(t) - u(t) \|_\infty = 0, \] \hspace{1cm} (4.18)

where \(u_\epsilon \) and \(u \) are strong solutions to (1.1).

Proof. We pick an arbitrary sequence \(\{\epsilon_n\} \) such that \(\epsilon_n \to 0 \). Lemma 4.1 along with Lemma 4.5 give our desired result.

Acknowledgement. This work is supported by KOSEF 1996.

References

PARK AND BAE: DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, PUSAN 609-735, KOREA
Mathematical Problems in Engineering

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from “Qualitative Theory of Differential Equations,” allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the Mathematical Problems in Engineering aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at http://www.hindawi.com/journals/mpe/. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at http://mts.hindawi.com/ according to the following timetable:

<table>
<thead>
<tr>
<th>Manusciript Due</th>
<th>February 1, 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Round of Reviews</td>
<td>May 1, 2009</td>
</tr>
<tr>
<td>Publication Date</td>
<td>August 1, 2009</td>
</tr>
</tbody>
</table>

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil; elbert@lac.inpe.br

Celso Grebogi, Department of Physics, King’s College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk